JASSS logo

(2 articles matched your search)

Exploring Homeowners’ Insulation Activity

Jonas Friege, Georg Holtz and Émile Chappin
Journal of Artificial Societies and Social Simulation 19 (1) 4

Abstract: Insulating existing buildings offers great potential for reducing greenhouse gas emissions and meeting Germany’s climate protection targets. Previous research suggests that, since homeowners’ decision-making processes are inadequately understood as yet, today’s incentives aiming at increasing insulation activity lead to unsatisfactory results. We developed an agent-based model to foster the understanding of homeowners’ decision-making processes regarding insulation and to explore how situational factors, such as the structural condition of houses and social interaction, influence their insulation activity. Simulation experiments allow us furthermore to study the influence of socio-spatial structures such as residential segregation and population density on the diffusion of renovation behavior among homeowners. Based on the insights gained, we derive recommendations for designing innovative policy instruments. We conclude that the success of particular policy instruments aiming at increasing homeowners’ insulation activity in a specific region depends on the socio-spatial structure at hand, and that reducing financial constraints only has a relatively low potential for increasing Germany’s insulation rate. Policy instruments should also target the fact that specific renovation occasions are used to undertake additional insulation activities, e.g. by incentivizing lenders and craftsmen to advise homeowners to have insulation installed.

Modelling Sustainability Transitions: An Assessment of Approaches and Challenges

Jonathan Köhler, Fjalar de Haan, Georg Holtz, Klaus Kubeczko, Enayat Moallemi, George Papachristos and Émile Chappin
Journal of Artificial Societies and Social Simulation 21 (1) 8

Abstract: Transition modelling is an emerging but growing niche within the broader field of sustainability transitions research. The objective of this paper is to explore the characteristics of this niche in relation to a range of existing modelling approaches and literatures with which it shares commonalities or from which it could draw. We distil a number of key aspects we think a transitions model should be able to address, from a broadly acknowledged, empirical list of transition characteristics. We review some of the main strands in modelling of socio-technological change with regards to their ability to address these characteristics. These are: Eco-innovation literatures (energy-economy models and Integrated Assessment Models), evolutionary economics, complex systems models, computational social science simulations using agent based models, system dynamics models and socio-ecological systems models. The modelling approaches reviewed can address many of the features that differentiate sustainability transitions from other socio-economic dynamics or innovations. The most problematic features are the representation of qualitatively different system states and of the normative aspects of change. The comparison provides transition researchers with a starting point for their choice of a modelling approach, whose characteristics should correspond to the characteristics of the research question they face. A promising line of research is to develop innovative models of co-evolution of behaviours and technologies towards sustainability, involving change in the structure of the societal and technical systems.