JASSS logo


14 articles matched your search for the keywords:
Social Actors, Public Participation, Decision Making, Sustainability Management, Geodesign, Geographic Information Systems (GIS)

Qualitative Modeling and Simulation of Socio-Economic Phenomena

Giorgio Brajnik and Marji Lines
Journal of Artificial Societies and Social Simulation 1 (1) 2

Kyeywords: Qualitative Modeling, Qualitative Reasoning, Decision Making, Allocation
Abstract: This paper describes an application of recently developed qualitative reasoning techniques to complex, socio-economic allocation problems. We explain why we believe traditional optimization methods are inappropriate and how qualitative reasoning could overcome some of these shortcomings. A case study is presented where an authority is expected to devise a policy that satisfies certain constraints. We describe how sets of rules of thumb implementing such a policy can be analyzed and validated by the decision maker using a program which automatically builds and simulates qualitative models of the underlying dynamical system. Such a program constructs and simulates models from incomplete descriptions of initial states and functional relationships between variables. We show that it nevertheless gives sufficient information to the decision maker.

Simulating Organizational Decision-Making Using a Cognitively Realistic Agent Model

Ron Sun and Isaac Naveh
Journal of Artificial Societies and Social Simulation 7 (3) 5

Kyeywords: Cognition, Cognitive Architecture, Cognitive Modeling, Classification Decision Making
Abstract: Most of the work in agent-based social simulation has assumed highly simplified agent models, with little attention being paid to the details of individual cognition. Here, in an effort to counteract that trend, we substitute a realistic cognitive agent model (CLARION) for the simpler models previously used in an organizational design task. On that basis, an exploration is made of the interaction between the cognitive parameters that govern individual agents, the placement of agents in different organizational structures, and the performance of the organization. It is suggested that the two disciplines, cognitive modeling and social simulation, which have so far been pursued in relative isolation from each other, can be profitably integrated.

Simple Heuristics in Complex Networks: Models of Social Influence

Gero Schwenk and Torsten Reimer
Journal of Artificial Societies and Social Simulation 11 (3) 4

Kyeywords: Decision Making; Cognition; Heuristics; Small World Networks; Social Influence; Bounded Rationality
Abstract: The concept of heuristic decision making is adapted to dynamic influence processes in social networks. We report results of a set of simulations, in which we systematically varied: a) the agents\' strategies for contacting fellow group members and integrating collected information, and (b) features of their social environment—the distribution of members\' status, and the degree of clustering in their network. As major outcome variables, we measured the speed with which the process settled, the distributions of agents\' final preferences, and the rate with which high-status members changed their initial preferences. The impact of the agents\' decision strategies on the dynamics and outcomes of the influence process depended on features of their social environment. This held in particular true when agents contacted all of the neighbors with whom they were connected. When agents focused on high-status members and did not contact low-status neighbors, the process typically settled more quickly, yielded larger majority factions and fewer preference changes. A case study exemplifies the empirical application of the model.

Modeling Scientists as Agents. How Scientists Cope with the Challenges of the New Public Management of Science

Marc Mölders, Robin D. Fink and Johannes Weyer
Journal of Artificial Societies and Social Simulation 14 (4) 6

Kyeywords: Systems Theory, Theory of Action and Decision Making, Academic Publication System, Science System, New Public Management, Agent-Based Modeling and Simulation
Abstract: The paper at hand applies agent-based modeling and simulations (ABMS) as a tool to reconstruct and to analyze how the science system works. A Luhmannian systems perspective is combined with a model of decision making of individual actors. Additionally, changes in the socio-political context of science, such as the introduction of „new public management\", are considered as factors affecting the functionality of the system as well as the decisions of individual scientists (e.g. where to publish their papers). Computer simulation helps to understand the complex interplay of developments at the macro (system) and the micro (actor) level.

The Production of Step-Level Public Goods in Structured Social Networks: An Agent-Based Simulation

Francisco J. León-Medina, Francisco José Miguel Quesada and Vanessa Alcaide Lozano
Journal of Artificial Societies and Social Simulation 17 (1) 4

Kyeywords: Public Goods, Collective Behaviour, Decision Making, Social Networks
Abstract: This paper presents a multi-agent simulation of the production of step-level public goods in social networks. In previous public goods experimental research the design of the sequence ordering of decisions have been limited because of the necessity of simplicity taking priority over realism, which means they never accurately reproduce the social structure that constrains the available information. Multi-agent simulation can help us to overcome this limitation. In our model, agents are placed in 230 different networks and each networks’ success rates are analyzed. We find that some network attributes -density and global degree centrality and heterogeneity-, some initial parameters of the strategic situation -the provision point- and some agents’ attributes -beliefs about the probability that others will cooperate-, all have a significant impact on the success rate. Our paper is the first approach to an explanation for the scalar variant of production of public goods in a network using computational simulation methodology, and it outlines three main findings. (1) A less demanding collective effort level does not entail more success: the effort should neither be as high as to discourage others, nor so low as to be let to others. (2) More informed individuals do not always produce a better social outcome: a certain degree of ignorance about other agents’ previous decisions and their probability of cooperating are socially useful as long as it can lead to contributions that would not have occurred otherwise. (3) Dense horizontal groups are more likely to succeed in the production of step-level public goods: social ties provide information about the relevance of each agent’s individual contribution. This simulation demonstrates the explanatory power of the structural properties of a social system because agents with the same decision algorithm produce different outcomes depending on the properties of their social network.

An Agent-Based Model of Public Participation in Sustainability Management

Robert Aguirre and Timothy Nyerges
Journal of Artificial Societies and Social Simulation 17 (1) 7

Kyeywords: Social Actors, Public Participation, Decision Making, Sustainability Management, Geodesign, Geographic Information Systems (GIS)
Abstract: This article reports on an agent-based simulation of public participation in decision making about sustainability management. Agents were modeled as socially intelligent actors who communicate using a system of symbols. The goal of the simulation was for agents to reach consensus about which situations in their regional environment to change and which ones not to change as part of a geodesign process for improving water quality in the greater Puget Sound region. As opposed to studying self-organizing behavior at the scale of a local “commons,” our interest was in how online technology supports the self-organizing behavior of agents distributed over a wide regional area, like a watershed or river basin. Geographically-distributed agents interacted through an online platform similar to that used in online field experiments with actual human subjects. We used a factorial research design to vary three interdependent factors each with three different levels. The three factors included 1) the social and geographic distribution of agents (local, regional, international levels), 2) abundance of agents (low, medium, high levels), and 3) diversity of preconceptions (blank slate, clone, social actor levels). We expected that increasing the social and geographic distribution of agents and the diversity of their preconceptions would have a significant impact on agent consensus about which situations to change and which ones not to change. However, our expectations were not met by our findings, which we trace all the way back to our conceptual model and a theoretical gap in sustainability science. The theory of self-organizing resource users does not specify how a group of social actors’ preconceptions about a situation is interdependent with their social and geographic orientation to that situation. We discuss the results of the experiment and conclude with prospects for research on the social and geographic dimensions of self-organizing behavior in social-ecological systems spanning wide regional areas.

How Do Agents Make Decisions? A Survey

Tina Balke and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 17 (4) 13

Kyeywords: Decision Making, Agents, Survey
Abstract: When designing an agent-based simulation, an important question to answer is how to model the decision making processes of the agents in the system. A large number of agent decision making models can be found in the literature, each inspired by different aims and research questions. In this paper we provide a review of 14 agent decision making architectures that have attracted interest. They range from production-rule systems to psychologically- and neurologically-inspired approaches. For each of the architectures we give an overview of its design, highlight research questions that have been answered with its help and outline the reasons for the choice of the decision making model provided by the originators. Our goal is to provide guidelines about what kind of agent decision making model, with which level of simplicity or complexity, to use for which kind of research question.

Heads and Hearts: Three Methods for Explicating Judgment and Decision Processes

Warren Thorngate
Journal of Artificial Societies and Social Simulation 18 (1) 14

Kyeywords: Research Methodology, Cognition, Motivation, Judgement, Decision Making
Abstract: Agent-based models are more likely to generate accurate outputs if they incorporate valid representations of human agents than if they don't. The present article outlines three research methodologies commonly used for explicating the cognitive processes and motivational orientations of human judgment and decision making: policy capturing, information seeking, and social choice. Examples are given to demonstrate how each methodology might be employed to supplement more traditional qualitative methods such as interviews and content analyses. Suggestions for encoding results of the three methodologies in agent-based models are also given, as are caveats about methodological practicalities.

Impacts of Farmer Coordination Decisions on Food Supply Chain Structure

Caroline Krejci and Benita Beamon
Journal of Artificial Societies and Social Simulation 18 (2) 19

Kyeywords: Food Supply Chains, Sustainable Agriculture, Coordination, Agent-Based Modeling, Farmer Decision Making, Multi-Agent Simulation
Abstract: To increase profitability, farmers often decide to form strategic partnerships with other farmers, pooling their resources and outputs for greater efficiency and scale. These coordination decisions can have far-reaching and complex implications for overall food supply chain structural emergence, which in turn impacts system outcomes and long-term sustainability. In this paper, we describe an agent-based model that explores the impacts of farmer coordination decisions on the development of food supply chain structure over time. This model focuses on one type of coordination mechanism implementation method, in which coordinated farmer groups produce a single crop type and combine their yields to achieve economies of scale. The farmer agents’ decisions to coordinate with one another depend on their evaluation of the tradeoff between their autonomy and the expected economic benefits of coordination. Each coordination decision is a bilateral process in which the terms of group reward sharing are negotiated. We capture the effects of farmers’ size, income, and autonomy premia, as well as volume-price relationships and group profit-sharing rules, on the rate of farmer coordination and the number and size of groups that form. Results indicate that under many conditions, coordination groups tend to consolidate over time, which suggests implications for overall supply chain structural resilience.

Calibrating with Multiple Criteria: A Demonstration of Dominance

Jennifer Badham, Chipp Jansen, Nigel Shardlow and Thomas French
Journal of Artificial Societies and Social Simulation 20 (2) 11

Kyeywords: Multi-Criteria Decision Making, Calibration, Pattern-Oriented Modelling, Dominance, Behaviour Modelling
Abstract: Pattern oriented modelling (POM) is an approach to calibration or validation that assesses a model using multiple weak patterns. We extend the concept of POM, using dominance to objectively identify the best parameter candidates. The TELL ME agent-based model is used to demonstrate the approach. This model simulates personal decisions to adopt protective behaviour during an influenza epidemic. The model fit is assessed by the size and timing of maximum behaviour adoption, as well as the more usual criterion of minimising mean squared error between actual and estimated behaviour. The rigorous approach to calibration supported explicit trading off between these criteria, and ultimately demonstrated that there were significant flaws in the model structure.

One Theory - Many Formalizations: Testing Different Code Implementations of the Theory of Planned Behaviour in Energy Agent-Based Models

Hannah Muelder and Tatiana Filatova
Journal of Artificial Societies and Social Simulation 21 (4) 5

Kyeywords: Micro-Foundations, Households, Decision Making, Behaviour, Theory, Energy
Abstract: As agent-based modelling gains popularity, the demand for transparency in underlying modelling assumptions grows. Behavioural rules guiding agents' decisions, learning, interactions and possible changes in these should rely on solid theoretical and empirical grounds. This field has matured enough to reach the point at which we need to go beyond just reporting what social theory we base these rules upon. Many social science theories operate with various abstract constructs such as attitudes, perceptions, norms or intentions. These concepts are rather subjective and remain open to interpretation when operationalizing them in a formal model code. There is a growing concern that how modellers interpret qualitative social science theories in quantitative ABMs may differ from case to case. Yet, formal tests of these differences are scarce, and a systematic approach to analyse any possible disagreements is lacking. Our paper addresses this gap by exploring the consequences of variations in formalizations of one social science theory on the simulation outcomes of agent-based models of the same class. We ran simulations to test the impact of four types of differences: in model architecture concerning specific equations and their sequence within one theory, in factors affecting agents' decisions, in the representation of these potentially different factors, and finally in the underlying distribution of data used in a model. We illustrate emergent outcomes of these differences using the example of an agent-based model, which is developed to study regional impacts of households' solar panel investment decisions. The Theory of Planned Behaviour was applied as one of the most common social science theories used to define behavioural rules of individual agents. Our findings demonstrate qualitative and quantitative differences in the simulation outcomes, even when agents' decision rules are based on the same theory and data. The paper outlines a number of critical methodological implications for future developments in agent-based modelling.

Hard Work, Risk-Taking, and Diversity in a Model of Collective Problem Solving

Amin Boroomand and Paul E. Smaldino
Journal of Artificial Societies and Social Simulation 24 (4) 10

Kyeywords: Teams, NK Landscape, Risk, Collective Decision Making, Agent-Based Model
Abstract: We studied an agent-based model of collective problem solving in which teams of agents search on an NK landscape and share information about newly found solutions. We analyzed the effects of team members’ behavioral strategies, team size, and team diversity on overall performance. Depending on the landscape complexity and a team’s features a team may eventually find the best possible solution or become trapped at a local maximum. Hard-working agents can explore more solutions per unit time, while risk-taking agents inject randomness in the solutions they test. We found that when teams solve complex problems, both strategies (risk-taking and hard work) have positive impacts on the final score, and the positive effect of moderate risk-taking is substantial. However, risk-taking has a negative effect on how quickly a team achieves its final score. If time restrictions can be relaxed, a moderate level of risk can produce an improved score. If the highest priority is instead to achieve the best possible score in the shortest amount of time, the hard work strategy has the greatest impact. When problems are simpler, risk-taking behavior has a negative effect on performance, while hard work decreases the time required to solve the problem. We also find that larger teams generally solved problems more effectively, and that some of this positive effect is due to the increase in diversity. We show more generally that increasing the diversity of teams has a positive impact on the team’s final score, while more diverse teams also require less time to reach their final solution. This work contributes overall to the larger literature on collective problem solving in teams.

PastoralScape: An Environment-Driven Model of Vaccination Decision Making Within Pastoralist Groups in East Africa

Matthew Sottile, Richard Iles, Craig McConnel, Ofer Amram and Eric Lofgren
Journal of Artificial Societies and Social Simulation 24 (4) 11

Kyeywords: Agent-Based Model, Random Field Ising Model, Livestock Health, Rift Valley Fever, Contagious Bovine Pleuropneumonia, Economic Decision Making
Abstract: Economic and cultural resilience among pastoralists in East Africa is threatened by the interconnected forces of climate change, contagious diseases spread and evolving national and international trade. A key factor in the resilience of livestock that communities depend on is human decision making regarding vaccination against prevalent diseases such as Rift Valley fever and Contagious Bovine Pleuropneumonia. This paper describes an agent-based model that couples models of disease propagation, animal health, human decision making, and external GIS data sources capturing measures of foraging condition. We describe the design of the sub-models, their coupling, and demonstrate the sensitivity of the model to parameters that relate to controllable factors such as government and NGO information sources that can influence human decision making patterns. This model is intended to form the basis upon which richer economic and human factor models can be built.

Calibrating Agent-Based Models of Innovation Diffusion with Gradients

Florian Kotthoff and Thomas Hamacher
Journal of Artificial Societies and Social Simulation 25 (3) 4

Kyeywords: Agent-Based Modeling, Multi-Agent Simulation, Innovation Diffusion, Adoption Model, Decision Making, Calibration
Abstract: Consumer behavior and the decision to adopt an innovation are governed by various motives, which models find difficult to represent. A promising way to introduce the required complexity into modeling approaches is to simulate all consumers individually within an agent-based model (ABM). However, ABMs are complex and introduce new challenges. Especially the calibration of empirical ABMs was identified as a key difficulty in many works. In this work, a general ABM for simulating the Diffusion of Innovations is described. The ABM is differentiable and can employ gradient-based calibration methods, enabling the simultaneous calibration of large numbers of free parameters in large-scale models. The ABM and calibration method are tested by fitting a simulation with 25 free parameters to the large data set of privately owned photovoltaic systems in Germany, where the model achieves a coefficient of determination of R2 ≃ 0.7.