JASSS logo


(11 articles matched your search)

Multi-Level Simulation in Lisp-Stat

Nigel Gilbert
Journal of Artificial Societies and Social Simulation 2 (1) 3

Abstract: A package of Lisp functions is described which implements a simple multi-level simulation toolkit, MLS. Its design owes a great deal to MIMOSE. MLS runs within Lisp-Stat. It offers a set of functions, macros and objects designed to make the specification of multi-level models straightforward and easy to understand. Lisp-Stat provides a Lisp environment, statistical functions and easy to use graphics, such as histograms, scatterplots and spin-plots, to make the results of multi-level simulations easy to visualise.

Innovation Networks - a Simulation Approach

Nigel Gilbert, Andreas Pyka and Petra Ahrweiler
Journal of Artificial Societies and Social Simulation 4 (3) 8

Abstract: A multi-agent simulation embodying a theory of innovation networks has been built and used to suggest a number of policy-relevant conclusions. The simulation animates a model of innovation (the successful exploitation of new ideas) and this model is briefly described. Agents in the model representing firms, policy actors, research labs, etc. each have a knowledge base that they use to generate \'artefacts\' that they hope will be innovations. The success of the artefacts is judged by an oracle that evaluates each artefact using a criterion that is not available to the agents. Agents are able to follow strategies to improve their artefacts either on their own (through incremental improvement or by radical changes), or by seeking partners to contribute additional knowledge. It is shown though experiments with the model's parameters that it is possible to reproduce qualitatively the characteristics of innovation networks in two sectors: personal and mobile communications and biotechnology.

The Design of Participatory Agent-Based Social Simulations

Ana Maria Ramanath and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 7 (4) 1

Abstract: It is becoming widely accepted that applied social simulation research is more effective if potential users and stakeholders are closely involved in model specification, design, testing and use, using the principles of participatory research. In this paper, a review of software engineering principles and accounts of the development of simulation models are used as the basis for recommendations about some useful techniques that can aid in the development of agent-based social simulation models in conjunction with users. The authors' experience with scenario analysis, joint analysis of design workshops, prototyping and user panels in a collaborative participatory project is described and, in combination with reviews from other participatory projects, is used to suggest how these techniques might be used in simulation-based research.

Caffè Nero: The Evaluation of Social Simulation

Petra Ahrweiler and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 8 (4) 14

Abstract: This contribution deals with the assessment of the quality of a simulation by discussing and comparing "real-world" and scientific social simulations. We use the example of the Caffè Nero in Guildford as a 'real-world' simulation of a Venetian café. The construction of everyday simulations like Caffè Nero has some resemblance to the construction procedure of scientific social simulations. In both cases, we build models from a target by reducing the characteristics of the latter sufficiently for the purpose at hand; in each case, we want something from the model we cannot achieve easily from the target. After briefly discussing the 'ordinary' method of evaluating simulations called the 'standard view' and its adversary, a constructivist approach asserting that 'anything goes', we heed these similarities in the construction process and apply evaluation methods typically used for everyday simulations to scientific simulation and vice versa. The discussion shows that a 'user community view' creates the foundation for every evaluation approach: when evaluating the Caffè Nero simulation, we refer to the expert community (customers, owners) who use the simulation to get from it what they would expect to get from the target; similarly, for science, the foundation of every validity discussion is the ordinary everyday interaction that creates an area of shared meanings and expectations. Therefore, the evaluation of a simulation is guided by the expectations, anticipations and experience of the community that uses it – for practical purposes (Caffè Nero), or for intellectual understanding and for building new knowledge (science simulation).

Emerging Artificial Societies Through Learning

Nigel Gilbert, Matthijs den Besten, Akos Bontovics, Bart G.W. Craenen, Federico Divina, A.E. Eiben, Robert Griffioen, György Hévízi, Andras Lõrincz, Ben Paechter, Stephan Schuster, Martijn C. Schut, Christian Tzolov, Paul Vogt and Lu Yang
Journal of Artificial Societies and Social Simulation 9 (2) 9

Abstract: The NewTies project is implementing a simulation in which societies of agents are expected to de-velop autonomously as a result of individual, population and social learning. These societies are expected to be able to solve environmental challenges by acting collectively. The challenges are in-tended to be analogous to those faced by early, simple, small-scale human societies. This report on work in progress outlines the major features of the system as it is currently conceived within the project, including the design of the agents, the environment, the mechanism for the evolution of language and the peer-to-peer infrastructure on which the simulation runs.

Social Circles: A Simple Structure for Agent-Based Social Network Models

Lynne Hamill and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 12 (2) 3

Abstract: None of the standard network models fit well with sociological observations of real social networks. This paper presents a simple structure for use in agent-based models of large social networks. Taking the idea of social circles, it incorporates key aspects of large social networks such as low density, high clustering and assortativity of degree of connectivity. The model is very flexible and can be used to create a wide variety of artificial social worlds.

Simulating the Social Processes of Science

Bruce Edmonds, Nigel Gilbert, Petra Ahrweiler and Andrea Scharnhorst
Journal of Artificial Societies and Social Simulation 14 (4) 14

Abstract: Science is the result of a substantially social process. That is, science relies on many inter-personal processes, including: selection and communication of research findings, discussion of method, checking and judgement of others' research, development of norms of scientific behaviour, organisation of the application of specialist skills/tools, and the organisation of each field (e.g. allocation of funding). An isolated individual, however clever and well resourced, would not produce science as we know it today. Furthermore, science is full of the social phenomena that are observed elsewhere: fashions, concern with status and reputation, group-identification, collective judgements, social norms, competitive and defensive actions, to name a few. Science is centrally important to most societies in the world, not only in technical, military and economic ways, but also in the cultural impacts it has, providing ways of thinking about ourselves, our society and our environment. If we believe the following: simulation is a useful tool for understanding social phenomena, science is substantially a social phenomenon, and it is important to understand how science operates, then it follows that we should be attempting to build simulation models of the social aspects of science. This Special Section of <i>JASSS</i> presents a collection of position papers by philosophers, sociologists and others describing the features and issues the authors would like to see in social simulations of the many processes and aspects that we lump together as "science". It is intended that this collection will inform and motivate substantial simulation work as described in the last section of this introduction.

Analysing Differential School Effectiveness Through Multilevel and Agent-Based Modelling

Mauricio Salgado, Elio Marchione and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 17 (4) 3

Abstract: During the last thirty years education researchers have developed models for judging the comparative performance of schools, in studies of what has become known as “differential school effectiveness”. A great deal of empirical research has been carried out to understand why differences between schools might emerge, with variable-based models being the preferred research tool. The use of more explanatory models such as agent-based models (ABM) has been limited. This paper describes an ABM that addresses this topic, using data from the London Educational Authority's Junior Project. To compare the results and performance with more traditional modelling techniques, the same data are also fitted to a multilevel model (MLM), one of the preferred variable-based models used in the field. The paper reports the results of both models and compares their performances in terms of predictive and explanatory power. Although the fitted MLM outperforms the proposed ABM, the latter still offers a reasonable fit and provides a causal mechanism to explain differences in the identified school performances that is absent in the MLM. Since MLM and ABM stress different aspects, rather than conflicting they are compatible methods.

Modelling Research Policy: Ex-Ante Evaluation of Complex Policy Instruments

Petra Ahrweiler, Michel Schilperoord, Andreas Pyka and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 18 (4) 5

Abstract: This paper presents the agent-based model INFSO-SKIN, which provides ex-ante evaluation of possible funding policies in Horizon 2020 for the European Commission’s DG Information Society and Media (DG INFSO). Informed by a large dataset recording the details of funded projects, the simulation model is set up to reproduce and assess the funding strategies, the funded organisations and projects, and the resulting network structures of the Commission’s Framework 7 (FP7) programme. To address the evaluative questions of DG INFSO, this model, extrapolated into the future without any policy changes, is taken as an evidence-based benchmark for further experiments. Against this baseline scenario the following example policy changes are tested: (i) What if there were changes to the thematic scope of the programme? (ii) What if there were changes to the instruments of funding? (iii) What if there were changes to the overall amount of programme funding? (iv) What if there were changes to increase Small and Medium Enterprise (SME) participation? The results of these simulation experiments reveal some likely scenarios as policy options for Horizon 2020. The paper thus demonstrates that realistic modelling with a close data-to-model link can directly provide policy advice.

Computational Modelling of Public Policy: Reflections on Practice

Nigel Gilbert, Petra Ahrweiler, Pete Barbrook-Johnson, Kavin Preethi Narasimhan and Helen Wilkinson
Journal of Artificial Societies and Social Simulation 21 (1) 14

Abstract: Computational models are increasingly being used to assist in developing, implementing and evaluating public policy. This paper reports on the experience of the authors in designing and using computational models of public policy (‘policy models’, for short). The paper considers the role of computational models in policy making, and some of the challenges that need to be overcome if policy models are to make an effective contribution. It suggests that policy models can have an important place in the policy process because they could allow policy makers to experiment in a virtual world, and have many advantages compared with randomised control trials and policy pilots. The paper then summarises some general lessons that can be extracted from the authors’ experience with policy modelling. These general lessons include the observation that often the main benefit of designing and using a model is that it provides an understanding of the policy domain, rather than the numbers it generates; that care needs to be taken that models are designed at an appropriate level of abstraction; that although appropriate data for calibration and validation may sometimes be in short supply, modelling is often still valuable; that modelling collaboratively and involving a range of stakeholders from the outset increases the likelihood that the model will be used and will be fit for purpose; that attention needs to be paid to effective communication between modellers and stakeholders; and that modelling for public policy involves ethical issues that need careful consideration. The paper concludes that policy modelling will continue to grow in importance as a component of public policy making processes, but if its potential is to be fully realised, there will need to be a melding of the cultures of computational modelling and policy making.

Computational Models That Matter During a Global Pandemic Outbreak: A Call to Action

Flaminio Squazzoni, J. Gareth Polhill, Bruce Edmonds, Petra Ahrweiler, Patrycja Antosz, Geeske Scholz, Émile Chappin, Melania Borit, Harko Verhagen, Francesca Giardini and Nigel Gilbert
Journal of Artificial Societies and Social Simulation 23 (2) 10

Abstract: The COVID-19 pandemic is causing a dramatic loss of lives worldwide, challenging the sustainability of our health care systems, threatening economic meltdown, and putting pressure on the mental health of individuals (due to social distancing and lock-down measures). The pandemic is also posing severe challenges to the scientific community, with scholars under pressure to respond to policymakers’ demands for advice despite the absence of adequate, trusted data. Understanding the pandemic requires fine-grained data representing specific local conditions and the social reactions of individuals. While experts have built simulation models to estimate disease trajectories that may be enough to guide decision-makers to formulate policy measures to limit the epidemic, they do not cover the full behavioural and social complexity of societies under pandemic crisis. Modelling that has such a large potential impact upon people’s lives is a great responsibility. This paper calls on the scientific community to improve the transparency, access, and rigour of their models. It also calls on stakeholders to improve the rapidity with which data from trusted sources are released to the community (in a fully responsible manner). Responding to the pandemic is a stress test of our collaborative capacity and the social/economic value of research.