JASSS logo


18 articles matched your search for the keywords:
Agent Based Modeling, Credit Networks, Financial Stability

Using Self-Designed Role-Playing Games and a Multi-Agent System to Empower a Local Decision-Making Process for Land Use Management: the SelfCormas Experiment in Senegal

Patrick D'aquino, Christophe Le Page, François Bousquet and Alassane Bah
Journal of Artificial Societies and Social Simulation 6 (3) 5

Kyeywords: Local Planning; Participatory; Land Use; Resources Management; Role Playing Games;Agent Based Modeling
Abstract: As agricultural and environmental issues are more and more inter-linked, the increasing multiplicity of stakeholders, with differing and often conflicting land use representations and strategies, underlines the need for innovative methods and tools to support their coordination, mediation and negotiation processes aiming at an improved, more decentralized and integrated natural resources management. But how can technology fit best with such a novel means of support? Even the present participatory modeling method is not really designed to avoid this technocratic drift and encourage the empowerment of stakeholders in the land use planning process. In fact, to truly integrate people and principals in the decision-making process of land use management and planning, information technology should not only support a mere access to information but also help people to participate fully in its design, process and usage. That means allow people to use the modeling support not to provide solutions, but to help people to steer their course within an incremental, iterative, and shared decision-making process. To this end, since 1997 we have experimented at an operational level (2500 km_) in the Senegal River valley a Self-Design Method that places modeling tools at stakeholders? and principals' disposal, right from the initial stages. The experiment presented here links Multi-Agent Systems and Role-Playing Games within a self-design and use process. The main objective was to test direct modeling design of these tools by stakeholders, with as little prior design work by the modeler as possible. This "self-design" experiment was organized in the form of participatory workshops which has led on discussions, appraisals, and decisions about planning land use management, already applied two years after the first workshops.

Evaluation of free Java-libraries for social-scientific agent based simulation

Robert Tobias and Carole Hofmann
Journal of Artificial Societies and Social Simulation 7 (1) 6

Kyeywords: Evaluation, Simulation Framework, Agent Based Modeling, Java, Theory Based Modeling, Data Based Modeling, Social Intervention Planning
Abstract: This paper compares four freely available programming libraries for support of social scientific agent based computer simulation: RePast, Swarm, Quicksilver, and VSEit. Our aim is evaluation to determine the simulation framework that is the best suited for theory and data based modeling of social interventions, such as information campaigns. Our first step consisted in an Internet search for programming libraries and the selection of suitable candidates for detailed evaluation on the basis of 'knock out' criteria. Next, we developed a rating system and assessed the selected simulation environments on the basis of the rating criteria. The evaluation was based on official program documentation, statements by developers and users, and the experiences and impressions of the evaluators. The evaluation results showed the RePast environment to be the clear winner. In a further step, the evaluation results were weighted according to effort/time/energy saved by social scientists by using the particular ready-made programming library as compared to doing their own programming. Once again, the weighted results show RePast to win out over the other Java based programming libraries examined.

Spatial Dynamics of Pandemic Influenza in a Massive Artificial Society

Phillip Stroud, Sara Del Valle, Stephen Sydoriak, Jane Riese and Susan Mniszewski
Journal of Artificial Societies and Social Simulation 10 (4) 9

Kyeywords: Agent Based Modeling, Computer Simulation, Epidemic Simulation, Public Health Policy
Abstract: EpiSimS is a massive simulation of the movements, activities, and social interactions of individuals in realistic synthetic populations, and of the dynamics of contagious disease spread on the resulting social contact network. This paper describes the assumptions and methodology in the EpiSimS model. It also describes and presents a simulation of the spatial dynamics of pandemic influenza in an artificial society constructed to match the demographics of southern California. As an example of the utility of the massive simulation approach, we demonstrate a strong correlation between local demographic characteristics and pandemic severity, which gives rise to previously unanticipated spatial pandemic hotspots. In particular, the average household size in a census tract is strongly correlated with the clinical attack rate computed by the simulation. Public heath agencies with responsibility for communities having relatively high population per household should expect to be more severely hit by a pandemic.

A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units

Mikola Lysenko and Roshan M. D'Souza
Journal of Artificial Societies and Social Simulation 11 (4) 10

Kyeywords: GPGPU, Agent Based Modeling, Data Parallel Algorithms, Stochastic Simulations
Abstract: Agent-based modeling is a technique for modeling dynamic systems from the bottom up. Individual elements of the system are represented computationally as agents. The system-level behaviors emerge from the micro-level interactions of the agents. Contemporary state-of-the-art agent-based modeling toolkits are essentially discrete-event simulators designed to execute serially on the Central Processing Unit (CPU). They simulate Agent-Based Models (ABMs) by executing agent actions one at a time. In addition to imposing an un-natural execution order, these toolkits have limited scalability. In this article, we investigate data-parallel computer architectures such as Graphics Processing Units (GPUs) to simulate large scale ABMs. We have developed a series of efficient, data parallel algorithms for handling environment updates, various agent interactions, agent death and replication, and gathering statistics. We present three fundamental innovations that provide unprecedented scalability. The first is a novel stochastic memory allocator which enables parallel agent replication in O(1) average time. The second is a technique for resolving precedence constraints for agent actions in parallel. The third is a method that uses specialized graphics hardware, to gather and process statistical measures. These techniques have been implemented on a modern day GPU resulting in a substantial performance increase. We believe that our system is the first ever completely GPU based agent simulation framework. Although GPUs are the focus of our current implementations, our techniques can easily be adapted to other data-parallel architectures. We have benchmarked our framework against contemporary toolkits using two popular ABMs, namely, SugarScape and StupidModel.

A Spatial Agent-Based Model of N-Person Prisoner's Dilemma Cooperation in a Socio-Geographic Community

Conrad Power
Journal of Artificial Societies and Social Simulation 12 (1) 8

Kyeywords: Agent Based Modeling, Cooperation, Prisoners Dilemma, Spatial Interaction Model, Spatially Structured Social Dilemma, Geographic Information Systems
Abstract: The purpose of this paper is to present a spatial agent-based model of N-person prisoner's dilemma that is designed to simulate the collective communication and cooperation within a socio-geographic community. Based on a tight coupling of REPAST and a vector Geographic Information System, the model simulates the emergence of cooperation from the mobility behaviors and interaction strategies of citizen agents. To approximate human behavior, the agents are set as stochastic learning automata with Pavlovian personalities and attitudes. A review of the theory of the standard prisoner's dilemma, the iterated prisoner's dilemma, and the N-person prisoner's dilemma is given as well as an overview of the generic architecture of the agent-based model. The capabilities of the spatial N-person prisoner's dilemma component are demonstrated with several scenario simulation runs for varied initial cooperation percentages and mobility dynamics. Experimental results revealed that agent mobility and context preservation bring qualitatively different effects to the evolution of cooperative behavior in an analyzed spatial environment.

Tools of the Trade: A Survey of Various Agent Based Modeling Platforms

Cynthia Nikolai and Gregory Madey
Journal of Artificial Societies and Social Simulation 12 (2) 2

Kyeywords: Agent Based Modeling, Individual Based Model, Multi Agent Systems
Abstract: Agent Based Modeling (ABM) toolkits are as diverse as the community of people who use them. With so many toolkits available, the choice of which one is best suited for a project is left to word of mouth, past experiences in using particular toolkits and toolkit publicity. This is especially troublesome for projects that require specialization. Rather than using toolkits that are the most publicized but are designed for general projects, using this paper, one will be able to choose a toolkit that already exists and that may be built especially for one's particular domain and specialized needs. In this paper, we examine the entire continuum of agent based toolkits. We characterize each based on 5 important characteristics users consider when choosing a toolkit, and then we categorize the characteristics into user-friendly taxonomies that aid in rapid indexing and easy reference.

Social Preference, Incomplete Information, and the Evolution of Ultimatum Game in the Small World Networks: An Agent-Based Approach

Bo Xianyu
Journal of Artificial Societies and Social Simulation 13 (2) 7

Kyeywords: Spatial Ultimatum Game, Complex Network, Social Preference, Agent Based Modeling
Abstract: Certain social preference models have been proposed to explain fairness behavior in experimental games. Existing bodies of research on evolutionary games, however, explain the evolution of fairness merely through the self-interest agents. This paper attempts to analyze the ultimatum game's evolution on complex networks when a number of agents display social preference. Agents' social preference is modeled in three forms: fairness consideration or maintaining a minimum acceptable money level, inequality aversion, and social welfare preference. Different from other spatial ultimatum game models, the model in this study assumes that agents have incomplete information on other agents' strategies, so the agents need to learn and develop their own strategies in this unknown environment. Genetic Algorithm Learning Classifier System algorithm is employed to address the agents' learning issue. Simulation results reveal that raising the minimum acceptable level or including fairness consideration in a game does not always promote fairness level in ultimatum games in a complex network. If the minimum acceptable money level is high and not all agents possess a social preference, the fairness level attained may be considerably lower. However, the inequality aversion social preference has negligible effect on the results of evolutionary ultimatum games in a complex network. Social welfare preference promotes the fairness level in the ultimatum game. This paper demonstrates that agents' social preference is an important factor in the spatial ultimatum game, and different social preferences create different effects on fairness emergence in the spatial ultimatum game.

Dilbert-Peter Model of Organization Effectiveness: Computer Simulations

Pawel Sobkowicz
Journal of Artificial Societies and Social Simulation 13 (4) 4

Kyeywords: Organization Productivity, Peter Principle, Agent Based Modeling
Abstract: We describe a computer model of general effectiveness of a hierarchical organization depending on two main aspects: effects of promotion to managerial levels and efforts to self-promote of individual employees, reducing their actual productivity. The combination of judgment by appearance in the promotion to higher levels of hierarchy and the Peter Principle (which states that people are promoted to their level of incompetence) results in fast declines in effectiveness of the organization. The model uses a few synthetic parameters aimed at reproduction of realistic conditions in typical multilayer organizations. It is shown that improving organization resiliency to self-promotion and continuity of individual productiveness after a promotion can greatly improve the overall organization effectiveness.

Science as a Social System and Virtual Research Environment

Sergey Parinov and Cameron Neylon
Journal of Artificial Societies and Social Simulation 14 (4) 10

Kyeywords: Virtual Research Environment, Science System Social Sustainability, Agent Based Modeling
Abstract: The accumulation of gradual changes in scientific landscape and research practice due to the Internet has the potential to enhance the quality of both cognitive and social aspects of science and scientists. New types of research outputs, modes of scientific communication and new circulation mechanisms, as well as enhanced opportunities for scientific re-use and measuring research impact, in combination with new approaches to research assessment and evaluation are all having profound effects on the social system of science. To be sure that these innovations will not break the social sustainability of the science community, it will be valuable to develop a model of science as a tool for computer simulation of social consequences from possible innovations within virtual research environment. Focusing on possible social problems related to these new virtual research environments this short paper provides a brief analysis of the current situation in science (challenges, problems, main actors), general views on model of science (landscape, main agents, important properties, etc.) and on areas where simulation can contribute to better understanding of possible futures for the scientific community.

Thomas C. Schelling and the Computer: Some Notes on Schelling's Essay "On Letting a Computer Help with the Work"

Rainer Hegselmann
Journal of Artificial Societies and Social Simulation 15 (4) 9

Kyeywords: Schelling Model, Segregation, Configuration Game, History of Computational Social Science, Agent Based Modeling
Abstract: Today the Schelling model is a standard component in introductory courses to agent-based modelling and simulation. When Schelling presented his model in the years between 1969 and 1978, his own analysis was based on manual table top exercises. Even more, Schelling explicitly warned against using computers for the analysis of his model. That is puzzling. A resolution to that puzzle can be found in an essay that Schelling wrote as teaching material for his students. That essay is now published by Schelling in JASSS, exactly 40 years after it was written. In his essay, Schelling gives a guided tour of a computer implementation of his model he himself implemented, de-spite his warnings. On this tour, though more in passing, Schelling gives hints to an extremely generalised version of his model. My article explains why we find the gen-eralised version of Schelling's model on the tour through his computer program rather than in his published articles.

Modelling the Economy as an Agent-Based Process: ABCE, A Modelling Platform and Formal Language for ACE

Davoud Taghawi-Nejad
Journal of Artificial Societies and Social Simulation 16 (3) 1

Kyeywords: Agent Based Modeling, Macoeconomics, Ontology, Economics, Process, Platform
Abstract: In this paper, I argue that the key innovation of Agent-Based Economics is not the introduction of the individual agent as an ontological object, but the fact that the economy is modelled as a process. I propose a formal language to express economic models as processes. This formal language leads to ABCE, a modelling platform for Agent-Based Economic models. ABCE's core idea is that the modeller specifies the decisions of the agents, the order of actions, the goods and their physical transformation (the production and the consumption functions). Actions, such as production and consumption, interactions and exchange, are handled automatically by the modelling platform, when the agent decided to do them. The result is a program where *the source code contains only economically meaningful commands*. Beyond the decisions and the setup, ABCE handles everything in the background. It scales on multi-core computers and cloud computing services, without the intervention of the modeler. ABCE is based on python, a language which is characterized by highly readable code.

The Evolution of Multiple Resistant Strains: An Abstract Model of Systemic Treatment and Accumulated Resistance

Benjamin D. Nye
Journal of Artificial Societies and Social Simulation 16 (4) 2

Kyeywords: Evolution, Acquired Resistance, Agent Based Modeling, Selection Pressure, SIS Model, PS-I
Abstract: The proliferation of resistant strains has been an unintended side effect of human interventions designed to eliminate unwanted elements of our environment. Any attempt to destroy an adaptive population must also be considered as a selection pressure, so that the most resistant members will comprise the next generation. Procedures have been developed to slow the evolution of resistances in a population, with the most common approaches being overkill and treatment cycling. This paper presents an agent-based Susceptible-Infection-Susceptible (SIS) model to explore the effectiveness of these procedures on an abstract epidemic of pathogens, focusing on how the interaction between interventions and mutations affects acquired resistance. Illustrative findings indicate that overkill performed better than cycling treatments when variation in resistances had a high degree of heritability. When resistance variation was effectively memoryless, cycling and overkill performed comparably. However, overkill was prone to backlash outliers where an amplification of infection resistance occurred- a significant drawback to the overkill technique. These backlash events indicate that cycling interventions might be more effective when variation is memoryless and carrying resistance incurs a cost to overall fitness. However, under limited fitness-cost conditions explored, cycling performed no better than overkill for preventing resistance.

Long Term Impacts of Bank Behavior on Financial Stability. an Agent Based Modeling Approach

Ilker Arslan, Eugenio Caverzasi, Mauro Gallegati and Alper Duman
Journal of Artificial Societies and Social Simulation 19 (1) 11

Kyeywords: Agent Based Modeling, Credit Networks, Financial Stability
Abstract: This paper presents an agent-based model aiming to shed light on the potential destabilizing effects of bank behavior. Our work takes its motivation from the effects of the financial crisis which erupted in 2007 in the US. It draws on the Financial Instability Hypothesis by Hyman P. Minsky, and on the Agent Based macro modeling literature (Delli Gatti et al. 2010, Riccetti et. al 2013) to model a simplified economy in which heterogeneous banks and firms interact on game theoretic rules. Simulation results suggest that aggregate financial instability may emerge as the outcome of banks’ attempt to increase their profit or market share through their pricing strategies. A further finding from the model is the need for banks to take into account time consistency when issuing credit in order to protect the financial stability of the system.

Oscillatory Patterns in the Amount of Demand for Dental Visits: An Agent Based Modeling Approach

Maryam Sadeghipour, Peyman Shariatpanahi, Afshin Jafari, Mohammad Hossein Khosnevisan and Arezoo Ebn Ahmady
Journal of Artificial Societies and Social Simulation 19 (3) 10

Kyeywords: Dental Health Care, Dental Routine Visit, Oscillatory Patterns, Agent Based Modeling, Google Trends
Abstract: There are some empirical evidences indicating that there is a collective complex oscillatory pattern in the amount of demand for dental visit at society level. In order to find the source of the complex cyclic behavior, we develop an agent-based model of collective behavior of routine dental check-ups in a social network. Simulation results show that demand for routine dental check-ups can follow an oscillatory pattern and the pattern’s characteristics are highly dependent upon the structure of the social network of potential patients, the population, and the number of effective contacts between individuals. Such a cyclic pattern has public health consequences for patients and economic consequences for providers. The amplitude of oscillations was analyzed under different scenarios and for different network topologies. This allows us to postulate a simulation-based theory for the likelihood observing and the magnitude of a cyclic demand. Results show that in case of random networks, as the number of contacts increases, the oscillatory pattern reaches its maximum intensity, for any population size. In case of ring lattice networks, the amplitude of oscillations reduces considerably, when compared to random networks, and the oscillation intensity is strongly dependent on population. The results for small world networks is a combination of random and ring lattice networks. In addition, the simulation results are compared to empirical data from Google Trends for oral health related search queries in different United States cities. The empirical data indicates an oscillatory behavior for the level of attention to dental and oral health care issues. Furthermore, the oscillation amplitude is correlated with town’s population. The data fits the case of random networks when the number of effective contacts is about 4-5 for each person. These results suggest that our model can be used for a fraction of people deeply involved in Internet activities like Web-based social networks and Google search.

Can Redistribution by Means of a Progressive Labor Income-Taxation Transfer System Increase Financial Stability?

Thomas Fischer
Journal of Artificial Societies and Social Simulation 20 (2) 3

Kyeywords: Financial Stability, Income and Wealth Inequality, Debt, Redistribution
Abstract: We present a model featuring heterogeneous households with a conspicuous consumption motive, in which inequality can decrease financial stability, and relate this behavior to the recent financial crisis in the USA. A natural policy conclusion would be to combat income inequality jointly with financial instability by means of a progressive system of taxes and transfers. We investigate this for the case of a simple flat tax system on labor income. The system succeeds in decreasing volatility in asset markets by decreasing the share of high income individuals participating in destabilizing speculation. However, the model provides some very cautious notes on redistribution. As a result of redistribution, all agents are worse off class-wise and accumulate large amounts of debt, posing another potential hazard to financial stability. The latter can be explained by the arms race property of relative consumption. Moreover, the decreased inequality of income (flow) is accompanied by an increased inequality of net-worth (stock).

Countries as Agents in a Global-Scale Computational Model

Harold J. Walbert, James L. Caton and Julia R. Norgaard
Journal of Artificial Societies and Social Simulation 21 (3) 4

Kyeywords: Agent Based Modeling, Conflict Resolution, Tribute, Diplomacy, War, Economic Analysis of Conflict
Abstract: Our agent-based model examines the ramifications of formal defense agreements between countries. Our model builds on previous work and creates an empirically based version of a tribute model in which actors within existing real-world networks demand tribute from one another. If the threatened actor does not pay the tribute, the aggressing actor will engage in a decision to start a war. Tribute and war payments are based on a measure of the country's wealth. We utilize the Correlates of War dataset to provide us with worldwide historical defense alliance information. Using these networks as our initial conditions, we run the model forward from four prominent historical years and simulate the interactions that take place as well as the changes in overall wealth. Agents in the model employ a cost benefit analysis in their decision of whether or not to go to war. This model provides results that are in qualitative agreement with historical emergent macro outcomes seen over time.

Impact of Basel III Countercyclical Measures on Financial Stability: An Agent-Based Model

Barbara Llacay and Gilbert Peffer
Journal of Artificial Societies and Social Simulation 22 (1) 6

Kyeywords: Agent-Based Simulation, Financial Markets, Financial Stability, Value-At-Risk, Countercyclical Regulation, Basel III
Abstract: The financial system is inherently procyclical, as it amplifies the course of economic cycles, and precisely one of the factors that has been suggested to exacerbate this procyclicality is the Basel regulation on capital requirements. After the recent credit crisis, international regulators have turned their eyes to countercyclical regulation as a solution to avoid similar episodes in the future. Countercyclical regulation aims at preventing excessive risk taking during booms to reduce the impact of losses suffered during recessions, for example increasing the capital requirements during the good times to improve the resilience of financial institutions at the downturn. The Basel Committee has already moved forward towards the adoption of countercyclical measures on a global scale: the Basel III Accord, published in December 2010, revises considerably the capital requirement rules to reduce their procyclicality. These new countercyclical measures will not be completely implemented until 2019, so their impact cannot be evaluated yet, and it is a crucial question whether they will be effective in reducing procyclicality and the appearance of crisis episodes such as the one experienced in 2007-08. For this reason, we present in this article an agent-based model aimed at analysing the effect of two countercyclical mechanisms introduced in Basel III: the countercyclical buffer and the stressed VaR. In particular, we focus on the impact of these mechanisms on the procyclicality induced by market risk requirements and, more specifically, by value-at-risk models, as it is a issue of crucial importance that has received scant attention in the modeling literature. The simulation results suggest that the adoption of both of these countercyclical measures improves market stability and reduces the emergence of crisis episodes.

Modeling Interaction in Collaborative Groups: Affect Control Within Social Structure

Nikolas Zöller, Jonathan H. Morgan and Tobias Schröder
Journal of Artificial Societies and Social Simulation 24 (4) 6

Kyeywords: Agent Based Modeling, Affect Control Theory, Expectation States Theory, Networks, Online Collaboration, Group Dynamics
Abstract: This paper studies the dynamics of identity and status management within groups in collaborative settings. We present an agent-based simulation model for group interaction rooted in social psychological theory. The model integrates affect control theory with networked interaction structures and sequential behavior protocols as they are often encountered in task groups. By expressing status hierarchy through network structure, we build a bridge between expectation states theory and affect control theory, and are able to reproduce central results from the expectation states research program in sociological social psychology. Furthermore, we demonstrate how the model can be applied to analyze specialized task groups or sub-cultural domains by combining it with empirical data sources. As an example, we simulate groups of open-source software developers and analyze how cultural expectations influence the occupancy of high status positions in these groups.