JASSS logo


46 articles matched your search for the keywords:
Credibility, Reputation, Game Theory, Incentives, Online Communities

Normative Reputation and the Costs of Compliance

Cristiano Castelfranchi, Rosaria Conte and Mario Paolucci
Journal of Artificial Societies and Social Simulation 1 (3) 3

Kyeywords: Norms, Reputation, Compliance
Abstract: In this paper, the role of normative reputation in reducing the costs of complying with norms will be explored. In previous simulations (Conte & Castelfranchi 1995), in contrast to a traditional view of norms as means for increasing co-ordination among agents, the effects of normative and non-normative strategies in the control of aggression among agents in a common environment was confronted. Normative strategies were found to reduce aggression to a much greater extent than non-normative strategies, and also to afford the highest average strength and the lowest polarisation of strength among the agents. The present study explores the effects of the interaction between populations following different criteria for aggression control. In such a situation the normative agents alone bear the cost of norms, due to their less aggressive behaviour, while other agents benefit from their presence. Equity is then restored by raising the cost of aggression through the introduction of agents' reputation. This allows normative agents to avoid respecting the cheaters' private property, and to impose a price for transgression. The relevance of knowledge communication is then emphasised by allowing neighbour normative agents to communicate. In particular, the spreading of agents' reputation via communication allows normative agents to co-operate without deliberation at the expense of non-normative agents, thereby redistributing the costs of normative strategies.

A Forgiving Strategy for the Iterated Prisoner's Dilemma

Colm O'Riordan
Journal of Artificial Societies and Social Simulation 3 (4) 3

Kyeywords: Game Theory, Classical Iterated Prisoner's Dilemma, Cooperation
Abstract: This paper reports results obtained with a strategy for the Iterated Prisoner's Dilemma. The paper describes a strategy that tries to incorporate a technique to forgive strategies that have defected or retaliated, in the hope of (re-)establishing cooperation. The strategy is compared to well-known strategies in the domain and results presented. The initial findings, as well as echoing past findings, provides evidence to suggest a higher degree of forgiveness can be beneficial and may result in greater rewards.

Bad Arguments in the Comparison of Game Theory and Simulation in Social Studies

Wolfgang Balzer, Karl R. Brendel and Solveig Hofmann
Journal of Artificial Societies and Social Simulation 4 (2) 1

Kyeywords: Social Simulation, Game Theory, Discrete Event Simulation, Model Theory, Confirmation, Impossibility Theorem
Abstract: The aim of this note is to clarify and to correct some arguments which are used in the debate about the comparison of discrete social simulation with other methodologies used in the study of social phenomena, notably those of game theory. Though part of what will be said also applies to non-discrete simulation, the arguments are investigated only as far as the discrete case is concerned. The main claims against each of both scientific approaches are considered in particular, i.e. "impossibility" of game theory and "unsoundness" of simulation studies. Regarding the latter, arguments are presented that items occurring in simulation studies correspond to the formal constituents of a scientific theory, and thus a comparison of both approaches on the same level is justified. The question whether a superiority of one of the two approaches can be stated is illuminated in the light of four dimensions: empirical adequacy, theoretical fruitfulness, social relevance, and simplicity. This leads to the conclusion that both claims are unjustified and should be avoided in the debate about the role and merits of social simulation.

Game Theory: Limitations and an Alternative

Scott Moss
Journal of Artificial Societies and Social Simulation 4 (2) 2

Kyeywords: Game Theory, Agent, Multi Agent System, Simulation, Market, Intermediation
Abstract: The purpose of this paper is to describe current practice in the game theory literature, to identify particular characteristics that ensure the literature is remote from anything we observe and to demonstrate an alternative drawn from agent based social simulation. The key issue is the process of social interaction among agents. A survey of game theoretic models found no models representing interaction among more than three agents, though sometimes more agents were involved in a round robin tournament. An ABSS model is reported in which there is a dense pattern of interaction among agents and outputs from the model are shown to have the same statistical signature as high-frequency data from competitive retail and financial markets. Moreover, the density of agent interaction is seen to be necessary both to obtain the validating statistical signature and for simulated market efficiency. As far as competitive markets are concerned, game theoretic models evidently assume away the source of the properties observed in real high frequency data and also the properties required for market efficiency.

A Bargaining Model to Simulate Negotiations Between Water Users

Sophie Thoyer, Sylvie Morardet, Patrick Rio, Leo Simon, Rachael Goodhue and Gordon Rausser
Journal of Artificial Societies and Social Simulation 4 (2) 6

Kyeywords: Game Theory, Bargaining, Water Management, Negotiation, Decentralisation
Abstract: The French water law of 1992 requires that regulations on water use and water management be negotiated collectively and locally in each river sub-basin. Decision-makers therefore need new tools to guide the negotiation process which will take place between water users. A formal computable bargaining model of multilateral negotiations is applied to the Adour Basin case, in the South West of France, with seven aggregate players (three "farmers", two "environmental lobbies", the water manager, the taxpayer) and seven negotiation variables (three individual irrigation quotas, the price of water, the sizes of three dams). The farmers' utility functions are estimated with hydraulic and economic models. A sensibility analysis is conducted to quantify the impact of the negotiation structure (political weights of players, choice of players...) on game outcomes. The relevance of the bargaining models as negotiation-support tools is assessed.

The Creation of a Reputation in an Artificial Society Organised by a Gift System

Juliette Rouchier, Martin O'Connor and François Bousquet
Journal of Artificial Societies and Social Simulation 4 (2) 8

Kyeywords: Gift, Reputation, Multi-Agent Systems
Abstract: This paper describes simulations in an artificial society in which autonomous agents exchange gifts. In this society agents perform simple acts that are looked at by the others and are analysed so that a common image is created for each agent (a reputation). The model is based on numerous descriptions of non-merchant exchange systems, which are very interesting for ethnologists as well as for economists: they appear to be important for circulation of goods and to insure the reproduction of social links and values. In the system built the agents must make a gift at each time-step. There exist two kinds of gifts and two corresponding kinds of reputation: the agents either give to share or to be prestigious. Since gifts are received according to status, receiving a gift is as important for a reputation as making one. Each agent is characterised by its ''motivation'' to acquire the reputation of being a sharing agent or a prestigious agent. It is also characterised by its ''esteem'', to decide if it will be able to do the gift it wants to do for a time-step. These two characteristics of an agent can be stable during the simulation, but can also evolve according to its history. We study here the different patterns that can appear in the societies, in terms of generation of reputation, and of histories over time. A huge range of these patterns can be observed, depending on the choice made for the parameters. In some cases the agents cannot be individually distinguished, in other cases they can: but, in any case any individual behaviours that emerge have to be sustained by a collective specification that points out more or less the way agents value each reputation.

Group Reputation Supports Beneficent Norms

David Hales
Journal of Artificial Societies and Social Simulation 5 (4) 4

Kyeywords: Norms, Reputation, Social Groups, Group Reputation, Stereotypes
Abstract: This paper demonstrates the role of group normative reputation in the promotion of an aggression reducing possession norm in an artificial society. A previous model of normative reputation is extended such that agents are given the cognitive capacity to categorise other agents as members of a group. In the previous model reputational information was communicated between agents concerning individuals. In the model presented here reputations are projected onto whole groups of agents (a form of "stereotyping"). By stereotyping, norm followers outperform cheaters (who do not follow the norm) under certain conditions. Stereotyping, by increasing the domain of applicability of a piece of reputational information, allows agents to make informed decisions concerning interactions with agents which no other agent has previously met. However, if conditions are not conducive, stereotyping can completely negate norm following behaviour. Group reputation can be a powerful mechanism, therefore, for the promotion of beneficent norms under the right conditions.

Case-Based Reasoning, Social Dilemmas, and a New Equilibrium Concept

Luis R. Izquierdo, Nicholas M. Gotts and Gary Polhill
Journal of Artificial Societies and Social Simulation 7 (3) 1

Kyeywords: Social Dilemmas, Case-Based Reasoning, Prisoner's Dilemma, Agent-Based Simulation, Analogy, Game Theory, Aspiration Thresholds, Equilibrium
Abstract: In this paper social dilemmas are modelled as n-player games. Orthodox game theorists have been able to provide several concepts that narrow the set of expected outcomes in these models. However, in their search for a reduced set of solutions, they had to pay a very high price: they had to make disturbing assumptions such as instrumental rationality or common knowledge of rationality, which are rarely observed in any real-world situation. We propose a complementary approach, assuming that people adapt their behaviour according to their experience and look for outcomes that have proved to be satisfactory in the past. These ideas are investigated by conducting several experiments with an agent-based simulation model in which agents use a simple form of case-based reasoning. It is shown that cooperation can emerge from the interaction of selfish case-based reasoners. In determining how often cooperation occurs, aspiration thresholds, the agents' representation of the world, and their memory all play an important and interdependent role. It is also argued that case-based reasoners with high enough aspiration thresholds are not systemically exploitable, and that if agents were sophisticated enough to infer that other players are not exploitable either, they would eventually cooperate.

Reciprocity, Sanctions, and the Development of Mutual Obligation in Egalitarian Societies

Stephen Younger
Journal of Artificial Societies and Social Simulation 8 (2) 9

Kyeywords: Reciprocity, Normative Reputation, Mutual Obligation, Gift-Giving Societies
Abstract: Discrete agent simulation was used to study several models of reciprocity and sanctions in a model egalitarian society. We found that mutual obligation between agents was maximized for indiscriminant sharing, the same condition that has been observed in several traditional cultures. Alternate sharing strategies, including ones based on kinship or sharing with those who share in return, reduced mutual obligation. When theft and sanctions were introduced into the simulations, we found that mutual obligation was maximized when individual norms were strong, i.e. when there was little tolerance to theft. Collective sanctions, represented by the ostracism of non-normative agents, produced levels of mutual obligation comparable to the case of strong individual norms, but with significant risk of population collapse. The probability of long term survival was highest when tolerance to transgressions was either very low or very high and we propose that this may be one reason for the similarity of normative systems across diverse egalitarian cultures.

The Fate of Spatial Dilemmas with Different Fuzzy Measures of Success

Hugo Fort and Nicolás Pérez
Journal of Artificial Societies and Social Simulation 8 (3) 1

Kyeywords: Complex Adaptive Agents, Cooperation, Artificial Societies, Spatial Game Theory
Abstract: Cooperation among self-interested individuals pervades nature and seems essential to explain several landmarks in the evolution of live organisms, from prebiotic chemistry through to the origins of human societies. The iterated Prisoner's Dilemma (IPD) has been widely used in different contexts, ranging from social sciences to biology, to elucidate the evolution of cooperation. In this work we approach the problem from a different angle. We consider a system of adaptive agents, in a two dimensional grid, playing the IPD governed by Pavlovian strategies. We investigate the effect of different possible measures of success (MSs) used by the players to assess their performance in the game. These MSs involve quantities such as: the utilities of a player in each round U, his cumulative score (or "capital" or \'wealth\') W, his neighbourhood "welfare" and combinations of them. The agents play sequentially with one of their neighbours and the two players update their "behaviour" (C or D) using fuzzy logic which seems more appropriate to evaluate an imprecise concept like "success" than binary logic. The steady states are characterised by different degrees of cooperation, "economic geographies" (population structure and maps of capital) and "efficiencies" which depend dramatically on the MS. In particular, some MSs produce patterns of "segregation" and "exploitation".

Appearances Can Be Deceiving: Lessons Learned Re-Implementing Axelrod's 'Evolutionary Approach to Norms'

José Manuel Galán and Luis R. Izquierdo
Journal of Artificial Societies and Social Simulation 8 (3) 2

Kyeywords: Replication, Agent-Based Modelling, Evolutionary Game Theory, Social Dilemmas, Norms, Metanorms
Abstract: In this paper we try to replicate the simulation results reported by Axelrod (1986) in an influential paper on the evolution of social norms. Our study shows that Axelrod's results are not as reliable as one would desire. We can obtain the opposite results by running the model for longer, by slightly modifying some of the parameters, or by changing some arbitrary assumptions in the model. This re-implementation exercise illustrates the importance of running stochastic simulations several times for many periods, exploring the parameter space adequately, complementing simulation with analytical work, and being aware of the scope of our simulation models.

Stylised Facts and the Contribution of Simulation to the Economic Analysis of Budgeting

Bernd-O. Heine, Matthias Meyer and Oliver Strangfeld
Journal of Artificial Societies and Social Simulation 8 (4) 4

Kyeywords: Computer Simulation, Stylised Facts, Methodology, Groves Mechanism, Collusion, Game Theory
Abstract: The application of computer simulation as a research method raises two important questions: (1) Does simulation really offer added value over established methods? (2) How can the danger of arbitrariness caused by the extended modelling possibilities be minimised? We present the concept of stylised facts as a methodological basis for approaching these questions systematically. In particular, stylised facts provide a point of reference for a comparative analysis of models intended to explain an observable phenomenon. This is shown with reference to a recent discussion in the "economic analysis of accounting" literature where established methods, i.e. game theory, as well as computer simulations are used: the susceptibility of the "Groves mechanism" to collusion. Initially, we identify six stylised facts on the stability of collusion in empirical studies. These facts serve as a basis for the subsequent comparison of four theoretical models with reference to the above questions: (1) We find that the simulation models of Krapp and Deliano offer added value in comparison to the game theoretical models. They can be related to more stylised facts, achieve a better reproduction and exhibit far greater potential for incorporating yet unaddressed stylised facts. (2) Considered in the light of the stylised facts to which the models can be related, Deliano's simulation model exhibits considerable arbitrariness in model design and lacks information on its robustness. In contrast, Krapp demonstrates that this problem is not inherent to the method. His simulation model methodically extends its game theoretical predecessors, leaving little room for arbitrary model design or questionable parameter calibration. All in all, the stylisedfactsconcept proved to be very useful in dealing with the questions simulation researchers are confronted with. Moreover, a "research landscape" emerges from the derived stylised facts pinpointing issues yet to be addressed.

Introduction to the Special Section on Reputation in Agent Societies

Mario Paolucci and Jordi Sabater-Mir
Journal of Artificial Societies and Social Simulation 9 (1) 16

Kyeywords: Reputation, Agent Systems
Abstract: This special section includes papers from the 'Reputation in Agent Societies' workshop held as part of 2004 IEEE/WIC/ACM International Joint Conference on Intelligent Agent Technology (IAT'04) and Web Intelligence (WI'04), September 20, 2004 in Beijing, China. The purpose of this workshop was to promote multidisciplinary collaboration for Reputation Systems modeling and implementation. Reputation is increasingly at the centre of attention in many fields of science and domains of application, including economics, organisations science, policy-making, (e-)governance, cultural evolution, social dilemmas, socio-dynamics, innofusion, etc. However, the result of all this attention is a great number of ad hoc models and little integration of instruments for the implementation, management and optimisation of reputation. On the one hand, entrepreneurs and administrators manage corporate and firm reputation without contributing to or accessing a solid, general and integrated body of scientific knowledge on the subject matter. On the other hand, software designers believe they can design and implement online reputation reporting systems without investigating what the properties, requirements and dynamics of reputation in natural societies are and why it evolved. We promoted the workshop and this special section with the hope of setting the first steps in the direction of a new, cross-disciplinary approach to reputation, accounting for the social cognitive mechanisms and processes that support it and working towards t a consensus on essential guidelines for designing or shaping reputation technologies.

Evolution of Cooperation when Feedback to Reputation Scores is Voluntary

Marco A. Janssen
Journal of Artificial Societies and Social Simulation 9 (1) 17

Kyeywords: Trust, Reputation, One-Shot Prisoner Dilemma, Voluntary Feedback, Symbols
Abstract: Reputation systems are used to facilitate interaction between strangers in one-shot social dilemmas, like transactions in e-commerce. The functioning of various reputation systems depend on voluntary feedback derived from the participants in those social dilemmas. In this paper a model is presented under which frequencies of providing feedback to positive and negative experiences in reputation systems explain observed levels of cooperation. The results from simulations show that it is not likely that reputation scores alone will lead to high levels of cooperation.

On the Simulation of Global Reputation Systems

Andreas Schlosser, Marco Voss and Lars Brückner
Journal of Artificial Societies and Social Simulation 9 (1) 4

Kyeywords: Reputation System, Trust, Formalization, Simulation
Abstract: Reputation systems evolve as a mechanism to build trust in virtual communities. In this paper we evaluate different metrics for computing reputation in multi-agent systems. We present a formal model for describing metrics in reputation systems and show how different well-known global reputation metrics are expressed by it. Based on the model a generic simulation framework for reputation metrics was implemented. We used our simulation framework to compare different global reputation systems to find their strengths and weaknesses. The strength of a metric is measured by its resistance against different threat-models, i.e. different types of hostile agents. Based on our results we propose a new metric for reputation systems.

Repage: REPutation and ImAGE Among Limited Autonomous Partners

Jordi Sabater-Mir, Mario Paolucci and Rosaria Conte
Journal of Artificial Societies and Social Simulation 9 (2) 3

Kyeywords: Reputation, Agent Systems, Cognitive Design, Fuzzy Evaluation
Abstract: This paper introduces Repage, a computational system that adopts a cognitive theory of reputation. We propose a fundamental difference between image and reputation, which suggests a way out from the paradox of sociality, i.e. the trade-off between agents' autonomy and their need to adapt to social environment. On one hand, agents are autonomous if they select partners based on their social evaluations (images). On the other, they need to update evaluations by taking into account others'. Hence, social evaluations must circulate and be represented as "reported evaluations" (reputation), before and in order for agents to decide whether to accept them or not. To represent this level of cognitive detail in artificial agents' design, there is a need for a specialised subsystem, which we are in the course of developing for the public domain. In the paper, after a short presentation of the cognitive theory of reputation and its motivations, we describe the implementation of Repage.

My Way or the Highway: a More Naturalistic Model of Altruism Tested in an Iterative Prisoners' Dilemma

David Joyce, John Kennison, Owen Densmore, Stephen Guerin, Shawn Barr, Eric Charles and Nicholas S. Thompson
Journal of Artificial Societies and Social Simulation 9 (2) 4

Kyeywords: Game Theory; Altruism; Prisoners' Dilemma; TIT FOR TAT; MOTH; Docking; Netlogo
Abstract: There are three prominent solutions to the Darwinian problem of altruism, kin selection, reciprocal altruism, and trait group selection. Only one, reciprocal altruism, most commonly implemented in game theory as a TIT FOR TAT strategy, is not based on the principle of conditional association. On the contrary, TIT FOR TAT implements conditional altruism in the context of unconditionally determined associates. Simulations based on Axelrod\'s famous tournament have led many to conclude that conditional altruism among unconditional partners lies at the core of much human and animal social behavior. But the results that have been used to support this conclusion are largely artifacts of the structure of the Axelrod tournament, which explicitly disallowed conditional association as a strategy. In this study, we modify the rules of the tournament to permit competition between conditional associates and conditional altruists. We provide evidence that when unconditional altruism is paired with conditional association, a strategy we called MOTH, it can out compete TIT FOR TAT under a wide range of conditions.

Metamimetic Games: Modeling Metadynamics in Social Cognition

David Chavalarias
Journal of Artificial Societies and Social Simulation 9 (2) 5

Kyeywords: Social Cognition, Imitation, Cultural Co-Evolution, Differentiation, Reflexivity, Metacognition, Stochastic Game Theory, Endogenous Distributions, Metamimetic Games, Counterfactual Equilibrium
Abstract: Imitation is fundamental in the understanding of social systems' dynamics. But the diversity of imitation rules employed by modelers proves that the modeling of mimetic processes cannot avoid the traditional problem of endogenization of all the choices, including the one of the mimetic rules. Starting from the remark that metacognition and human reflexive capacities are the ground for a new class of mimetic rules, we propose a formal framework, metamimetic games, that enables to endogenize the distribution of imitation rules while being human specific. The corresponding concepts of equilibrium — counterfactually stable state — and attractor are introduced. Finally, we give an interpretation of social differenciation in terms of cultural co-evolution among a set of possible motivations, which departs from the traditional view of optimization indexed to immutable criteria that exist prior to the activity of agents.

Social Reputation: a Mechanism for Flexible Self-Regulation of Multiagent Systems

Christian Hahn, Bettina Fley, Michael Florian, Daniela Spresny and Klaus Fischer
Journal of Artificial Societies and Social Simulation 10 (1) 2

Kyeywords: Reputation; Institution; Electronic Market; Self-Regulation; Multiagent System
Abstract: In this paper, we use multiagent technology for social simulation of sociological micro-macro issues in the domain of electronic marketplaces. We argue that allowing self-interested agents to enable social reputation as a mechanism for flexible self-regulation during runtime can improve the robustness and \'social order\' of multiagent systems to cope with various perturbations that arise when simulating open markets (e.g. dynamic modifications of task profiles, scaling of agent populations, agent drop-outs, deviant behaviour). Referring to the sociological theory of Pierre Bourdieu, we provide a multi-level concept of reputation that consists of three different types (image, social esteem, and prestige) and considers reputation as a kind of \'symbolic capital\'. Reputation is regarded to be objectified as an observable property and to be incorporated into the agents\' mental structures through social practices of communication on different aggregation levels of sociality. We present and analyse selected results of our social simulations and discuss the importance of reputation with regard to the robustness of multiagent simulations of electronic markets.

Communication Between Process and Structure: Modelling and Simulating Message Reference Networks with COM/TE

Thomas Malsch, Christoph Schlieder, Peter Kiefer, Maren Lübcke, Rasco Perschke, Marco Schmitt and Klaus Stein
Journal of Artificial Societies and Social Simulation 10 (1) 9

Kyeywords: Communication, Communication-Oriented Modelling, Message Sign, Dynamic Networks, Bottom-up Approach, Temporality, Social Visibility, Reputation, Socionics
Abstract: Focusing on observable message signs and referencing structures, communication processes can be described and analysed as message reference networks which are characterized by dynamic pattern evolution. Computational simulation provides a way of obtaining insights into the factors driving such processes. Our paper describes a theoretical framework for communication-oriented modelling — the COM approach — that is centred around the notion of social visibility as a reputation mechanism. The approach contrasts with agent-based social networks on the one hand, and with bibliometric document networks on the other. In introducing our simulation environment COM/TE, typical properties of message reference networks are discussed in terms of a case study which deals with the impact of different media and styles of communication on emergent patterns of social visibility.

An Extended Reinforcement Algorithm for Estimation of Human Behaviour in Experimental Congestion Games

Thorsten Chmura and Thomas Pitz
Journal of Artificial Societies and Social Simulation 10 (2) 1

Kyeywords: Congestion Game, Minority Game, Laboratory Experiments, Reinforcement Algorithm, Payoff Sum Model, Game Theory, Experimental Economics
Abstract: The paper reports simulations applied on two similar congestion games: the first is the classical minority game. The second one is an asymmetric variation of the minority game with linear payoff functions. For each game, simulation results based on an extended reinforcement algorithm are compared with real experimental statistics. It is shown that the extension of the reinforcement model is essential for fitting the experimental data and estimating the player\'s behaviour.

Dynamics of Network Formation Processes in the Co-Author Model

Laurent Tambayong
Journal of Artificial Societies and Social Simulation 10 (3) 2

Kyeywords: Dynamics, Network, Game Theory, Model,Simulation, Equilibrium, Complexity
Abstract: This article studies the dynamics in the formation processes of a mutual consent network in game theory setting: the Co-Author Model. In this article, a limited observation is applied and analytical results are derived. Then, 2 parameters are varied: the number of individuals in the network and the initial probability of the links in the network in its initial state. A simulation result shows a finding that is consistent with an analytical result for a state of equilibrium while it also shows different possible equilibria.

Reinforcement Learning Dynamics in Social Dilemmas

Segismundo S. Izquierdo, Luis R. Izquierdo and Nicholas M. Gotts
Journal of Artificial Societies and Social Simulation 11 (2) 1

Kyeywords: Reinforcement Learning; Replication; Game Theory; Social Dilemmas; Agent-Based; Slow Learning
Abstract: In this paper we replicate and advance Macy and Flache\'s (2002; Proc. Natl. Acad. Sci. USA, 99, 7229–7236) work on the dynamics of reinforcement learning in 2×2 (2-player 2-strategy) social dilemmas. In particular, we provide further insight into the solution concepts that they describe, illustrate some recent analytical results on the dynamics of their model, and discuss the robustness of such results to occasional mistakes made by players in choosing their actions (i.e. trembling hands). It is shown here that the dynamics of their model are strongly dependent on the speed at which players learn. With high learning rates the system quickly reaches its asymptotic behaviour; on the other hand, when learning rates are low, two distinctively different transient regimes can be clearly observed. It is shown that the inclusion of small quantities of randomness in players\' decisions can change the dynamics of the model dramatically.

Punishment Deters Crime Because Humans Are Bounded in Their Strategic Decision-Making

Heiko Rauhut and Marcel Junker
Journal of Artificial Societies and Social Simulation 12 (3) 1

Kyeywords: Crime, Punishment, Control, Bounded Rationality, Agent-Based Simulation, Experiment, Game Theory
Abstract: Is it rational to reduce criminal activities if punishments are increased? While intuition might suggest so, game theory concludes differently. From the game theoretical perspective, inspectors anticipate the effect of increased punishments on criminal behavior and reduce their inspection activities accordingly. This implies that higher punishments reduce inspections and do not affect crime rates. We present two laboratory experiments, which challenge this perspective by demonstrating that both, criminals and inspectors, are affected by punishment levels. Thereupon, we investigate with agent-based simulations, whether models of bounded rationality can explain our empirical data. We differentiate between two kinds of bounded rationality; the first considers bounded learning from social interaction, the second bounded decision-making. Our results suggest that humans show both kinds of bounded rationality in the strategic situation of crime, control and punishment. We conclude that it is not the rationality but the bounded rationality in humans that makes punishment effective.

Cooperation in the Prisoner's Dilemma Game Based on the Second-Best Decision

Tetsushi Ohdaira and Takao Terano
Journal of Artificial Societies and Social Simulation 12 (4) 7

Kyeywords: Cooperation, Altruism, Agent-Based Simulation, Evolutionary Game Theory
Abstract: In the research addressing the prisoner's dilemma game, the effectiveness and accountableness of the method allowing for the emergence of cooperation is generally discussed. The most well-known solutions for this question are memory based iteration, the tag used to distinguish between defector and cooperator, the spatial structure of the game and the either direct or indirect reciprocity. We have also challenged to approach the topic from a different point of view namely that temperate acquisitiveness in decision making could be possible to achieve cooperation. It was already shown in our previous research that the exclusion of the best decision had a remarkable effect on the emergence of an almost cooperative state. In this paper, we advance the decision of our former research to become more explainable by introducing the second-best decision. If that decision is adopted, players also reach an extremely high level cooperative state in the prisoner's dilemma game and also in that of extended strategy expression. The cooperation of this extended game is facilitated only if the product of two parameters is under the criticality. In addition, the applicability of our model to the problem in the real world is discussed.

Social Simulation and Analysis of the Dynamics of Criminal Hot Spots

Tibor Bosse and Charlotte Gerritsen
Journal of Artificial Societies and Social Simulation 13 (2) 5

Kyeywords: Agent-Based Modelling, Criminal Hot Spots, Displacement, Reputation, Social Simulation, Analysis
Abstract: Within the field of Criminology, the spatio-temporal dynamics of crime are an important subject of study. In this area, typical questions are how the behaviour of offenders, targets, and guardians can be explained and predicted, as well as the emergence and displacement of criminal hot spots. In this article we present a combination of software tools that can be used as an experimental environment to address such questions. In particular, these tools comprise an agent-based simulation model, a verification tool, and a visualisation tool. The agent-based simulation model specifically focuses on the interplay between hot spots and reputation. Using this environment, a large number of simulation runs have been performed, of which results have been formally analysed. Based on these results, we argue that the presented environment offers a valuable approach to analyse the dynamics of criminal hot spots.

Why Bother with What Others Tell You? An Experimental Data-Driven Agent-Based Model

Riccardo Boero, Giangiacomo Bravo, Marco Castellani and Flaminio Squazzoni
Journal of Artificial Societies and Social Simulation 13 (3) 6

Kyeywords: Reputation, Trustworthiness, Laboratory Experiment, Agent-Based Model, Exploration Vs. Exploitation
Abstract: This paper investigates the relevance of reputation to improve the explorative capabilities of agents in uncertain environments. We have presented a laboratory experiment where sixty-four subjects were asked to take iterated economic investment decisions. An agent-based model based on their behavioural patterns replicated the experiment exactly. Exploring this experimentally grounded model, we studied the effects of various reputational mechanisms on explorative capabilities at a systemic level. The results showed that reputation mechanisms increase the agents\' capability for coping with uncertain environments more than individualistic atomistic exploration strategies, although the former does entail a certain amount of false information inside the system.

Fairness Emergence in Reputation Systems

Adam Wierzbicki and Radoslaw Nielek
Journal of Artificial Societies and Social Simulation 14 (1) 3

Kyeywords: Trust, Simulation, Fairness, Equity, Emergence, Reputation System
Abstract: Reputation systems have been used to support users in making decisions under uncertainty or risk that is due to the autonomous behavior of others. Research results support the conclusion that reputation systems can protect against exploitation by unfair users, and that they have an impact on the prices and income of users. This observation leads to another question: can reputation systems be used to assure or increase the fairness of resource distribution? This question has a high relevance in social situations where, due to the absence of established authorities or institutions, agents need to rely on mutual trust relations in order to increase fairness of distribution. This question can be formulated as a hypothesis: in reputation (or trust management) systems, fairness should be an emergent property. The notion of fairness can be precisely defined and investigated based on the theory of equity. In this paper, we investigate the Fairness Emergence hypothesis in reputation systems and prove that , under certain conditions, the hypothesis is valid for open and closed systems, even in unstable system states and in the presence of adversaries. Moreover, we investigate the sensitivity of Fairness Emergence and show that an improvement of the reputation system strengthens the emergence of fairness. Our results are confirmed using a trace-driven simulation from a large Internet auction site.

Stability of Groups with Costly Beliefs and Practices

Wesley J. Wildman and Richard Sosis
Journal of Artificial Societies and Social Simulation 14 (3) 6

Kyeywords: Costly Signaling, Credibility Enhancing Displays, Cultural Transmission, Religion, Charismatic Leader, Agent-Based Model
Abstract: Costly signaling theory has been employed to explain the persistence of costly displays in a wide array of species, including humans. Henrich (2009) builds on earlier signaling models to develop a cultural evolutionary model of costly displays. Significantly, Henrich's model shows that there can be a stable equilibrium for an entire population committed to costly displays, persisting alongside a no-cost stable equilibrium for the entire population. Here we generalize Henrich's result to the more realistic situation of a population peppered with subgroups committed to high-cost beliefs and practices. The investigative tool is an agent-based model in which agents have cognitive capacities similar to those presupposed in Henrich's population-level cultural evolutionary model, and agents perform similar fitness calculations. Unlike in Henrich's model, which has no group differentiation within the population, our model agents use fitness calculations to determine whether to join or leave high-cost groups. According to our model, high-cost groups achieve long-term stability within a larger population under a wide range of circumstances, a finding that extends Henrich's result in a more realistic direction. The most important emergent pathway to costly group stability is the simultaneous presence of high charisma and consistency of the group leader and high cost of the group. These findings have strategic implications both for leading groups committed to costly beliefs and practices and for controlling their size and influence within wider cultural settings.

Rethinking the Tragedy of the Commons: The Integration of Socio-Psychological Dispositions

Julia Schindler
Journal of Artificial Societies and Social Simulation 15 (1) 4

Kyeywords: Agent-Based Model, Common-Pool Resources, Behavioral Game Theory, Nash Equilibria, Nash Extension NetLogo, Socio-Psychological Dispositions, Tragedy of the Commons
Abstract: In current research there is increasing evidence on why and how common-pool resources are successfully, i.e. sustainably, managed without the force of (often unsuccessful) top-level policy regulations. G. Hardin argued in 1968 in his Tragedy of the Commons (Hardin 1968) that commons must become depleted if users are free to choose extraction and resource use levels. In this study, we propose that socio-psychological factors can explain the success of resource use of a common without any top-level regulations. We exemplify this behavior by a spatio-temporally dynamic agent-based model of the Tragedy of the Commons using behavioral game theory and Nash equilibria calculation. By providing a spatio-temporal representation of Hardin's dilemma, the model could verify his argument in a temporal way if socio-psychological influence is disregarded, and indicated that under its influence the common can be sustained. We illustrated how dispositions such as cooperativeness, positive reciprocity, fairness towards others, and risk aversion broadly can support sustainable use, while negative reciprocity, fairness towards oneself, and conformity can inhibit it. Though, we also showed that it would be dangerous to generalize this kind of behavior, as changes in one of these dispositions can result in opposite system behavior, in dependence on the other dispositions. Due to this general capacity to account for such complex behavior that real common-pool system usually exhibit, and its ability to model intermediate equilibria, the proposed modelling approach, i.e. combining game-theory solution concepts with agent-based modelling, may be worth an assessment of its capacity to model empirical phenomena.

Flora: A Testbed for Evaluating the Potential Impact of Proposed Systems on Population Wellbeing

Edgar Sioson
Journal of Artificial Societies and Social Simulation 15 (3) 6

Kyeywords: Simulation Testbed, Reputation Systems, Decentralized Currency, Modular Framework, Agent-Based Model
Abstract: We present Flora, a testbed that supports multidimensional fitness and resource modeling. Its main features are evaluation metrics related to population wellbeing, scalable representation of resource diversity, and composability of sociotechnical test scenarios through the TDI framework. We ran simulations to illustrate Flora's use in modeling the effects of using information infrastructures with different component systems. We analyzed the impact of hoarders in the absence of accounting systems, compared the performance of different decentralized currency systems in terms of accounting design features, and modeled the potential impact of reputation systems in deterring detrimental socioeconomic behavior. Among findings were the importance of having resource diversity as well as resources that each could target different fitness dimension needs; the inherent robustness of accounting systems that allow organizations to set budgets independently of centrally issued currency; and the greater effectiveness of buyer-screening compared to seller-screening as a means for influencing malevolent socioeconomic actors.

Logic-Based Reputation Model in E-Commerce Simulation

Ioan Alfred Letia and Radu Razvan Slavescu
Journal of Artificial Societies and Social Simulation 15 (3) 7

Kyeywords: Agent Based Social Simulation, Trust, Reputation, Cognitive Modeling, Multi-Modal Logic
Abstract: We employ a multimodal logic in a decision making mechanism involving trust and reputation. The mechanism is then used in a community of interacting agents which develop cooperative relationships, assess the results against several quality criteria and possibly publish their beliefs inside the group. A new definition is proposed for describing how an agent deals with the common reputation information and with divergent opinions. The definition permits selecting and integrating the knowledge obtained from the peers, based on their perceived trust, as well as on threshold called critical mass. The influence of this parameter and of the number of agents supporting a sentence over its adoption are then investigated.

Techno-Social Energy Infrastructure Siting: Sustainable Energy Modeling Programming (SEMPro)

Mark Abdollahian, Zining Yang and Hal Nelson
Journal of Artificial Societies and Social Simulation 16 (3) 6

Kyeywords: Infrastructure Siting, Policy Informatics, Computational Economics, Community Based Organizations, Citizen Participation, Game Theory
Abstract: Technical, environment, social, economic and political constraints are critical barriers to the development of new renewable energy supplies. SEMPro is an agent-based, predictive analytics model of energy siting policy in the techno-social space that simulates how competing interests shape siting outcomes to identify beneficial policy for sustainable energy infrastructure. Using a high voltage transmission line as a case study, we integrate project engineering and institutional factors with GIS data on land use attributes and US Census residential demographics. We focus on modeling citizen attitudinal, Community Based Organization (CBO) emergence and behavioral diffusion of support and opposition with Bilateral Shapley Values from cooperative game theory. We also simulate the competitive policy process and interaction between citizens, CBOs and regulatory, utility and governmental stakeholders using non-cooperative game theory. We find CBO formation, utility message and NGO messaging have a positive impact on citizen comments submitted as a part of the Environmental Impact Statement process, while project need and procedure have a negative impact. As citizens communicate and exchange political opinions across greater distances with more neighbors, less CBOs form but those that do are more effective, increasing the number of messages citizens send.

The Evolutionary Dominance of Ethnocentric Cooperation

Max Hartshorn, Artem Kaznatcheev and Thomas Shultz
Journal of Artificial Societies and Social Simulation 16 (3) 7

Kyeywords: Ethnocentrism, Evolution of Cooperation, Evolutionary Game Theory, Minimal Cognition, Prisoner's Dilemma
Abstract: Recent agent-based computer simulations suggest that ethnocentrism, often thought to rely on complex social cognition and learning, may have arisen through biological evolution. From a random start, ethnocentric strategies dominate other possible strategies (selfish, traitorous, and humanitarian) based on cooperation or non-cooperation with in-group and out-group agents. Here we show that ethnocentrism eventually overcomes its closest competitor, humanitarianism, by exploiting humanitarian cooperation across group boundaries as world population saturates. Selfish and traitorous strategies are self-limiting because such agents do not cooperate with agents sharing the same genes. Traitorous strategies fare even worse than selfish ones because traitors are exploited by ethnocentrics across group boundaries in the same manner as humanitarians are, via unreciprocated cooperation. By tracking evolution across time, we find individual differences between evolving worlds in terms of early humanitarian competition with ethnocentrism, including early stages of humanitarian dominance. Our evidence indicates that such variation, in terms of differences between humanitarian and ethnocentric agents, is normally distributed and due to early, rather than later, stochastic differences in immigrant strategies.

Studying Web Content Credibility by Social Simulation

Adam Wierzbicki, Paulina Adamska, Katarzyna Abramczuk, Thanasis Papaioannou, Karl Aberer and Emilia Rejmund
Journal of Artificial Societies and Social Simulation 17 (3) 6

Kyeywords: Credibility, Reputation, Game Theory, Incentives, Online Communities
Abstract: The Internet has become an important source of information that significantly affects social, economical and political life. The content available in the Web is the basis for the operation of the digital economy. Moreover, Web content has become essential for many Web users that have to make decisions. Meanwhile, more and more often we encounter Web content of low credibility due to incorrect opinions, lack of knowledge, and, even worse, manipulation attempts for the benefit of the authors or content providers. While mechanisms for the support of credibility evaluation in practice have been proposed, little is known about their effectiveness, and about their influence on the global picture of Web content production and consumption. We use a game-theoretic model to analyze the impact of reputation on the evaluation of content credibility by consumers with varying expertise, in the presence of producers who have incentives to manipulate information.

How Evolutionary Dynamics Affects Network Reciprocity in Prisoner’s Dilemma

Giulio Cimini and Angel Sanchez
Journal of Artificial Societies and Social Simulation 18 (2) 22

Kyeywords: Evolutionary Game Theory, Prisoner's Dilemma, Network Reciprocity
Abstract: Cooperation lies at the foundations of human societies, yet why people cooperate remains a conundrum. The issue, known as network reciprocity, of whether population structure can foster cooperative behavior in social dilemmas has been addressed by many, but theoretical studies have yielded contradictory results so far—as the problem is very sensitive to how players adapt their strategy. However, recent experiments with the prisoner’s dilemma game played on different networks and in a specific range of payoffs suggest that humans, at least for those experimental setups, do not consider neighbors’ payoffs when making their decisions, and that the network structure does not influence the final outcome. In this work we carry out an extensive analysis of different evolutionary dynamics, taking into account most of the alternatives that have been proposed so far to implement players’ strategy updating process. In this manner we show that the absence of network reciprocity is a general feature of the dynamics (among those we consider) that do not take neighbors’ payoffs into account. Our results, together with experimental evidence, hint at how to properly model real people’s behavior.

The Extortion Relationship: A Computational Analysis

Corinna Elsenbroich and Jennifer Badham
Journal of Artificial Societies and Social Simulation 19 (4) 8

Kyeywords: Extortion Racketeering, Game Theory, Social Dynamics
Abstract: Systematic extortion involves a long term parasitic relationship between the criminal and the victim. Game theory analysis has provided insight into the choices of individual hypothetical criminal and victim pairs. In this paper we present an agent-based model so as to extend the analysis to the relationship between extorters and other potential victims. The model is developed in two stages, the first to be closest to game theory, the second one making the decision informed by the social environment of the victim. The agent-based model shows the importance of social aspects for the functioning of extortion rackets.

An Agent Based Model for a Double Auction with Convex Incentives

Annalisa Fabretti and Stefano Herzel
Journal of Artificial Societies and Social Simulation 20 (1) 7

Kyeywords: Incentives, Agent-Based Simulations, Market Instability, Price Convergence, Order Book Analysis
Abstract: We studied the influence of convex incentives, e.g. option-like compensations, on the behavior of financial markets. Such incentives, usually offered to portfolio managers, have been often considered a potential source of market instability. We built an agent-based model of a double-auction market where some of the agents are endowed with convex contracts. We show that these contracts encourage traders to buy more aggressively, increasing total demand and market prices. Our analysis suggests that financial markets with many managers with convex contracts are more likely to be more unstable and less efficient.

Ali Baba and the Thief, Convention Emergence in Games

Xin Sun, Xishun Zhao and Livio Robaldo
Journal of Artificial Societies and Social Simulation 20 (3) 6

Kyeywords: Convention, Game Theory, Imitate-The-Best, Social Network
Abstract: In this paper we propose a model that supports the emergence of conventions via multiagent learning in social networks. In our model, individual agents repeatedly interact with their neighbours in a game called Ali Baba and the Thief. An agent learns its strategy to play the game using the learning rule imitate-the-best. We show that some conventions prescribing peaceful behaviours can emerge after repeated interactions among agents inhabited in some social networks. Our experiments suggest that there are critical points of convention emergence in Ali Baba and the Thief. When the quotient of the amount of robbery and the initial utility is smaller than the critical point, the probability of convention emergence is high. The probability drops dramatically as long as the quotient is larger than the critical point.

New Winning Strategies for the Iterated Prisoner's Dilemma

Philippe Mathieu and Jean-Paul Delahaye
Journal of Artificial Societies and Social Simulation 20 (4) 12

Kyeywords: Game Theory, Group Strategy, Iterated Prisoner’s Dilemma (IPD), Agent Behaviour, Memory, Opponent Identification
Abstract: In the iterated prisoner’s dilemma game, new successful strategies are regularly proposed especially outperforming the well-known tit_for_tat strategy. New forms of reasoning have also recently been introduced to analyse the game. They lead William Press and Freeman Dyson to a double infinite family of strategies that -theoretically- should all be efficient strategies. In this paper, we study and confront using several experimentations the main strategies introduced since the discovery of tit_for_tat. We make them play against each other in varied and neutral environments. We use the complete classes method that leads us to the formulation of four new simple strategies with surprising results. We present massive experiments using simulators specially developed that allow us to confront up to 6,000 strategies simultaneously, which had never been done before. Our results show without any doubt the most robust strategies among those so far identified. This work defines new systematic, reproductible and objective experiments suggesting several ways to design strategies that go a step further, and a step in the software design technology to highlight efficient strategies in iterated prisoner’s dilemma and multiagent systems in general.

Social Norms and the Dominance of Low-Doers

Carlo Proietti and Antonio Franco
Journal of Artificial Societies and Social Simulation 21 (1) 6

Kyeywords: Agent-Based Model, Social Norms, Game Theory
Abstract: Social norms play a fundamental role in holding groups together. The rationale behind most of them is to coordinate individual actions into a beneficial societal outcome. However, there are cases where pro-social behavior within a community seems, to the contrary, to cause inefficiencies and suboptimal collective outcomes. An explanation for this is that individuals in a society are of different types and their type determines the norm of fairness they adopt. Not all such norms are bound to be beneficial at the societal level. When individuals of different types meet a clash of norms can arise. This, in turn, can determine an advantage for the “wrong” type. We show this by a game-theoretic analysis in a very simple setting. To test this result - as well as its possible remedies - we also devise a specific simulation model. Our model is written in NETLOGO and is a first attempt to study our problem within an artificial environment that simulates the evolution of a society over time.

The Impact of Potential Crowd Behaviours on Emergency Evacuation: An Evolutionary Game-Theoretic Approach

Azhar Mohd Ibrahim, Ibrahim Venkat and Philippe De Wilde
Journal of Artificial Societies and Social Simulation 22 (1) 3

Kyeywords: Evacuation Model, Evolution of Crowd Behaviour, Crowd Disaster, Evolutionary Game Theory
Abstract: Crowd dynamics have important applications in evacuation management systems relevant to organizing safer large scale gatherings. For crowd safety, it is very important to study the evolution of potential crowd behaviours by simulating the crowd evacuation process. Planning crowd control tasks by studying the impact of crowd behaviour evolution towards evacuation could mitigate the possibility of crowd disasters. During a typical emergency evacuation scenario, conflict among agents occurs when agents intend to move to the same location as a result of the interaction with their nearest neighbours. The effect of the agent response towards their neighbourhood is vital in order to understand the effect of variation of crowd behaviour on the whole environment. In this work, we model crowd motion subject to exit congestion under uncertainty conditions in a continuous space via computer simulations. We model best-response, risk-seeking, risk-averse and risk-neutral behaviours of agents via certain game-theoretic notions. We perform computer simulations with heterogeneous populations in order to study the effect of the evolution of agent behaviours towards egress flow under threat conditions. Our simulation results show the relation between the local crowd pressure and the number of injured agents. We observe that when the proportion of agents in a population of risk-seeking agents is increased, the average crowd pressure, average local density and the number of injured agents increases. Besides that, based on our simulation results, we can infer that crowd disasters could be prevented if the agent population consists entirely of risk-averse and risk-neutral agents despite circumstances that lead to threats.

Do Farm Characteristics or Social Dynamics Explain the Conversion to Organic Farming by Dairy Farmers? An Agent-Based Model of Dairy Farming in 27 French Cantons

Qing Xu, Sylvie Huet, Eric Perret and Guillaume Deffuant
Journal of Artificial Societies and Social Simulation 23 (2) 4

Kyeywords: Organic Farming, Adaptation, Theory of Reasoned Action, Agent-Based Model, Social Influence, Credibility
Abstract: The drivers of conversion to organic farming, which is still a residual choice in agriculture, are poorly understood. Many scholars argue that farm characteristics can determine this choice but do not exclude the role of social dynamics. To study this issue, we developed an agent-based model in which agents' decisions to shift to organic farming are based on a comparison between satisfaction with the current situation and potential satisfaction with an alternative farming strategy. A farmer agent’s satisfaction is modelled using the Theory of Reasoned Action. This makes it necessary to compare an agent's productions over time with those of other agents to whom the former attributes considerable credibility (“important others”). Moreover, farmers make technical changes that affect their productions by imitating other credible farmers. While we first used this model to examine simple and abstract farm populations, here we also adapted it for use with data from an Agricultural Census concerning the farm characteristics of dairy farming in 27 French “cantons”. Based on domain expertise, data and previous research, we propose certain laws for modelling the impact of conversion on the farm production of milk and the environment. The simulations with “real” populations of farms confirm the important impact of farm characteristics. However, our results also suggest a complex impact of social dynamics that can favour or impede the diffusion of organic farming through dynamic implicit networks of similarity and credibility. We confirm the great importance of demographic changes in farm characteristics.

Targeting <i>Your</i> Preferences: Modelling Micro-Targeting for an Increasingly Diverse Electorate

Toby Pilditch and Jens Koed Madsen
Journal of Artificial Societies and Social Simulation 24 (1) 5

Kyeywords: Micro-Targeted Campaigning, Cognitive Modelling, Source Credibility, Political Messaging, Simulation, Bayesian Modelling
Abstract: The use of data to inform and run political campaigning has become an inescapable trend in recent years. In attempting to persuade an electorate, micro-targeted campaigns (MTCs) have been employed to great effect through the use of tailored messaging and selective targeting. Here we investigate the capacity of MTCs to deal with the diversity of political preferences across an electorate. More precisely, via an Agent-Based Model we simulate various diverse electorates that encompass single issue, multiple issue, swing, and disengaged voters (among others, including combinations thereof) and determine the relative persuasive efficacy of MTCs when pitted against more traditional, population-targeting campaigns. Taking into account the perceived credibility of these campaigns, we find MTCs highly capable of handling greater voter complexity than shown in previous work, and yielding further advantages beyond traditional campaigns in their capacity to avoid inefficient (or even backfiring) interactions – even when fielding a low credibility candidate.

Finding Core Members of Cooperative Games Using Agent-Based Modeling

Daniele Vernon-Bido and Andrew Collins
Journal of Artificial Societies and Social Simulation 24 (1) 6

Kyeywords: Agent-Based Modeling, Cooperative Game Theory, Modeling and Simulation, ABM, Cooperative Games
Abstract: Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modelled using cooperative game theory. In this paper, a heuristic algorithm, which can be embedded into an ABM to allow the agents to find a coalition, is described. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games' core solutions (if they exist). The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison is achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of market economy game. Finding the traditional cooperative game solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers up to nine-player games. The results indicate that our heuristic approach achieves a core solution over 90% of the games considered in our experiment.

Cascades Across Networks Are Sufficient for the Formation of Echo Chambers: An Agent-Based Model

Jan-Philipp Fränken and Toby Pilditch
Journal of Artificial Societies and Social Simulation 24 (3) 1

Kyeywords: Echo Chambers, Source Credibility, Information Cascades, Agent-Based Modelling, Bayesian Modelling, Single Interaction
Abstract: Investigating how echo chambers emerge in social networks is increasingly crucial, given their role in facilitating the retention of misinformation, inducing intolerance towards opposing views, and misleading public and political discourse. Previously, the emergence of echo chambers has been attributed to psychological biases and inter-individual differences, requiring repeated interactions among network-users and rewiring or pruning of social ties. Using an idealised population of social network users, the present results suggest that when combined with positive credibility perceptions of a communicating source, social media users’ ability to rapidly share information with each other through a single cascade can be sufficient to produce echo chambers. Crucially, we show that this requires neither special psychological explanation (e.g., bias or individual differences), nor repeated interactions—though these may be exacerbating factors. In fact, this effect is made increasingly worse the more generations of peer-to-peer transmissions it takes for information to permeate a network. This raises important questions for social network architects, if truly opposed to the increasing prevalence of deleterious societal trends that stem from echo chamber formation.