JASSS logo


53 articles matched your search for the keywords:
ABM, Norms, Social Influence

Simulation Tools for Social Scientists: Building Agent Based Models with SWARM

Pietro Terna
Journal of Artificial Societies and Social Simulation 1 (2) 4

Kyeywords: Agent Based Models (ABM), Chaos, Intelligent Agents, Social Simulation, Swarm
Abstract: Social scientists are not computer scientists, but their skills in the field have to become better and better to cope with the growing field of social simulation and agent based modelling techniques. A way to reduce the weight of software development is to employ generalised agent development tools, accepting both the boundaries necessarily existing in the various packages and the subtle and dangerous differences existing in the concept of agent in computer science, artificial intelligence and social sciences. The choice of tools based on the object oriented paradigm that offer libraries of functions and graphic widgets is a good compromise. A product with this kind of capability is Swarm, developed at the Santa Fe Institute and freely available, under the terms of the GNU license. A small example of a model developed in Swarm is introduced, in order to show directly the possibilities arising from the use of these techniques, both as software libraries and methodological guidelines. With simple agents - interacting in a Swarm context to solve both memory and time simulation problems - we observe the emergence of chaotic sequences of transaction prices.

Normative Reputation and the Costs of Compliance

Cristiano Castelfranchi, Rosaria Conte and Mario Paolucci
Journal of Artificial Societies and Social Simulation 1 (3) 3

Kyeywords: Norms, Reputation, Compliance
Abstract: In this paper, the role of normative reputation in reducing the costs of complying with norms will be explored. In previous simulations (Conte & Castelfranchi 1995), in contrast to a traditional view of norms as means for increasing co-ordination among agents, the effects of normative and non-normative strategies in the control of aggression among agents in a common environment was confronted. Normative strategies were found to reduce aggression to a much greater extent than non-normative strategies, and also to afford the highest average strength and the lowest polarisation of strength among the agents. The present study explores the effects of the interaction between populations following different criteria for aggression control. In such a situation the normative agents alone bear the cost of norms, due to their less aggressive behaviour, while other agents benefit from their presence. Equity is then restored by raising the cost of aggression through the introduction of agents' reputation. This allows normative agents to avoid respecting the cheaters' private property, and to impose a price for transgression. The relevance of knowledge communication is then emphasised by allowing neighbour normative agents to communicate. In particular, the spreading of agents' reputation via communication allows normative agents to co-operate without deliberation at the expense of non-normative agents, thereby redistributing the costs of normative strategies.

Simulating Norms, Social Inequality, and Functional Change in Artificial Societies

Nicole J. Saam and Andreas G. Harrer
Journal of Artificial Societies and Social Simulation 2 (1) 2

Kyeywords: Simulation of Norms, Social Inequality, Functions of Norms
Abstract: In this paper, we compare the computational and sociological study of norms, and resimulate previous simulations (Conte and Castelfranchi 1995a, Castelfranchi, Conte and Paolucci 1998) under slightly different conditions. First, we analyze the relation between norms, social inequality and functional change more closely. Due to our results, the hypothesis stating that the "finder-keeper" norm while controlling aggression efficaciously reduces social inequality holds only in quite egalitarian societies. Throughout a variety of inegalitarian societies, it instead increases social inequality. This argument which can be traced back to Marx is being investigated by use of computer simulations of artificial societies. Second, we remodel normative behaviour from a sociological point of view by implementing Haferkamp's theory of action approach to deviant behaviour. Following the game theoretic models, the computational study of norms has up to now ignored the importance of power in explaining how norms affect social behaviour, how norms emerge, become established and internalized, and change. By simulating Haferkamp and repeating the Conte and Castelfranchi experiments, we demonstrate that it is possible to integrate power into computational models of norms.

When One Decides for Many: the Effect of Delegation Methods on Cooperation in Simulated Inter-Group Conflicts

Ramzi Suleiman and Ilan Fischer
Journal of Artificial Societies and Social Simulation 3 (4) 1

Kyeywords: Prisoner's Dilemma, Intergroup Conflict, Evolution of Cooperation, Social Influence, Representation, Elections Frequency
Abstract: The study explores the evolution of decision strategies and the emergence of cooperation in simulated societies. In the context of an inter-group conflict, we simulate three different institutions for the aggregation of attitudes. We assume that: (a) the conflict can be modeled as an iterated Prisoner's Dilemma played by two decision makers, each representing her group for a fixed duration; (b) the performance of each group's representative influences her group members and, consequently, her prospects to be reelected. Our main objectives are: (1) to investigate the effects of three power-delegation mechanisms: Random Representation, Mean Representation, and Minimal Winning Coalition representation, on the emergence of representatives' decision strategies, (2) to investigate the effect of the frequency of elections on the evolving inter-group relations. Outcomes of 1080 simulations show that the emergence of cooperation is strongly influenced by the delegation mechanism, the election frequency, and the interaction between these two factors.

Introducing Emotions into the Computational Study of Social Norms: a First Evaluation

Alexander Staller and Paolo Petta
Journal of Artificial Societies and Social Simulation 4 (1) 2

Kyeywords: Social Norms, Appraisal Theory of Emotions ,Process Model of Emotions, Layered Agent Architecture, Simulation, JAM (BDI Agent Architecture), Micro-Macro Link, Aggression Control Case Study, Deontic Reasoning and Human Behaviour Models
Abstract: It is now generally recognised that emotions play an important functional role within both individuals and societies, thereby forming an important bond between these two levels of analysis. In particular, there is a bi-directional interrelationship between social norms and emotions, with emotions playing an instrumental role for the sustenance of social norms and social norms being an essential element of regulation in the individual emotional system. This paper lays the foundations for a computational study of this interrelationship, drawing upon the functional appraisal theory of emotions. We describe a first implementation of a situated agent architecture, TABASCOJAM, that incorporates a simple appraisal mechanism and report on its evaluation in a well-known scenario for the study of aggression control as a function of a norm, that was suitably extended. The simulation results reported in the original aggression control study were successfully reproduced, and consistent performances were achieved for extended scenarios with conditional norm obeyance. In conclusion, it is argued that the present effort indicates a promising lane towards the necessary abandonment of logical models for the explanation and simulation of human social behaviour.

From Social Monitoring to Normative Influence

Rosaria Conte and Frank Dignum
Journal of Artificial Societies and Social Simulation 4 (2) 7

Kyeywords: Norms, Multi Agent Systems, Imitation, Social Control, Social Cognition
Abstract: This paper is intended to analyse the concepts involved in the phenomena of social monitoring and norm-based social influence for systems of normative agents. These are here defined as deliberative agents, representing norms and deciding upon them. Normative agents can use the norms to evaluate others' behaviours and, possibly, convince them to comply with norms. Normative agents contribute to the social dynamics of norms, and more specifically, of norm-based social control and influence. In fact, normative intelligence allows agents to Check the efficacy of the norms (the extent to which a norm is applied in the system in which it is in force), and possibly Urge their fellows to obey the norms. The following issues are addressed: What is norm-based control? Why and how do agents exercise control on one another? What role does it play in the spread of norms?

Group Reputation Supports Beneficent Norms

David Hales
Journal of Artificial Societies and Social Simulation 5 (4) 4

Kyeywords: Norms, Reputation, Social Groups, Group Reputation, Stereotypes
Abstract: This paper demonstrates the role of group normative reputation in the promotion of an aggression reducing possession norm in an artificial society. A previous model of normative reputation is extended such that agents are given the cognitive capacity to categorise other agents as members of a group. In the previous model reputational information was communicated between agents concerning individuals. In the model presented here reputations are projected onto whole groups of agents (a form of "stereotyping"). By stereotyping, norm followers outperform cheaters (who do not follow the norm) under certain conditions. Stereotyping, by increasing the domain of applicability of a piece of reputational information, allows agents to make informed decisions concerning interactions with agents which no other agent has previously met. However, if conditions are not conducive, stereotyping can completely negate norm following behaviour. Group reputation can be a powerful mechanism, therefore, for the promotion of beneficent norms under the right conditions.

Appearances Can Be Deceiving: Lessons Learned Re-Implementing Axelrod's 'Evolutionary Approach to Norms'

José Manuel Galán and Luis R. Izquierdo
Journal of Artificial Societies and Social Simulation 8 (3) 2

Kyeywords: Replication, Agent-Based Modelling, Evolutionary Game Theory, Social Dilemmas, Norms, Metanorms
Abstract: In this paper we try to replicate the simulation results reported by Axelrod (1986) in an influential paper on the evolution of social norms. Our study shows that Axelrod's results are not as reliable as one would desire. We can obtain the opposite results by running the model for longer, by slightly modifying some of the parameters, or by changing some arbitrary assumptions in the model. This re-implementation exercise illustrates the importance of running stochastic simulations several times for many periods, exploring the parameter space adequately, complementing simulation with analytical work, and being aware of the scope of our simulation models.

Better Be Convincing or Better Be Stylish? a Theory Based Multi-Agent Simulation to Explain Minority Influence in Groups Via Arguments or Via Peripheral Cues

Hans-Joachim Mosler
Journal of Artificial Societies and Social Simulation 9 (3) 4

Kyeywords: Social Influences, Persuasion Processes, Group Processes, Minority Influence, Computer Simulation, Modelling, Theory Verification, Simulation Experiments
Abstract: Very often in the history of mankind, social changes took place because a minority was successful in persuading the dominant majority of a new idea. Social psychology provides empirically well-founded theories of social influence that can explain the power of minorities at individual level. In this contribution, we present an agent-based computer simulation of one such theory, the Elaboration Likelihood Model (ELM). After introducing the theoretical background and our agent model, we present three simulation experiments that confirm past laboratory research but also go beyond its findings by adopting the method of computer simulation. First, we found that even a minority with low argument quality can be successful as long as it has positive peripheral cues. Second, our results suggest that a higher personal relevance of a topic for the majority led it to be more receptive to minority influence only when the minority showed neutral peripheral cues and very good arguments. Third, we found evidence that a neutral or only slightly biased majority is influenced more easily than a strongly biased one. To sum up, we consider these results to illustrate the notion that a well-presented, comprehensible and valid computer simulation provides a useful tool for theory development and application in an exploratory manner as long as it is well founded in terms of the model and theory.

Simulating the Effect of Social Influence on Decision-Making in Small, Task-Oriented, Groups

Roy Wilson
Journal of Artificial Societies and Social Simulation 10 (4) 4

Kyeywords: Social Influence; Decision Processes; Social Networks; Group Dynamics; Simulation; Agent-Based Modeling
Abstract: This paper describes a simulation study of decision-making. It is based on a model of social influence in small, task-oriented, groups. A process model of dyadic social influence is built on top of a dynamic model of status and task participation that describes the emergence of a stable power and prestige order. Two models of group decision-making are examined: a static model for which the beliefs of actors do not change, and a process model for which they do as a function of the standing of each member of each interacting pair in the evolving power and prestige order. The models are compared on a set of N=111 cases, each requiring an affirmative or negative group response to a proposition A(c) that pertains to a case c. Initial beliefs are assigned to each of five members of distinct professions based on an analysis of independently collected behavioral data pertinent to the proposition to be affirmed or denied in each case. Although the two influence models yield identical decisions in 70% of the cases examined, the differences between them are statistically significant and in several instances show a medium effect size. Most importantly, the differences can be explained in terms of social influence and the status and task participation model on which it depends.

Simple Heuristics in Complex Networks: Models of Social Influence

Gero Schwenk and Torsten Reimer
Journal of Artificial Societies and Social Simulation 11 (3) 4

Kyeywords: Decision Making; Cognition; Heuristics; Small World Networks; Social Influence; Bounded Rationality
Abstract: The concept of heuristic decision making is adapted to dynamic influence processes in social networks. We report results of a set of simulations, in which we systematically varied: a) the agents\' strategies for contacting fellow group members and integrating collected information, and (b) features of their social environment—the distribution of members\' status, and the degree of clustering in their network. As major outcome variables, we measured the speed with which the process settled, the distributions of agents\' final preferences, and the rate with which high-status members changed their initial preferences. The impact of the agents\' decision strategies on the dynamics and outcomes of the influence process depended on features of their social environment. This held in particular true when agents contacted all of the neighbors with whom they were connected. When agents focused on high-status members and did not contact low-status neighbors, the process typically settled more quickly, yielded larger majority factions and fewer preference changes. A case study exemplifies the empirical application of the model.

Homo Socionicus: a Case Study of Simulation Models of Norms

Martin Neumann
Journal of Artificial Societies and Social Simulation 11 (4) 6

Kyeywords: Norms, Normative Agent-Based Social Simulation, Role Theory, Methodological Individualism
Abstract: This paper describes a survey of normative agent-based social simulation models. These models are examined from the perspective of the foundations of social theory. Agent-based modelling contributes to the research program of methodological individualism. Norms are a central concept in the role theoretic concept of action in the tradition of Durkheim and Parsons. This paper investigates to what extend normative agent-based models are able to capture the role theoretic concept of norms. Three methodological core problems are identified: the question of norm transmission, normative transformation of agents and what kind of analysis the models contribute. It can be shown that initially the models appeared only to address some of these problems rather than all of them simultaneously. More recent developments, however, show progress in that direction. However, the degree of resolution of intra agent processes remains too low for a comprehensive understanding of normative behaviour regulation.

Contra Epstein, Good Explanations Predict

Nicholas S. Thompson and Patrick Derr
Journal of Artificial Societies and Social Simulation 12 (1) 9

Kyeywords: ABM, Agent Based Model, Modeling, Prediction, Explanation, Philosophy of Science
Abstract: Epstein has argued that an explanation\'s capacity to make predictions should play a minor role in its evaluation . This view contradicts centuries of scientific practice and, at least, decades of philosophy of science. We argue that the view is not only unfounded but seems to arise from a mistaken fear that ABM models are in need of defense against the criticism that they don\'t necessarily forecast events in the natural or social world.

How Groups Can Foster Consensus: The Case of Local Cultures

Patrick Groeber, Frank Schweitzer and Kerstin Press
Journal of Artificial Societies and Social Simulation 12 (2) 4

Kyeywords: Social Norms, Conventions, Bounded Confidence, Dynamic Networks
Abstract: A local culture denotes a set of rules on business behaviour among firms in a cluster. Similar to social norms or conventions, it is an emergent feature of interaction in an economic network. To model its emergence, we consider a distributed agent population, representing cluster firms. Further, we build on a continuous opinion dynamics model with bounded confidence (ε), which assumes that two agents only interact if differences in their behaviour are less than ε. Interaction results in more similarity of behaviour, i.e. convergence towards a common mean. Two aspects extend this framework: (i) The agent\'s in-group consisting of acquainted interaction partners is explicitly taken into account, leading to an effective agent behaviour as agents try to continue to interact with past partners and thus seek to stay sufficiently close to them. (ii) The in-group network structure changes over time, as agents form new links to other agents with sufficiently close effective behaviour or delete links to agents no longer close in behaviour. Thus, the model introduces a feedback mechanism of agent behaviour and in-group structure. Studying its consequences by means of agent-based computer simulations, we find that for narrow-minded agents (low ε) the feedback mechanism helps find consensus more often, whereas for open-minded agents (high ε) this does not necessarily hold. Overall, the dynamics of agent interaction in clusters as modelled here, are conducive to consensus among all or a majority of agents.

Social Influence and Decision-Making: Evaluating Agent Networks in Village Responses to Change in Freshwater

Mark Altaweel, Lilian N. Alessa and Andrew D. Kliskey
Journal of Artificial Societies and Social Simulation 13 (1) 15

Kyeywords: Agent-Based Modeling, Artificial Neural Network, Social Network, Social Influence, Resilience, Freshwater
Abstract: This paper presents a model, using concepts from artificial neural networks, that explains how small rural communities make decisions that affect access to potable freshwater. Field observations indicate that social relationships as well as individual goals and perceptions of decision makers have a strong influence on decisions that are made by community councils. Our work identifies three types of agents, which we designate as alpha, beta, and gamma agents. We address how gamma agents affect decisions made by community councils in passing resolutions that benefit a village\'s collective access to clean freshwater. The model, which we call the Agent Types Model (ATM), demonstrates the effects of social interactions, corporate influence, and agent-specific factors that determine choices for agents. Data from two different villages in rural Alaska and several parameter sensitivity tests are applied to the model. Results demonstrate that minimizing the social significance and agent-specific factors affecting gamma agents\' negative compliance increases the likelihood that communities adopt measures promoting potable freshwater access. The significance of this work demonstrates which types of communities are potentially more socially vulnerable or resilient to social-ecological change affecting water supplies.

Leadership in Small Societies

Stephen Younger
Journal of Artificial Societies and Social Simulation 13 (3) 5

Kyeywords: Leadership, Reciprocity, Pacific Island Societies, Norms
Abstract: Multi-agent simulation was used to study several styles of leadership in small societies. Populations of 50 and100 agents inhabited a bounded landscape containing a fixed number of food sources. Agents moved about the landscape in search of food, mated, produced offspring, and died either of hunger or at a predetermined maximum age. Leadership models focused on the collection and redistribution of food. The simulations suggest that individual households were more effective at meeting their needs than a simple collection-redistribution scheme. Leadership affected the normative makeup of the population: altruistic leaders caused altruistic societies and demanding leaders caused aggressive societies. Specific leadership styles did not provide a clear advantage when two groups competed for the same resources. The simulation results are compared to ethnographic observations of leadership in Pacific island societies.

The Roundtable: An Abstract Model of Conversation Dynamics

Massimo Mastrangeli, Martin Schmidt and Lucas Lacasa
Journal of Artificial Societies and Social Simulation 13 (4) 2

Kyeywords: ABM, Complexity, Turn-Taking Dynamics, Schism, Stochastic Dynamics
Abstract: Is it possible to abstract a formal mechanism originating schisms and governing the size evolution of social conversations? In this work we propose a constructive solution to this problem: an abstract model of a generic N-party turn-taking conversation. The model develops from simple yet realistic assumptions derived from experimental evidence, abstracts from conversation content and semantics while including topological information, and is driven by stochastic dynamics. We find that a single mechanism, namely the dynamics of conversational party\'s individual fitness as related to conversation size, controls the development of the self-organized schisming phenomenon. Potential generalizations of the model - including individual traits and preferences, memory effects and more elaborated conversational topologies - may find important applications also in other fields of research, where dynamically-interacting and networked agents play a fundamental role.

Obligation Norm Identification in Agent Societies

Tony Bastin Roy Savarimuthu, Stephen Cranefield, Maryam A. Purvis and Martin K. Purvis
Journal of Artificial Societies and Social Simulation 13 (4) 3

Kyeywords: Norms, Social Norms, Obligations, Norm Identification, Agent-Based Simulation, Simulation of Norms, Artificial Societies, Normative Multi-Agent Systems (NorMAS)
Abstract: Most works on norms have investigated how norms are regulated using institutional mechanisms. Very few works have focused on how an agent may infer the norms of a society without the norm being explicitly given to the agent. This paper describes a mechanism for identifying one type of norm, an obligation norm. The Obligation Norm Inference (ONI) algorithm described in this paper makes use of an association rule mining approach to identify obligation norms. Using agent based simulation of a virtual restaurant we demonstrate how an agent can identify the tipping norm. The experiments that we have conducted demonstrate that an agent in the system is able to add, remove and modify norms dynamically. An agent can also flexibly modify the parameters of the system based on whether it is successful in identifying a norm.

The Current State of Normative Agent-Based Systems

Christopher D. Hollander and Annie S. Wu
Journal of Artificial Societies and Social Simulation 14 (2) 6

Kyeywords: Norms, Normative Agents, Agents, Agent-Based System, Agent-Based Simulation, Agent-Based Modeling
Abstract: Recent years have seen an increase in the application of ideas from the social sciences to computational systems. Nowhere has this been more pronounced than in the domain of multiagent systems. Because multiagent systems are composed of multiple individual agents interacting with each other many parallels can be drawn to human and animal societies. One of the main challenges currently faced in multiagent systems research is that of social control. In particular, how can open multiagent systems be configured and organized given their constantly changing structure? One leading solution is to employ the use of social norms. In human societies, social norms are essential to regulation, coordination, and cooperation. The current trend of thinking is that these same principles can be applied to agent societies, of which multiagent systems are one type. In this article, we provide an introduction to and present a holistic viewpoint of the state of normative computing (computational solutions that employ ideas based on social norms.) To accomplish this, we (1) introduce social norms and their application to agent-based systems; (2) identify and describe a normative process abstracted from the existing research; and (3) discuss future directions for research in normative multiagent computing. The intent of this paper is to introduce new researchers to the ideas that underlie normative computing and survey the existing state of the art, as well as provide direction for future research.

Social Simulation That 'Peers into Peer Review'

Flaminio Squazzoni and Károly Takács
Journal of Artificial Societies and Social Simulation 14 (4) 3

Kyeywords: Peer Review, Social Simulation, Social Norms, Selection Biases, Science Policy
Abstract: This article suggests to view peer review as a social interaction problem and shows reasons for social simulators to investigate it. Although essential for science, peer review is largely understudied and current attempts to reform it are not supported by scientific evidence. We suggest that there is room for social simulation to fill this gap by spotlighting social mechanisms behind peer review at the microscope and understanding their implications for the science system. In particular, social simulation could help to understand why voluntary peer review works at all, explore the relevance of social sanctions and reputational motives to increase the commitment of agents involved, cast light on the economic cost of this institution for the science system and understand the influence of signals and social networks in determining biases in the reviewing process. Finally, social simulation could help to test policy scenarios to maximise the efficacy and efficiency of various peer review schemes under specific circumstances and for everyone involved.

An Agent-Based Social Network Model of Binge Drinking Among Dutch Adults

Philippe Giabbanelli and Rik Crutzen
Journal of Artificial Societies and Social Simulation 16 (2) 10

Kyeywords: Conceptual Exploration, Drinking Motives, Social Influence
Abstract: Binge drinking is a complex social problem linked to an array of detrimental health effects. While binge drinking in youth has been analyzed extensively using traditional methods (e.g., regressions analyses), the adult population has received less attention, and recent work has exemplified the potential for simulations to help scholars and practitioners better understand the problem. In this paper, we used agent-based social network models to test a number of hypotheses on important aspects of binge drinking in a sample representative of the adult Dutch population. In particular, we found that a combination of simple social rules (choosing peers who are similar, being prompted to drink if at least a fraction of them drinks, and incorporating the context) was sufficient to correctly predict the behaviour of half of the binge drinkers and 4 out of 5 non binge drinkers. Furthermore, we used factorial analyses to examine the contribution and combination of hypotheses in predicting the behaviour of individuals, with results indicating that who we interact with may not matter so much as how we interact. Finally, we evaluated the potential for interventions that mediate interactions between people in order to reduce the prevalence of binge drinking and found that the impact of such interventions was non linear: moderate interventions would yield benefits, but stronger interventions may only be of limited further benefit.

Analysis of Asymmetric Two-Sided Matching: Agent-Based Simulation with Theorem-Proof Approach

Naoki Shiba
Journal of Artificial Societies and Social Simulation 16 (3) 11

Kyeywords: Social Simulation, Agent-Based Models (ABM), Theorem-Proof Approach, Mate-Search Problem, Two-Sided Matching, Job Matching
Abstract: This paper discusses an extended version of the matching problem which includes the mate search problem; this version is a generalization of a traditional optimization problem. The matching problem is extended to a form of the asymmetric two-sided matching problem. An agent-based simulation model is built and simulation results are presented. Todd and Miller (1999) simulated the two-sided matching problem in a symmetric setting. In his model, there are the same number of agents in both parties (groups), each of whom has his/her own mate value. Each agent in a party tries to find his/her mate in the other party, based on his/her candidate's mate value and his/her own aspiration level for his/her partner's mate value. Each agent learns his/her own mate value and adjusts his/her aspiration level through the trial period (adolescence). Todd and Miller (1999) tried several search rules and learning mechanisms that are symmetric for both parties. In the present paper, Todd and Miller's (1999) model is extended to an asymmetric setting where the two parties have different numbers of agents, and the search rule and the learning mechanism for the two parties differ. Through the simulation, the search rules and the learning mechanisms which were identified to be appropriate in a symmetric setting are revealed to be inappropriate in the asymmetric setting and the reason why this is so is discussed. Furthermore, some general facts are derived using a mathematical theorem-proof approach. Some of these facts are used to direct a revision of the model, and a revised simulation model is presented. An implication is obtained for practical situations in asymmetric matching setting. For example, in the job hunting case, if job applicants want to finish their job hunting successfully, they should be modest at the beginning of the hunt.

Segregated Cooperation

Roger Waldeck
Journal of Artificial Societies and Social Simulation 16 (4) 14

Kyeywords: Social Emotions, Norms, Prisoner, Spatial Interaction Structures, Segregation, Agent-Based Simulation
Abstract: Observations in experiments show that players in a prisoner's dilemma may adhere more or less to a cooperative norm. Adherence is defined by the intensity of pro-social emotions, like guilt, of deviating from the norm. Players consider also payoffs from defection as a motive to deviate. By combining both incentives, the modeling may explain conditional cooperation and the existence of polymorphic equilibria in which cooperators and defectors coexist. We then show by the use of simulations, that local interaction structures may produce segregation and the appearance of cooperative zones under these conditions.

Simulating Social and Economic Specialization in Small-Scale Agricultural Societies

Denton Cockburn, Stefani A. Crabtree, Ziad Kobti, Timothy A. Kohler and R. Kyle Bocinsky
Journal of Artificial Societies and Social Simulation 16 (4) 4

Kyeywords: Specialization, Agent-Based Modeling, Archaeology, Social Networks, Models of Social Influence, Barter
Abstract: We introduce a model for agent specialization in small-scale human societies that incorporates planning based on social influence and economic state. Agents allocate their time among available tasks based on exchange, demand, competition from other agents, family needs, and previous experiences. Agents exchange and request goods using barter, balanced reciprocal exchange, and generalized reciprocal exchange. We use a weight-based reinforcement model for the allocation of resources among tasks. The Village Ecodynamics Project (VEP) area acts as our case study, and the work reported here extends previous versions of the VEP agent-based model (“Village”). This model simulates settlement and subsistence practices in Pueblo societies of the central Mesa Verde region between A.D. 600 and 1300. In the base model on which we build here, agents represent households seeking to minimize their caloric costs for obtaining enough calories, protein, fuel, and water from a landscape which is always changing due to both exogenous factors (climate) and human resource use. Compared to the baseline condition of no specialization, specialization in conjunction with barter increases population wealth, global population size, and degree of aggregation. Differences between scenarios for specialization in which agents use only a weight-based model for time allocation among tasks, and one in which they also consider social influence, are more subtle. The networks generated by barter in the latter scenario exhibit higher clustering coefficients, suggesting that social influence allows a few agents to assume particularly influential roles in the global exchange network.

Modeling the Emergence of Social Structure from a Phylogenetic Point of View

Ruth Dolado, Francesc S. Beltran and Vicenç Quera
Journal of Artificial Societies and Social Simulation 17 (1) 8

Kyeywords: Social Structure, Agent-Based Models (ABM), Biological Models
Abstract: Based on previous models (Hemelrijk 1998; Puga-González, Hildenbrant & Hemelrijk 2009), we have developed an agent-based model and software, called A-KinGDom, which allows us to simulate the emergence of the social structure in a group of non-human primates. The model includes dominance and affiliative interactions and incorporates two main innovations (preliminary dominance interactions and a kinship factor), which allow us to define four different attack and affiliative strategies. In accordance with these strategies, we compared the data obtained under four simulation conditions with the results obtained in a previous study (Dolado & Beltran 2012) involving empirical observations of a captive group of mangabeys (Cercocebus torquatus). The results show that the combination of the effect of kinship on affiliative interactions and the use of ambiguity-reducing attack provide results that are the most similar to the results of the biological model (i.e., a captive group of mangabeys) used in this study.

A Simple Emulation-Based Computational Model

Carlos M Fernández-Márquez and Francisco J Vázquez
Journal of Artificial Societies and Social Simulation 17 (2) 8

Kyeywords: Agent-Based Computational Models, Social Interaction, Social Influence, Innovation
Abstract: Emulation is one of the simplest and most common mechanisms of social interaction. In this paper we introduce a descriptive computational model that attempts to capture the underlying dynamics of social processes led by emulation. The model allows, with few assumptions, to explain how and why highly skewed distributions emerge in human societies, where few trends are representative and co-exist with several minority trends. In particular, the model shows that if a society is too tolerant and permeable, all the agents converge to only one trend that leads to uniformity. If society’s tolerance is moderate, many trends arise but with a high dispersity of size, only a few of them being truly representative. Finally, in highly intolerant societies a considerable degree of segregation is reached, where lots of trends of similar size arise. Furthermore, the proposed model can reproduce several real phenomena in social processes in which emulation is present: cyclic evolution in trend areas, changes in leadership, extinction and resurgence of trend areas, the struggle between neighboring areas and the higher probability of having dominant trends in central areas, corresponding to moderate positions.

A Novel Private Attitude and Public Opinion Dynamics Model for Simulating Pluralistic Ignorance and Minority Influence

Chung-Yuan Huang and Tzai-Hung Wen
Journal of Artificial Societies and Social Simulation 17 (3) 8

Kyeywords: Social Influence, Private Acceptance, Public Compliance, Theory of Reasoned Action, Cognitive Dissonance Theory, Agent-Based Simulation
Abstract: Pluralistic ignorance, a well-documented socio-psychological conformity phenomenon, involves discrepancies between private attitude and public opinion in certain social contexts. However, continuous opinion dynamics models based on a bounded confidence assumption fail to accurately model pluralistic ignorance because they do not address scenarios in which non-conformists do not need to worry about holding and expressing conflicting opinions. Such scenarios reduce the power of continuous opinion dynamics models to explain why certain groups doubt or change their opinions in response to minority views. To simulate the effects of (a) private acceptance of informational social influence and (b) public compliance with normative social influence on pluralistic ignorance and minority influences, we have created an agent-based simulation model in which attitude and opinion respectively represent an agent's private and expressed thoughts. Results from a series of simulation experiments indicate model validity equal to or exceeding those of existing opinion dynamics models that are also based on the bounded confidence assumption, but with different dynamics and outcomes in terms of collective opinion and attitude. The results also support the use of our proposed model for computational social psychology applications.

The Critical Few: Anticonformists at the Crossroads of Minority Opinion Survival and Collapse

Matthew Jarman, Andrzej Nowak, Wojciech Borkowski, David Serfass, Alexander Wong and Robin Vallacher
Journal of Artificial Societies and Social Simulation 18 (1) 6

Kyeywords: Cellular Automata, Social Influence, Opinion Dynamics
Abstract: To maintain stability yet retain the flexibility to adapt to changing circumstances, social systems must strike a balance between the maintenance of a shared reality and the survival of minority opinion. A computational model is presented that investigates the interplay of two basic, oppositional social processes—conformity and anticonformity—in promoting the emergence of this balance. Computer simulations employing a cellular automata platform tested hypotheses concerning the survival of minority opinion and the maintenance of system stability for different proportions of anticonformity. Results revealed that a relatively small proportion of anticonformists facilitated the survival of a minority opinion held by a larger number of conformists who would otherwise succumb to pressures for social consensus. Beyond a critical threshold, however, increased proportions of anticonformists undermined social stability. Understanding the adaptive benefits of balanced oppositional forces has implications for optimal functioning in psychological and social processes in general.

Self-Policing Through Norm Internalization: A Cognitive Solution to the Tragedy of the Digital Commons in Social Networks

Daniel Villatoro, Giulia Andrighetto, Rosaria Conte and Jordi Sabater-Mir
Journal of Artificial Societies and Social Simulation 18 (2) 2

Kyeywords: Self-Organisation, Norms, Emergent Behavior, Cognitive Modelling, Artificial Social Systems
Abstract: In the seminal work "An Evolutionary Approach to Norms", Axelrod identified internalization as one of the key mechanisms that supports the spreading and stabilization of norms. But how does this process work? This paper advocates a rich cognitive model of different types, degrees and factors of norm internalization. Rather than a none-or-all phenomenon, we claim that norm internalization is a dynamic process, whose deepest step occurs when norms are complied with thoughtlessly. In order to implement a theoretical model of internalization and check its effectiveness in sustaining social norms and promoting cooperation, a simulated web-service distributed market has been designed, where both services and agents' tasks are dynamically assigned. Internalizers are compared with agents whose behaviour is driven only by self-interested motivations. Simulation findings show that in dynamic unpredictable scenarios, internalizers prove more adaptive and achieve higher level of cooperation than agents whose decision-making is based only on utility calculation.

The Big Impact of Small Groups on College Drinking

Ben Fitzpatrick, Jason Martinez, Elizabeth Polidan and Ekaterini Angelis
Journal of Artificial Societies and Social Simulation 18 (3) 4

Kyeywords: Group Formation, Peer Influence, Identity Control Theory, Social Norms, College Drinking
Abstract: College drinking is a problem with severe academic, health, and safety consequences. The underlying social processes that lead to increased drinking activity are not well understood. Social Norms Theory is an approach to analysis and intervention based on the notion that students’ misperceptions about the drinking culture on campus lead to increases in alcohol use. In this paper we develop an agent-based simulation model, implemented in MATLAB, to examine college drinking. Students’ drinking behaviors are governed by their identity (and how others perceive it) as well as peer influences, as they interact in small groups over the course of a drinking event. Our simulation results provide some insight into the potential effectiveness of interventions such as social norms marketing campaigns.

The Effects of Network Structure on the Emergence of Norms in Adaptive Populations

Peter Revay
Journal of Artificial Societies and Social Simulation 18 (4) 14

Kyeywords: Social Norms, Agent-Based Modeling, Social Networks, Neighborhood Structure, Cooperation
Abstract: The different ways individuals socialize with others affect the conditions under which social norms are able to emerge. In this work an agent-based model of cooperation in a population of adaptive agents is presented. The model has the ability to implement a multitude of network topologies. The agents possess strategies represented by boldness and vengefulness values in the spirit of Axelrod's (1986) norms game. However, unlike in the norms game, the simulations abandon the evolutionary approach and only follow a single-generation of agents who are nevertheless able to adapt their strategies based on changes in their environment. The model is analyzed for potential emergence or collapse of norms under different network and neighborhood configurations as well as different vigilance levels in the agent population. In doing so the model is found able to exhibit interesting emergent behavior suggesting potential for norm establishment even without the use of so-called metanorms. Although the model shows that the success of the norm is dependent on the neighborhood size and the vigilance of the agent population, the likelihood of norm collapse is not monotonically related to decreases in vigilance.

Emergence and Collapse of the Norm of Resource Sharing Around Locally Abundant Resources

Shiro Horiuchi
Journal of Artificial Societies and Social Simulation 18 (4) 7

Kyeywords: Agent Based Model, Resources, Norms, Hawk-Dove-Bourgeois Game
Abstract: How do individuals resolve conflicts over resources? One way is to share resources, which is possible between known individuals, with the use of sanctions on free riders or by partner selection. Another way is for anonymous individuals to respect the finders’ ownership of resources based on asymmetry and avoid conflicts over resources. This study elucidates the conditions under which anonymous individuals share resources with each other irrespective of their asymmetry with regard to resources. High resource values inhibit anonymous individuals from sharing resources; however, small cumulative values and local distributions let anonymous individuals share the resources. Punishment of the richest individuals also supports resource sharing. These conditions may represent resource sharing among anonymous individuals in periods of great disasters and may be the origin of the practice of exchange in prehistoric times.

Growing Models from the Bottom Up. an Evaluation-Based Incremental Modelling Method (EBIMM) Applied to the Simulation of Systems of Cities

Clémentine Cottineau, Paul Chapron and Romain Reuillon
Journal of Artificial Societies and Social Simulation 18 (4) 9

Kyeywords: ABM, Model-Building, System of Cities, Former Soviet Union, Evaluation, Incremental
Abstract: This paper presents an incremental method of parsimonious modelling using intensive and quantitative evaluation. It is applied to a research question in urban geography, namely how well a simple and generic model of a system of cities can reproduce the evolution of Soviet urbanisation. We compared the ability of two models with different levels of complexity to satisfy goals at two levels. The macro-goal is to simulate the evolution of the system’s hierarchical structure. The micro-goal is to simulate its micro-dynamics in a realistic way. The evaluation of the models is based on empirical data through a calibration that includes sensitivity analysis using genetic algorithms and distributed computing. We show that a simple model of spatial interactions cannot fully reproduce the observed evolution of Soviet urbanisation from 1959 to 1989. A better fit was achieved when the model’s structure was complexified with two mechanisms. Our evaluation goals were assessed through intensive sensitivity analysis. The complexified model allowed us to simulate the evolution of the Soviet urban hierarchy.

Simulating Trends in Artificial Influence Networks

Hannah Übler and Stephan Hartmann
Journal of Artificial Societies and Social Simulation 19 (1) 2

Kyeywords: ABM, Norms, Social Influence
Abstract: We present a study of the spreading of trends in artificial social influence networks using agent based models. We concentrate on basic properties of the agents which describe their individual attitudes towards a trend, as well as the influence which they exert in their social neighbourhood. Using a simple random network, we investigate the impact of network dynamicity, situations of opposing trends, and the disappearance of trends. A 'community' network is used to study the impact of group cohesiveness and connectors for the spreading of trends in social communities.

Simulating the Transmission of Foot-And-Mouth Disease Among Mobile Herds in the Far North Region, Cameroon

Hyeyoung Kim, Ningchuan Xiao, Mark Moritz, Rebecca Garabed and Laura W. Pomeroy
Journal of Artificial Societies and Social Simulation 19 (2) 6

Kyeywords: Foot-And-Mouth Disease (FMD), Mobility, Disease Transmission, Transhumance, SIR Model, Agent-Based-Model (ABM)
Abstract: Animal and human movements can impact the transmission of infectious diseases. Modeling such impacts presents a significant challenge to disease transmission models because these models often assume a fully mixing population where individuals have an equal chance to contact each other. Whereas movements result in populations that can be best represented as a dynamic networks whose structure changes over time as individual movements result in changing distances between individuals within a population. We model the impact of the movements of mobile pastoralists on foot-and-mouth disease (FMD) transmission in a transhumance system in the Far North Region of Cameroon. The pastoralists in our study area move their livestock between rainy and dry season pastures. We first analyzed transhumance data to derive mobility rules that can be used to simulate the movements of the agents in our model. We developed an agent-based model coupled with a susceptible–infected–recovered (SIR) model. Each agent represents a camp of mobile pastoralists with multiple herds and households. The simulation results demonstrated that the herd mobility significantly influenced the dynamics of FMD. When the grazing area is not explicitly considered (by setting the buffer size to 100 km), all the model simulations suggested the same curves as the results using a fully mixing population. Simulations that used grazing areas observed in the field (≤5 km radius) resulted in multiple epidemic peaks in a year, which is similar to the empirical evidence that we obtained by surveying herders from our study area over the last four years.

The Interplay Between Conformity and Anticonformity and its Polarizing Effect on Society

Patryk Siedlecki, Janusz Szwabiński and Tomasz Weron
Journal of Artificial Societies and Social Simulation 19 (4) 9

Kyeywords: Opinion Dynamics, Social Influence, Conformity, Anticonformity, Bi-Polarization, Agent-Based Modelling
Abstract: Simmering debates leading to polarization are observed in many domains. Although empirical findings show a strong correlation between this phenomenon and modularity of a social network, still little is known about the actual mechanisms driving communities to conflicting opinions. In this paper, we used an agent-based model to check if the polarization may be induced by a competition between two types of social response: conformity and anticonformity. The proposed model builds on the q-voter model (Castellano et al, 2009b) and uses a double-clique topology in order to capture segmentation of a community. Our results indicate that the interplay between intra-clique conformity and inter-clique anticonformity may indeed lead to a bi-polarized state of the entire system. We have found a dynamic phase transition controlled by the fraction L of negative cross-links between cliques. In the regime of small values of L the system is able to reach the total positive consensus. If the values of L are large enough, anticonformity takes over and the system always ends up in a polarized stated. Putting it the other way around, the segmentation of the network is not a sufficient condition for the polarization to appear. A suitable level of antagonistic interactions between segments is required to arrive at a polarized steady state within our model.

Social Dynamics of Littering and Adaptive Cleaning Strategies Explored Using Agent-Based Modelling

Ruggero Rangoni and Wander Jager
Journal of Artificial Societies and Social Simulation 20 (2) 1

Kyeywords: Littering, Goal Frame Theory, Tipping Point, Norms
Abstract: In this paper we explore how social influence may cause a non-linear transition from a clean to a littered environment, and what strategies are effective in keeping a street clean. To study this, we first implement the Goal Framing Theory of Lindenberg and Steg (2007) in an agent based model. Next, using empirical data from a field study we parameterise the model so we can replicate the results from a field study. Following that, we explore how different cleaning strategies perform. The results indicate that an adaptive/dynamical cleaning regime is more effective and cheaper than pre-defined cleaning schedules.

How, when and where can Spatial Segregation Induce Opinion Polarization? Two Competing Models

Thomas Feliciani, Andreas Flache and Jochem Tolsma
Journal of Artificial Societies and Social Simulation 20 (2) 6

Kyeywords: Opinion Dynamics, Polarization, Social Influence, Segregation
Abstract: Increasing ethnic diversity fosters scholarly interest in how the spatial segregation of groups affects opinion polarization in a society. Despite much empirical and theoretical research, there is little consensus in the literature on the causal link between the spatial segregation of two groups and the emergence of opinion polarization. We contribute to the debate by investigating theoretically the conditions under which the former fosters or hinders the latter. We focus on two processes of opinion polarization (negative influence and persuasive argument communication) that, according to previous modeling work, can be expected to make conflicting predictions about the relationship between segregation and opinion polarization. With a Schelling-type agent-based model of residential segregation, we generate initial environments with different levels of group segregation. Then we simulate the two processes of opinion dynamics. We show that the negative influence model predicts segregation to hinder the emergence of opinion polarization. On the other hand, the persuasive argument model predicts that segregation does not substantially foster polarization. Moreover, we explore how the spatial patterns of opinion distribution differ between the models: in particular, we investigate the likelihood that group membership and opinion align. We show that the alignment of group membership and opinions differs between the two opinion formation models, and that the scale at which we measure alignment plays a crucial role.

Enhancing the Realism of Simulation (EROS): On Implementing and Developing Psychological Theory in Social Simulation

Wander Jager
Journal of Artificial Societies and Social Simulation 20 (3) 14

Kyeywords: Psychology, Theory, Needs, Norms, Cognition, Attitudes
Abstract: Using psychological theory in agent formalisations is relevant to capture behavioural phenomena in simulation models (Enhance Realism Of Simulation - EROS). Whereas the potential contribution of psychological theory is important, also a number of challenges and problems in doing so are discussed. Next examples of implementations of psychological theory are being presented, ranging from simple implementations (KISS) of rather isolated theories to extended models that integrate different theoretical perspectives. The role of social simulation in developing dynamic psychological theory and integrated social psychological modelling is discussed. We conclude with some fundamental limitations and challenges concerning the modelling of human needs, cognition and behaviour.

Growing Unpopular Norms

Christoph Merdes
Journal of Artificial Societies and Social Simulation 20 (3) 5

Kyeywords: Social Norms, Agent-Based Simulation, Social Influence, Pluralistic Ignorance
Abstract: Unpopular norms are a pervasive and puzzling phenomenon of the social world. They are norms that are established and maintained against the interest of their subjects, but without external coercion. Pluralistic ignorance has been suggested as a potential explanation of unpopular norms. What is currently lacking is a formal model of this process that can be meaningfully compared with empirically known properties of pluralistic ignorance. An agent-based model of a growing social network can reproduce the most significant qualitative features, viz a deviation of the perceived norm from the preference distribution and the dynamical lag of the former behind the latter. In addition, the model is extended with a central influence representing for example central media or a powerful political elite.

Models of Social Influence: Towards the Next Frontiers

Andreas Flache, Michael Mäs, Thomas Feliciani, Edmund Chattoe-Brown, Guillaume Deffuant, Sylvie Huet and Jan Lorenz
Journal of Artificial Societies and Social Simulation 20 (4) 2

Kyeywords: Social Influence, Opinion Dynamics, Polarization, Calibration and Validation, Micro-Macro Link
Abstract: In 1997, Robert Axelrod wondered in a highly influential paper "If people tend to become more alike in their beliefs, attitudes, and behavior when they interact, why do not all such differences eventually disappear?" Axelrod’s question highlighted an ongoing quest for formal theoretical answers joined by researchers from a wide range of disciplines. Numerous models have been developed to understand why and under what conditions diversity in beliefs, attitudes and behavior can co-exist with the fact that very often in interactions, social influence reduces differences between people. Reviewing three prominent approaches, we discuss the theoretical ingredients that researchers added to classic models of social influence as well as their implications. Then, we propose two main frontiers for future research. First, there is urgent need for more theoretical work comparing, relating and integrating alternative models. Second, the field suffers from a strong imbalance between a proliferation of theoretical studies and a dearth of empirical work. More empirical work is needed testing and underpinning micro-level assumptions about social influence as well as macro-level predictions. In conclusion, we discuss major roadblocks that need to be overcome to achieve progress on each frontier. We also propose that a new generation of empirically-based computational social influence models can make unique contributions for understanding key societal challenges, like the possible effects of social media on societal polarization.

Forecasting Changes in Religiosity and Existential Security with an Agent-Based Model

Ross Gore, Carlos Lemos, F. LeRon Shults and Wesley J. Wildman
Journal of Artificial Societies and Social Simulation 21 (1) 4

Kyeywords: Religion, Agent-Based Model, Data Based Modeling, Social Influence
Abstract: We employ existing data sets and agent-based modeling to forecast changes in religiosity and existential security among a collective of individuals over time. Existential security reflects the extent of economic, socioeconomic and human development provided by society. Our model includes agents in social networks interacting with one another based on the education level of the agents, the religious practices of the agents, and each agent's existential security within their natural and social environments. The data used to inform the values and relationships among these variables is based on rigorous statistical analysis of the International Social Survey Programme Religion Module (ISSP) and the Human Development Report (HDR). We conduct an evaluation that demonstrates, for the countries and time periods studied, that our model provides a more accurate forecast of changes in existential security and religiosity than two alternative approaches. The improved accuracy is largely due to the inclusion of social networks with educational homophily which alters the way in which religiosity and existential security change in the model. These dynamics grow societies where two individuals with the same initial religious practices (or belief In God, or supernatural beliefs) evolve differently based on the educational backgrounds of the individuals with which they surround themselves. Finally, we discuss the limitations of our model and provide direction for future work.

Social Norms and the Dominance of Low-Doers

Carlo Proietti and Antonio Franco
Journal of Artificial Societies and Social Simulation 21 (1) 6

Kyeywords: Agent-Based Model, Social Norms, Game Theory
Abstract: Social norms play a fundamental role in holding groups together. The rationale behind most of them is to coordinate individual actions into a beneficial societal outcome. However, there are cases where pro-social behavior within a community seems, to the contrary, to cause inefficiencies and suboptimal collective outcomes. An explanation for this is that individuals in a society are of different types and their type determines the norm of fairness they adopt. Not all such norms are bound to be beneficial at the societal level. When individuals of different types meet a clash of norms can arise. This, in turn, can determine an advantage for the “wrong” type. We show this by a game-theoretic analysis in a very simple setting. To test this result - as well as its possible remedies - we also devise a specific simulation model. Our model is written in NETLOGO and is a first attempt to study our problem within an artificial environment that simulates the evolution of a society over time.

Modelling Sustainability Transitions: An Assessment of Approaches and Challenges

Jonathan Köhler, Fjalar de Haan, Georg Holtz, Klaus Kubeczko, Enayat Moallemi, George Papachristos and Émile Chappin
Journal of Artificial Societies and Social Simulation 21 (1) 8

Kyeywords: Transitions Models, Qualitative System Change, Modelling Social Values and Norms, Behavioural Change
Abstract: Transition modelling is an emerging but growing niche within the broader field of sustainability transitions research. The objective of this paper is to explore the characteristics of this niche in relation to a range of existing modelling approaches and literatures with which it shares commonalities or from which it could draw. We distil a number of key aspects we think a transitions model should be able to address, from a broadly acknowledged, empirical list of transition characteristics. We review some of the main strands in modelling of socio-technological change with regards to their ability to address these characteristics. These are: Eco-innovation literatures (energy-economy models and Integrated Assessment Models), evolutionary economics, complex systems models, computational social science simulations using agent based models, system dynamics models and socio-ecological systems models. The modelling approaches reviewed can address many of the features that differentiate sustainability transitions from other socio-economic dynamics or innovations. The most problematic features are the representation of qualitatively different system states and of the normative aspects of change. The comparison provides transition researchers with a starting point for their choice of a modelling approach, whose characteristics should correspond to the characteristics of the research question they face. A promising line of research is to develop innovative models of co-evolution of behaviours and technologies towards sustainability, involving change in the structure of the societal and technical systems.

An Agent-Based Assessment of Health Vulnerability to Long-Term Particulate Exposure in Seoul Districts

Hyesop Shin and Mike Bithell
Journal of Artificial Societies and Social Simulation 22 (1) 12

Kyeywords: PM10, Exposure, Health Vulnerability, Agent-Based Model (ABM), Seoul
Abstract: This study presents a proof-of-concept agent-based model (ABM) of health vulnerability to long-term exposure to airborne particulate pollution, specifically to particles less than 10 micrometres in size (PM10), in Seoul, Korea. We estimated the differential effects of individual behaviour and social class across heterogeneous space in two districts, Gwanak and Gangnam. Three scenarios of seasonal PM10 change (business as usual: BAU, exponential increase: INC, and exponential decrease: DEC) and three scenarios of resilience were investigated, comparing the vulnerability rate both between and within each district. Our first result shows that the vulnerable groups in both districts, including those aged over 65, aged under 15, and with a low education level, increased sharply after 5,000 ticks (each tick corresponding to 1 day). This implies that disparities in health outcomes can be explained by socioeconomic status (SES), especially when the group is exposed over a long period. Additionally, while the overall risk population was larger in Gangnam in the AC100 scenarios, the recovery level from resilience scenarios decreased the risk population substantially, for example from 7.7% to 0.7%. Our second finding from the local-scale analysis indicates that most Gangnam sub-districts showed more variation both spatially and in different resilience scenarios, whereas Gwanak areas showed a uniform pattern regardless of earlier prevention. The implication for policy is that, while some areas, such as Gwanak, clearly require urgent mitigating action, areas like Gangnam may show a greater response to simpler corrections, but aggregating up to the district scale may miss particular areas that are more at risk. Future work should consider other pollutants as well as more sophisticated population and pollution modelling, coupled with explicit representation of transport and more careful treatment of individual doses and the associated health responses.

The Value of Values and Norms in Social Simulation

Rijk Mercuur, Virginia Dignum and Catholijn Jonker
Journal of Artificial Societies and Social Simulation 22 (1) 9

Kyeywords: Human Values, Norms, Ultimatum Game, Empirical Data, Agent-Based Model
Abstract: Social simulations gain strength when agent behaviour can (1) represent human behaviour and (2) be explained in understandable terms. Agents with values and norms lead to simulation results that meet human needs for explanations, but have not been tested on their ability to reproduce human behaviour. This paper compares empirical data on human behaviour to simulated data on agents with values and norms in a psychological experiment on dividing money: the ultimatum game. We find that our agent model with values and norms produces aggregate behaviour that falls within the 95% confidence interval wherein human behaviour lies more often than other tested agent models. A main insight is that values serve as a static component in agent behaviour, whereas norms serve as a dynamic component.

Endogenous Changes in Public Opinion Dynamics

Francisco J. León-Medina
Journal of Artificial Societies and Social Simulation 22 (2) 4

Kyeywords: Opinion Dynamics, Mechanism Explanation, Agent-Based Modeling, Homophily, Social Influence, Social Network
Abstract: Opinion dynamics models usually center on explaining how macro-level regularities in public opinion (uniformity, polarization or clusterization) emerge as the effect of local interactions of a population with an initial random distribution of opinions. However, with only a few exceptions, the understanding of patterns of public opinion change has generally been dismissed in this literature. To address this theoretical gap in our understanding of opinion dynamics, we built a multi-agent simulation model that could help to identify some mechanisms underlying changes in public opinion. Our goal was to build a model whose behavior could show different types of endogenously (not induced by the researcher) triggered transitions (rapid or slow, radical or soft). The paper formalizes a situation where agents embedded in different types of networks (random, small world and scale free networks) interact with their neighbors and express an opinion that is the result of different mechanisms: a coherence mechanism, in which agents try to stick to their previously expressed opinions; an assessment mechanism, in which agents consider available external information on the topic; and a social influence mechanism, in which agents tend to approach their neighbor’s opinions. According to our findings, only scale-free networks show fluctuations in public opinion. Public opinion changes in this model appear as a diffusion process of individual opinion shifts that is triggered by an opinion change of a highly connected agent. The frequency, rapidity and radicalness of the diffusion, and hence of public opinion fluctuations, positively depends on how influential external information is in individual opinions and negatively depends on how homophilic social interactions are.

An Agent-Based Model to Simulate Meat Consumption Behaviour of Consumers in Britain

Andrea Scalco, Jennie I. Macdiarmid, Tony Craig, Stephen Whybrow and Graham. W. Horgan
Journal of Artificial Societies and Social Simulation 22 (4) 8

Kyeywords: Consumer Behaviour, Food Choice, Meat Consumption, Population Health, Social Influence
Abstract: The current rate of production and consumption of meat poses a problem both to peoples’ health and to the environment. This work aims to develop a simulation of peoples’ meat consumption in Britain using agent-based modelling. The agents represent individual consumers. The key variables that characterise agents include sex, age, monthly income, perception of the living cost, and concerns about the impact of meat on the environment, health, and animal welfare. A process of peer influence is modelled with respect to the agents’ concerns. Influence spreads across two eating networks (i.e. co-workers and household members) depending on the time of day, day of the week, and agents’ employment status. Data from a representative sample of British consumers is used to empirically ground the model. Different experiments are run simulating interventions of the application of social marketing campaigns and a rise in price of meat. The main outcome is the mean weekly consumption of meat per consumer. A secondary outcome is the likelihood of eating meat. Analyses are run on the overall artificial population and by subgroups. The model succeeded in reproducing observed consumption patterns. Different sizes of effect on consumption emerged depending on the application of a social marketing strategy or a price increase. A price increase had a greater effect than environmental and animal welfare campaigns, while a health campaign had a larger impact on consumers’ behaviour than the other campaigns. An environmental campaign targeted at consumers concerned about the environment produced a boomerang effect increasing the consumption in the population rather than reducing it. The results of the simulation experiments are mainly consistent with the literature on food consumption providing support for future models of public strategies to reduce meat consumption.

Theory Development Via Replicated Simulations and the Added Value of Standards

Jonas Hauke, Sebastian Achter and Matthias Meyer
Journal of Artificial Societies and Social Simulation 23 (1) 12

Kyeywords: Replication, ABM, ODD, Design of Experiments (DOE), Organizational Routines, Dynamic Capabilities
Abstract: Using the agent-based model of Miller et al. (2012), which depicts how different types of individuals’ memory affect the formation and performance of organizational routines, we show how a replicated simulation model can be used to develop theory. We also assess how standards, such as the ODD (Overview, Design concepts, and Details) protocol and DOE (design of experiments) principles, support the replication, evaluation, and further analysis of this model. Using the verified model, we conduct several simulation experiments as examples of different types of theory development. First, we show how previous theoretical insights can be generalized by investigating additional scenarios, such as mergers. Second, we show the potential of replicated simulation models for theory refinement, such as analyzing in-depth the relationship between memory functions and routine performance or routine adaptation.

Estimating Spatio-Temporal Risks from Volcanic Eruptions Using an Agent-Based Model

J Jumadi, Nick Malleson, Steve Carver and Duncan Quincey
Journal of Artificial Societies and Social Simulation 23 (2) 2

Kyeywords: ABM, Volcanic Crisis, Risk Estimation, Spatio-Temporal Modeling, MCE, Merapi
Abstract: Managing disasters caused by natural events, especially volcanic crises, requires a range of approaches, including risk modelling and analysis. Risk modelling is commonly conducted at the community/regional scale using GIS. However, people and objects move in response to a crisis, so static approaches cannot capture the dynamics of the risk properly, as they do not accommodate objects’ movements within time and space. The emergence of Agent-Based Modelling makes it possible to model the risk at an individual level as it evolves over space and time. We propose a new approach of Spatio-Temporal Dynamics Model of Risk (STDMR) by integrating multi-criteria evaluation (MCE) within a georeferenced agent-based model, using Mt. Merapi, Indonesia, as a case study. The model makes it possible to simulate the spatio-temporal dynamics of those at risk during a volcanic crisis. Importantly, individual vulnerability is heterogeneous and depends on the characteristics of the individuals concerned. The risk for the individuals is dynamic and changes along with the hazard and their location. The model is able to highlight a small number of high-risk spatio-temporal positions where, due to the behaviour of individuals who are evacuating the volcano and the dynamics of the hazard itself, the overall risk in those times and places is extremely high. These outcomes are extremely relevant for the stakeholders, and the work of coupling an ABM, MCE, and dynamic volcanic hazard is both novel and contextually relevant.

Do Farm Characteristics or Social Dynamics Explain the Conversion to Organic Farming by Dairy Farmers? An Agent-Based Model of Dairy Farming in 27 French Cantons

Qing Xu, Sylvie Huet, Eric Perret and Guillaume Deffuant
Journal of Artificial Societies and Social Simulation 23 (2) 4

Kyeywords: Organic Farming, Adaptation, Theory of Reasoned Action, Agent-Based Model, Social Influence, Credibility
Abstract: The drivers of conversion to organic farming, which is still a residual choice in agriculture, are poorly understood. Many scholars argue that farm characteristics can determine this choice but do not exclude the role of social dynamics. To study this issue, we developed an agent-based model in which agents' decisions to shift to organic farming are based on a comparison between satisfaction with the current situation and potential satisfaction with an alternative farming strategy. A farmer agent’s satisfaction is modelled using the Theory of Reasoned Action. This makes it necessary to compare an agent's productions over time with those of other agents to whom the former attributes considerable credibility (“important others”). Moreover, farmers make technical changes that affect their productions by imitating other credible farmers. While we first used this model to examine simple and abstract farm populations, here we also adapted it for use with data from an Agricultural Census concerning the farm characteristics of dairy farming in 27 French “cantons”. Based on domain expertise, data and previous research, we propose certain laws for modelling the impact of conversion on the farm production of milk and the environment. The simulations with “real” populations of farms confirm the important impact of farm characteristics. However, our results also suggest a complex impact of social dynamics that can favour or impede the diffusion of organic farming through dynamic implicit networks of similarity and credibility. We confirm the great importance of demographic changes in farm characteristics.

Opinion Dynamics and Collective Risk Perception: An Agent-Based Model of Institutional and Media Communication About Disasters

Francesca Giardini and Daniele Vilone
Journal of Artificial Societies and Social Simulation 24 (1) 4

Kyeywords: Risk Perceptions, Opinion Dynamics, Social Influence, Agent-Based Model
Abstract: The behavior of a heterogeneous population of individuals during an emergency, such as epidemics, natural disasters, terrorist attacks, is dynamic, emergent and complex. In this situation, reducing uncertainty about the event is crucial in order to identify and pursue the best possible course of action. People depend on experts, government sources, the media and fellow community members as potentially valid sources of information to reduce uncertainty, but their messages can be ambiguous, misleading or contradictory. Effective risk prevention depends on the way in which the population receives, elaborates and spread the message, and together these elements result in a collective perception of risk. The interaction between individuals' attitudes toward risk and institutions, the more or less alarmist way in which the information is reported and the role of the media can lead to risk perception that differs from the original message, as well as to contrasting opinions about risk within the same population. The aim of this study is to bridge a model of opinion dynamics with the issue of uncertainty and trust in the sources, in order to understand the determinants of collective risk assessment. Our results show that alarming information spreads more easily than reassuring one, and that the media plays a key role in this. Concerning the role of internal variables, our simulation results show that risk sensitiveness has more influence on the final opinion than trust towards the institutional message. Furthermore, the role of different network structures seemed to be negligible, even on two empirically calibrated network topologies, thus suggesting that knowing beforehand how much the public trusts their institutional representatives and how reactive they are to a certain risk might provide useful indications to design more effective communication strategies during crises.

Finding Core Members of Cooperative Games Using Agent-Based Modeling

Daniele Vernon-Bido and Andrew Collins
Journal of Artificial Societies and Social Simulation 24 (1) 6

Kyeywords: Agent-Based Modeling, Cooperative Game Theory, Modeling and Simulation, ABM, Cooperative Games
Abstract: Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modelled using cooperative game theory. In this paper, a heuristic algorithm, which can be embedded into an ABM to allow the agents to find a coalition, is described. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games' core solutions (if they exist). The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison is achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of market economy game. Finding the traditional cooperative game solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers up to nine-player games. The results indicate that our heuristic approach achieves a core solution over 90% of the games considered in our experiment.