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Abstract

Within	the	field	of	Criminology,	the	spatio-temporal	dynamics	of	crime	are	an	important	subject	of	study.	In	this	area,	typical	questions	are	how
the	behaviour	of	offenders,	targets,	and	guardians	can	be	explained	and	predicted,	as	well	as	the	emergence	and	displacement	of	criminal	hot
spots.	In	this	article	we	present	a	combination	of	software	tools	that	can	be	used	as	an	experimental	environment	to	address	such	questions.	In
particular,	these	tools	comprise	an	agent-based	simulation	model,	a	verification	tool,	and	a	visualisation	tool.	The	agent-based	simulation	model
specifically	focuses	on	the	interplay	between	hot	spots	and	reputation.	Using	this	environment,	a	large	number	of	simulation	runs	have	been
performed,	of	which	results	have	been	formally	analysed.	Based	on	these	results,	we	argue	that	the	presented	environment	offers	a	valuable
approach	to	analyse	the	dynamics	of	criminal	hot	spots.

Agent-Based	Modelling,	Criminal	Hot	Spots,	Displacement,	Reputation,	Social	Simulation,	Analysis

	Introduction

Criminology	is	an	area	of	research	that	mainly	addresses	the	analysis	of	criminal	behaviour;	e.g.,	( Cohen	and	Felson	1979;	Cornish	and	Clarke
1986;	Gottfredson	and	Hirschi	1990 ).	It	is	a	multidisciplinary	area	that	contains	elements	of	the	Social	and	Behavioural	Sciences,	but	also	of
disciplines	like	Neuroscience	and,	more	recently,	Computer	Science	(Lanier	and	Henry	1998 ).	Although	a	minority	of	the	overall	population
shows	criminal	behaviour,	it	typically	comes	in	many	types	and	variations.	Within	Criminology,	one	of	the	main	challenges	is	to	predict	and
explain	in	which	situations	which	types	of	criminal	behaviour	will	occur	(Lanier	and	Henry	1998 ).	This	challenge	can	be	addressed	both	from	an
individual	(or	single	agent)	perspective,	or	from	a	social	(or	multi-agent	perspective).	The	current	article	focuses	on	the	latter.

In	order	to	explain	and	predict	the	emergence	of	criminal	behaviour	from	a	social	perspective,	several	theories	have	been	proposed	within	the
criminological	literature.	Perhaps	the	most	influential	of	these	is	the	Routine	Activity	Theory	by	Cohen	and	Felson	(1979).	This	(informal)	theory
states	that	three	parties	are	relevant	in	the	analysis	of	crime,	i.e.,	offenders,	targets,	and	guardians.	More	precisely,	it	states	that	a	crime	will
occur	when	a	motivated	offender	meets	a	suitable	target	and	there	is	no	guardian	present.

The	theory	of	Situational	Crime	Prevention	is	another	important	theory	( Clarke	1980).	This	theory	states	that	certain	crimes	can	be	prevented	by
placing	guardians	at	appropriate	locations.	Such	guardians	may	vary	from	police	officers	to	alarm	systems	or	surveillance	cameras.

Theories	like	the	Routine	Activity	Theory	and	the	theory	of	Situational	Crime	Prevention	have	triggered	a	widespread	attention	for	the	interplay
between	the	behaviour	of	offenders,	targets,	and	guardians,	and	in	particular	for	their	spatio-temporal	dynamics.	For	example,	a	relevant
question	is	which	factors	influence	the	emergence	of	so-called	hot	spots—areas	in	which	many	crimes	occur	(Eck	et	al.	2005 ;	Sherman	et	al.
1989).	Based	on	the	idea	of	hot	spots,	several	related	questions	may	be	asked,	among	which:

when	can	a	location	in	a	city	be	defined	as	being	a	hot	spot?
does	the	location	of	hot	spots	change	over	time?
does	the	size	of	hot	spots	change	over	time?
how	can	the	emergence	of	hot	spots	be	predicted?
how	can	the	emergence	of	hot	spots	be	prevented?
what	is	the	relation	between	the	emergence	of	hot	spots	and	the	geography	of	a	city?
what	is	the	relation	between	the	emergence	of	hot	spots	and	the	demographics	of	the	population?

In	the	last	decades,	there	has	been	a	growing	interest	in	the	area	of	Agent	Based	Social	Simulation	(ABSS).	In	ABSS,	which	integrates
approaches	from	agent-based	computing,	computer	simulation,	and	the	social	sciences,	researchers	try	to	exploit	agent-based	simulation	to	gain
a	deeper	understanding	of	social	phenomena	(Antunes	et	al.	2008 ;	Davidsson	2002).	Since	this	approach	combines	the	advantages	of	the	agent
paradigm	(e.g.,	autonomy	of	the	individual	agents)	with	those	of	social	simulation	(e.g.,	the	possibility	to	perform	scalable	social	"experiments"
without	much	effort),	it	turns	out	to	be	particularly	appropriate	to	analyse	phenomena	within	the	criminological	domain.	Indeed,	in	recent	years,	a
number	of	papers	have	successfully	tackled	criminological	questions	using	ABSS	(e.g.,Baal	2004;	Brantingham	and	Brantingham	2004 ;	Groff
2005;	Liu	and	Eck	2008 ;	Liu	et	al.	2005 ;	Melo	et	al.	2005 ).

However,	agent	based	simulation	models	of	crime	can	still	be	improved	in	several	ways.	The	role	of	 reputation	is	an	example	of	a	specific	aspect
that	has	only	marginally	been	addressed	by	current	approaches	(Brantingham	and	Brantingham	2004 ).	Therefore,	the	current	paper	introduces
an	ABSS	approach	that	specifically	incorporates	a	notion	of	reputation	of	the	locations	involved.

The	approach	we	propose	here	makes	use	of	the	high-level	declarative	modelling	language	TTL	( Bosse	et	al.	2009 )	and	its	executable
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sublanguage	LEADSTO	(Bosse	et	al.	2007b).	This	modelling	language	is	well	suited	for	the	current	purposes,	since	it	allows	the	modeller	to
combine	qualitative,	logical	aspects	(such	as	high-level	agent	concepts	like	beliefs,	actions,	and	observations)	with	quantitative,	numerical
aspects	(such	as	real	numbers	and	mathematical	operations).	Moreover,	since	the	language	has	a	formal	logical	semantics,	simulation	models
created	in	TTL	and	LEADSTO	can	be	formally	analysed	by	means	of	logical	analysis	techniques	(Bosse	et	al.	2007a).

Below,	in	Section	2,	some	background	on	the	concepts	of	reputation	and	displacement	is	provided.	Next,	in	Section	 3,	the	modelling	languages
TTL	and	LEADSTO	are	introduced.	Based	on	this	modelling	approach,	Section	4	describes	the	simulation	model	for	the	behaviour	of	offenders,
targets,	and	guardians	in	detail.	In	Section	5,	the	simulation	results	are	presented	and	in	Section	 6	these	results	are	analysed	using	formal
techniques.	Section	7	discusses	related	work,	and	Section	 8	concludes	the	paper	with	a	discussion.

	Reputation	and	Displacement

According	to	the	literature	in	criminology,	the	reputation [1]	of	specific	locations	in	a	city	is	an	important	factor	in	the	spatio-temporal	dynamics	of
crime	(Herbert	1982).	For	example,	it	may	be	expected	that	the	amount	of	assaults	and	the	amount	of	arrests	that	take	place	at	a	certain	location
influence	the	reputation	of	this	location.	Similarly,	the	reputation	of	a	location	influences	the	attractiveness	of	that	location	for	certain	types	of
individuals.	For	instance,	a	location	that	is	known	for	its	high	crime	rates	will	attract	police	officers	(Eck	et	al.	2005 )[2],	whereas	most	citizens	will
be	more	likely	to	avoid	it	(Skogan	1986).	As	a	result,	the	amount	of	criminal	activity	at	such	a	location	will	decrease [3],	which	will	affect	its
reputation	again.	As	can	be	seen	from	this	example,	the	change	of	the	reputation	of	locations	is	a	highly	dynamic	process.	Moreover,	this
change	of	reputations	goes	hand	in	hand	with	the	change	of	hot	spots,	which	is	typically	known	as	the	displacement	problem	(Barnes	1995;	Barr
and	Pease	1990;	Cornish	and	Clarke	1986 ;	Reppetto	1976).

Inspired	by	this	displacement	problem,	the	current	paper	proposes	to	include	the	notion	of	reputation	of	a	location	within	simulation	models	of
crime.	Whereas	the	notion	of	reputation	is	a	well-known	concept	in	the	area	of	Artificial	Intelligence	(Castelfranchi	and	Falcone	1998 ;	Sabater
and	Sierra	2002),	it	is	not	addressed	in	much	detail	within	the	existing	ABSS	approaches	to	crime	(e.g. Baal	2004;	Brantingham	and	Brantingham
2004;	Brantingham	et	al.	2005 ;	Groff	2005;	Liu	and	Eck	2008 ;	Liu	et	al.	2005 ;	Melo	et	al.	2005 ).

For	this	reason,	the	main	objective	of	the	current	paper	is	to	introduce	an	ABSS	approach	that	incorporates	the	notion	of	reputation.	In	particular,
the	proposed	approach	aims	at	answering	a	specific	question:	how	to	better	understand	the	interplay	between	criminal	hot	spots	and	reputation?
The	model	can	be	used	as	an	experimental	tool	to	address	this	question	(and	related	questions),	by	offering	the	possibility	to	predict
displacement	patterns	under	various	environmental	circumstances	(often	called	"what	if"-scenarios).

Typically,	the	input	parameters	of	such	a	model	are	certain	characteristics	of	the	environment	and	the	population.	Examples	of	environmental
characteristics	are	geographical	aspects	like	the	amount	of	locations,	their	connections,	and	the	distances	between	them.	Examples	of
characteristics	of	the	population	are	the	amount	of	agents	and	the	ratio	between	offenders,	targets,	and	guardians.	Such	information	may	or	may
not	correspond	to	the	characteristics	of	existing	cities.	A	number	of	empirical	criminological	studies	exist	that	try	to	capture	such	data	in	real
cities	(e.g.,	Bottoms	and	Wiles	1997 ).	In	such	cases,	the	resulting	empirical	data	(or	an	abstraction	of	them)	may	directly	be	used	as	input
parameters	for	the	simulation	model.	Based	on	this	input,	the	output	of	the	model	shows	the	spatial	behaviour	of	the	different	types	of	agents
over	time.	Such	simulation	results	enable	the	analyst	to	make	certain	predictions	about	the	displacement	of	crime	in	a	certain	city,	given	certain
circumstances.

	Modelling	Approach

To	model	the	different	aspects	of	criminal	displacement	from	an	agent	perspective,	an	expressive	modelling	language	is	needed.	On	the	one
hand,	qualitative	aspects	have	to	be	addressed,	such	as	observations,	beliefs,	decisions	to	perform	an	assault	or	an	arrest,	and	some	aspects	of
the	environment	such	as	the	presence	of	certain	agents.	On	the	other	hand,	quantitative	aspects	have	to	be	addressed.	For	example,	the
reputation	of	locations	can	best	be	described	by	a	real	number,	and	the	update	of	this	reputation	can	best	be	described	by	a	mathematical
formula.	Another	requirement	of	the	chosen	modelling	language	is	its	suitability	to	express	on	the	one	hand	the	basic	mechanisms	of	criminal
displacement	(for	the	purpose	of	simulation),	and	on	the	other	hand	more	global	properties	of	criminal	displacement	(for	the	purpose	of	logical
analysis	and	verification).	For	example,	basic	mechanisms	of	displacement	of	crime	involve	decision	functions	for	individual	agents,	whereas
examples	of	global	properties	are	the	types	of	statements	as	put	forward	in	the	introduction,	like	"the	location	of	hot	spots	changes	over	time".

The	predicate-logical	Temporal	Trace	Language	(TTL)	( Bosse	et	al.	2009 )	fulfils	all	of	these	requirements.	It	integrates	qualitative,	logical	aspects
and	quantitative,	numerical	aspects.	This	integration	allows	the	modeller	to	exploit	both	logical	and	numerical	methods	for	analysis	and
simulation.	Moreover	it	can	be	used	to	express	dynamic	properties	at	different	levels	of	aggregation,	which	makes	it	well	suited	both	for
simulation	and	logical	analysis.

The	TTL	language	is	based	on	the	assumption	that	dynamics	can	be	described	as	an	evolution	of	states	over	time.	The	notion	of	state	as	used
here	is	characterised	on	the	basis	of	an	ontology	defining	a	set	of	physical	and/or	mental	(state)	properties	that	do	or	do	not	hold	at	a	certain
point	in	time.	These	properties	are	often	called	state	properties	to	distinguish	them	from	dynamic	properties	that	relate	different	states	over	time.
A	specific	state	is	characterised	by	dividing	the	set	of	state	properties	into	those	that	hold,	and	those	that	do	not	hold	in	the	state.	Examples	of
state	properties	are	'agent	1	performs	an	assault	on	agent	2',	or	'there	are	5	criminal	agents	at	location	A'.	Real	value	assignments	to	variables
are	also	considered	as	possible	state	property	descriptions.

To	formalise	state	properties,	ontologies	are	specified	in	a	(many-sorted)	first	order	logical	format:	an	 ontology	is	specified	as	a	finite	set	of	sorts,
constants	within	these	sorts,	and	relations	and	functions	over	these	sorts	(sometimes	also	called	signatures).	The	examples	mentioned	above
then	can	be	formalised	by	n-ary	predicates	(or	proposition	symbols),	such	as,	for	example,	performed(assault_at(a1,a2))	or
number_of_criminals(locA, 5).	Such	predicates	are	called	 state	ground	atoms	(or	atomic	state	properties).	For	a	given	ontology
Ont,	the	propositional	language	signature	consisting	of	all	ground	atoms	based	on	 Ont	is	denoted	by	APROP(Ont).	One	step	further,	the
state	properties	based	on	a	certain	ontology	Ont are	formalised	by	the	propositions	that	can	be	made	(using	conjunction,	negation,
disjunction,	implication)	from	the	ground	atoms.	Thus,	an	example	of	a	formalised	state	property	is	number_of_criminals(locA,
5) & number_of_criminals(locB, 3).	Moreover,	a	state	S	is	an	indication	of	which	atomic	state	properties	are	true	and	which
are	false,	i.e.,	a	mapping	S: APROP(Ont) → {true, false} .	The	set	of	all	possible	states	for	ontology	 Ont	is	denoted	by
STATES(Ont).

To	describe	dynamic	properties	of	complex	processes	such	as	the	displacement	of	crime,	explicit	reference	is	made	to	 time	and	to	traces.	A
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fixed	time	frame	T	is	assumed	which	is	linearly	ordered.	Depending	on	the	application,	it	may	be	dense	(e.g.,	the	real	numbers)	or	discrete	(e.g.,
the	set	of	integers	or	natural	numbers	or	a	finite	initial	segment	of	the	natural	numbers).	Dynamic	properties	can	be	formulated	that	relate	a	state
at	one	point	in	time	to	a	state	at	another	point	in	time.	A	simple	example	is	the	following	(informally	stated)	dynamic	property	about	the	number
of	criminals	at	a	certain	location:

For all traces γ,
there is a time point t such that
at location A, there are at least x criminal agents. 

A	trace	γ	over	an	ontology	Ont	and	time	frame	T	is	a	mapping	γ : T → STATES(Ont) ,	i.e.,	a	sequence	of	states	 γt (t ∈ T) 	in
STATES(Ont).	The	temporal	trace	language	TTL	is	built	on	atoms	referring	to,	e.g.,	traces,	time	and	state	properties.	For	example,	'in	trace
γ	at	time	t	property	 p	holds'	is	formalised	by	state(γ, t) |= p .	Here	|=	is	a	predicate	symbol	in	the	language,	usually	used	in	infix
notation,	which	is	comparable	to	the	Holds-predicate	in	situation	calculus.	Dynamic	properties	are	expressed	by	temporal	statements	built
using	the	usual	first-order	logical	connectives	(such	as	¬,	∧,	∨,	⇒)	and	quantification	(∀	and	∃;	for	example,	over	traces,	time	and	state
properties).	For	example,	the	informally	stated	dynamic	property	introduced	above	is	formally	expressed	as	follows:

∀γ:TRACES ∃t:TIME ∃i:INTEGER
state(γ, t) |= number_of_criminals(locA, i) & i≥x

In	addition,	language	abstractions	by	introducing	new	predicates	as	abbreviations	for	complex	expressions	are	supported.

To	be	able	to	perform	simulations,	only	part	of	the	expressivity	of	TTL	is	needed.	To	this	end,	the	executable	LEADSTO	language	( Bosse	et	al.
2007b)	has	been	defined	as	a	sublanguage	of	TTL,	with	the	specific	purpose	to	develop	simulation	models	in	a	declarative	manner.	In
LEADSTO,	direct	temporal	dependencies	between	two	state	properties	in	successive	states	are	modelled	by	executable	dynamic	properties.	The
LEADSTO	format	is	defined	as	follows.	Let	α	and	β	be	state	properties	as	defined	above.	Then,	the	notation	α	→→	e,	f,	g,	h	β	means:

If state property α holds for a certain time interval with duration g,
then after some delay between e and f
state property β will hold for a certain time interval with duration h.

As	an	example,	the	following	executable	dynamic	property	states	that	"if	an	agent	a	goes	to	a	location	l	during	1	time	unit,	then	(after	a	delay
between	0	and	0.5	time	units)	this	agent	will	be	at	that	location	for	5	time	units":

∀a:AGENT ∀l:LOCATION
performed(a, go_to_location(l)) →→ 0, 0.5, 1, 5 is_at_location(a, l)

Based	on	TTL	and	LEADSTO,	two	dedicated	pieces	of	software	have	recently	been	developed.	First,	the	LEADSTO	Simulation	Environment
(Bosse	et	al.	2007b)	takes	a	specification	of	executable	dynamic	properties	as	input,	and	uses	this	to	generate	simulation	traces.	Second,	to
automatically	analyse	the	resulting	simulation	traces,	the	TTL	Checker	tool	(Bosse	et	al.	2009 )	has	been	developed.	This	tool	takes	as	input	a
formula	expressed	in	TTL	and	a	set	of	traces,	and	verifies	automatically	whether	the	formula	holds	for	the	traces.	In	case	the	formula	does	not
hold,	the	Checker	provides	a	counter	example,	i.e.,	a	combination	of	variable	instances	for	which	the	check	fails.

For	more	details	of	the	LEADSTO	language	and	simulation	environment,	see	( Bosse	et	al.	2007b).	For	more	details	on	TTL	and	the	TTL
Checker	tool,	see	(Bosse	et	al.	2009 ).

	The	Simulation	Model

This	section	describes	the	simulation	model	in	detail,	based	on	the	LEADSTO	language.	One	of	the	main	advantages	of	using	the	LEADSTO
environment	is	that	it	produces	simulation	traces	which	can	directly	be	used	as	input	for	the	TTL	Checker	Tool.	As	a	result,	the	behaviour	of	the
model	can	be	automatically	analysed,	which	distinguishes	this	approach	from	related	approaches	in	the	literature	(see	Section	7	for	an	extensive
comparison	with	related	work).

The	geographical	aspects	of	the	environment	are	modelled	by	a	graph	that	consists	of	a	number	of	locations,	some	of	which	are	connected	by
edges.	Within	this	environment,	several	agents	move	around	and	meet	at	the	different	locations.	There	are	three	types	of	agents:	criminals	(i.e.,
possible	offenders),	passers-by	(i.e.,	possible	targets),	and 	guardians.	The	passers-by	are	assumed	to	be	suitable	targets,	for	example,	because
they	appear	rich	and/or	weak.	However,	as	also	the	guardians	are	moving	around,	such	targets	may	be	protected,	whenever	at	the	same
location	a	guardian	is	observed	by	the	criminal	(i.e.,	social	control).	Thus,	a	criminal	agent	will	only	perform	a	crime	when	it	is	at	a	location	where
it	observes	a	passer-by	and	no	guardians.	An	example	of	a	simple	geographical	environment	is	shown	in	Figure	1.	This	picture	represents	a
small	city	that	only	consists	of	three	important	locations	(called	A,	B,	and	C),	and	is	populated	by	30	agents.	The	black	circles	denote	passers-by,
the	grey	circles	denote	guardians,	and	the	white	circles	denote	criminals.	As	can	be	seen	in	the	figure,	in	this	situation	crimes	may	be	performed
at	location	B,	since	this	location	contains	1	criminal,	4	passers-by,	and	no	guardians.

The	interaction	between	a	specific	agent	and	the	environment	is	modelled	by	(1)	observation,	which	takes	information	on	the	environment	as
input	for	the	agent	(e.g.,	at	which	location	it	is,	where	suitable	targets	are,	and	whether	social	control	is	present),	and	(2)	performing	actions,
which	is	an	output	of	the	agent	affecting	the	state	of	the	world	(e.g.,	going	to	a	different	location,	or	committing	a	crime).
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Figure	1.	Example	geographical	environment
This	figure	shows	three	locations,	called	A,	B	and	C.	The	locations	are	connected	to	each	other.	The	green	circles
depict	the	number	of	passers-by	present	at	that	location,	the	blue	circles	depict	the	guardians	and	the	red	circles

depict	the	number	of	criminals.

In	order	to	decide	to	which	location	they	will	go,	all	agents	continuously	update	the	 attractiveness	(or	utility)	they	assign	to	each	location,	which
is	represented	by	a	real	number	in	the	domain	[0,1].	This	attractiveness	is	calculated	as	the	weighted	sum	of	three	values	(also	represented	by
real	numbers),	namely:

1.	 The	individual	basic	attractiveness	v	the	agent	assigns	to	that	location.	This	represents	the	extent	to	which	the	agent	likes	to	go	to	that
location,	independent	of	its	reputation.	For	example,	some	agents	are	more	likely	to	go	to	a	shopping	centre,	whereas	others	are	more
likely	to	go	to	a	railway	station.

2.	 The	assault	reputation	n1	of	the	location.	The	higher	this	number,	the	more	famous	the	corresponding	location	is	for	assaults	taking	place
there.

3.	 The	arrest	reputation	n2	of	the	location.	The	higher	this	number,	the	more	famous	the	corresponding	location	is	for	arrests	taking	place
there.

This	calculation	is	represented	by	the	following	executable	dynamic	property	(in	LEADSTO	format):

Decide Current Location Attractiveness
∀a:AGENT ∀l:LOCATION ∀n1,n2,v,w1:REAL ∀w2,w3:INTEGER
basic_attractiveness_of_agent_for_location(v, l, a) ∧
belief(a, assault_reputation_at_location(n1, l)) ∧
belief(a, arrest_reputation_at_location(n2, l)) ∧ has_weight_factor(a, w1, w2, w3)  →→ 
belief(a, current_attractiveness_of_location(l, w1 × v+w2 × n1+w3 × n2))

As	can	be	seen	from	this	rule,	each	agent	possesses	three	individual	weight	factors	w1,	w2,	and	w3,	which	indicate	the	relative	importance	they
attach	to	each	of	the	three	components	introduced	above.	Note	that	these	weight	factors	may	be	positive	or	negative.	For	instance,	criminals	will
usually	have	a	positive	weight	factor	for	assault	reputation	(they	will	tend	to	go	to	locations	where	many	assaults	have	been	performed	in	the
past,	since	they	expect	that	their	chances	to	perform	a	next	assault	are	higher	at	those	locations),	and	a	negative	weight	factor	for	arrest
reputation	(they	will	tend	to	avoid	locations	where	many	arrests	have	been	performed	in	the	past).	Similarly,	passers-by	will	usually	have	a	very
negative	weight	factor	for	assault	reputation	and	a	negative	weight	factor	for	arrest	reputation.	Finally,	guardians	will	usually	have	a	very	positive
weight	factor	for	assault	reputation	and	a	positive	weight	factor	for	arrest	reputation.

Based	on	the	calculated	attractiveness	of	the	locations,	each	agent	determines	where	to	go,	by	selecting	the	location	with	the	highest
attractiveness.

By	integrating	the	idea	of	utility-based,	multi-criteria	decision	making	with	the	notion	of	reputation,	the	model	basically	combines	two	distinct
mechanisms	for	decision	making[4].	On	the	one	hand,	the	function	to	calculate	attractiveness	is	inspired	by	the	logic	of	rational-choice	theory
and	forward-looking	utility	maximising	(cf.	Tsebelis	1989;	1990).	This	means	that	agents	seek	to	optimise	their	locations,	in	particular	that
criminals	will	look	for	low	detection	probabilities,	guardians	for	high	detection	probabilities	and	passers-by	for	low	assault	probabilities.	On	the
other	hand,	the	notion	of	reputation	reflects	the	logic	of	learning	and	backward-looking	decision-making	models	(cf.	Macy	and	Flache	2002).	This
implies	that	agents	learn	from	the	observation	of	other	agents'	behaviour.	As	a	consequence,	agents	are	assumed	to	copy	successful	behavior	of
agents	with	the	same	characteristic,	i.e.	criminals	copy	successful	behavior	of	other	criminals,	guardians	copy	successful	behavior	of	other
guardians	and	passers-by	copy	successful	behavior	of	other	passers-by	(where	the	copying	refers	to	the	choice	of	the	location).

According	to	Brantingham	and	Brantingham	( 1984),	daily	life	patterns	of	offenders	might	also	influence	the	location	of	offending	behaviour,	even
when	the	offender	is	engaging,	to	some	degree,	in	a	search	pattern	for	a	suitable	target,	having	already	decided	to	commit	an	offence.	They
argue	that	offenders	are	more	likely	to	perform	an	assault	in	a	neighbourhood	they	know	well.	They	are	more	likely	to	avoid	neighbourhoods	that
they	are	not	familiar	with.	In	the	simulation	model	presented	here,	such	differences	in	preferences	for	certain	locations	can	be	expressed	by
means	of	the	basic	attractiveness	predicate.

Next,	as	mentioned	above,	the	criminal	agents	decide	to	perform	an	assault	when	they	are	at	a	location	where	they	observe	a	passer-by	and	no
guardians,	cf.	the	Routine	Activity	Theory	(Cohen	and	Felson	1979).	This	is	modelled	by	the	following	dynamic	property:

Perform Assault
∀a1,a2:AGENT ∀l:LOCATION
observes(a1, agent_of_type_at_location(a1, criminal, l)) ∧
observes(a1, agent_of_type_at_location(a2, passer_by, l)) ∧
not guardian_at_location(l)  →→ 
performed(a1, assault_at(a2, l))
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After	having	performed	an	assault,	a	criminal	becomes	a	 known	criminal	for	a	number	of	time	steps.	This	is	done	to	ensure	that	the	guardians
are	able	to	recognise	(and	possibly	arrest)	a	criminal	that	performed	a	crime.	In	the	simulation	runs	described	in	the	next	section,	criminals	stay
"known"	for	4	iterations,	which	represents	a	period	during	which	they	are	actually	being	wanted	by	the	police.	After	such	a	period,	these
criminals	become	anonymous	again.	However,	when	a	guardian	meets	a	criminal	that	is	still	wanted,	(s)he	will	arrest	that	criminal.	This	is
modelled	by	the	following	dynamic	property:

Perform Arrest
∀a1,a2:AGENT ∀l:LOCATION
observes(a1, agent_of_type_at_location(a1, guardian, l)) ∧
observes(a1, agent_of_type_at_location(a2, criminal, l)) ∧
known_criminal(a2)  →→ 
performed(a1, arrest_at(a2, l))

Furthermore,	the	assault	reputation	of	the	different	locations	involved	is	increased	each	time	that	an	assault	is	performed,	cf.	the	following
dynamic	property:

Assault Reputation Increment
∀l:LOCATION ∀n:REAL
assault_at(l) ∧ 
belief(all_agents, assault_reputation_at_location(n, l))  →→ 
belief(all_agents, assault_reputation_at_location(n+inc, l))

Here,	inc	is	a	constant	that	specifies	the	increment	of	reputation	based	on	one	assault.	In	the	simulation	runs	described	in	the	next	section,
inc	=	1.	Note	that	this	dynamic	property	assumes	that	all	agents	have	the	same	knowledge	about	reputations.	By	replacing	 all_agents
by	a	variable	for	a	specific	agent,	variants	of	this	rule	can	be	created	for	different	agents.

When	no	assault	is	performed	at	a	location,	the	reputation	of	this	location	for	being	a	hot	spot	slightly	decreases:

Assault Reputation Decay
∀l:LOCATION ∀n:REAL
belief(all_agents, assault_reputation_at_location(n, l)) ∧
not assault_at(l)  →→ 
belief(all_agents, assault_reputation_at_location(n × dec, l))

Here,	dec	is	a	constant	that	specifies	the	decay	of	reputation	when	there	is	no	assault.	In	the	simulation	runs	described	in	the	next	section,
dec	=	0.99.

To	update	the	arrest	reputation	of	locations,	the	same	rules	are	used	as	shown	above,	where	the	word	 assault	is	replaced	by	arrest.

Finally,	it	is	assumed	that	the	(assault	and	arrest)	reputation	of	all	locations	is	known	to	all	agents	in	the	population	(e.g.,	because	events	like
assaults	and	arrests	are	publicly	discussed	in	the	media,	or	because	they	are	communicated	between	agents).	However,	the	approach	could	be
made	more	realistic	by	replacing	the	reputation	mechanism	by	specific	trust	update	mechanisms	for	individual	agents	(cf.	Castelfranchi	and
Falcone	1998).

The	complete	set	of	LEADSTO	rules	used	for	the	simulation	model	(including	the	time	parameters)	is	shown	in	Appendix	 A.

	Simulation	Results

The	simulation	model	as	described	in	the	previous	section	has	been	used	to	generate	various	simulation	traces	under	different	parameter
settings.	This	section	describes	an	example	of	a	simulation	trace	in	detail.	In	the	next	section,	the	global	results	of	all	simulation	runs	are
summarised	and	discussed.

The	parameter	settings	used	for	the	simulation	described	in	this	section	are	identical	to	the	ones	shown	in	Figure	1:	the	population	consists	of	24
passers-by,	2	guardians	and	4	criminals.	Initially,	these	agents	are	distributed	over	the	locations	by	means	of	their	personal	preferences	(i.e.,	the
basic_attractiveness	predicates).	Moreover,	weight	factors	are	assigned	to	each	agent.	The	details	of	these	parameter	settings	can
be	found	in	Appendix	B.

Part	of	the	simulation	trace	that	was	generated	using	these	settings	is	shown	in	Figure	2	(A-C).	Within	these	graphs,	time	is	on	the	horizontal
axis	(where	each	geometric	shape	indicates	a	new	iteration	of	movements),	and	the	number	of	agents	at	a	certain	location	is	at	the	vertical	axis.
As	shown	in	Figure	2B	(and	also	in	Figure	1),	initially	there	are	no	guardians	at	location	B.	As	a	result,	some	assaults	take	place	at	that	location.
This	leads	to	a	change	in	the	assault	reputation	of	that	location,	which	eventually	results	in	displacement.	This	can	be	seen	in	the	third	iteration
(around	time	point	100):	most	of	the	passers-by	move	away	from	location	B	(although	one	of	them	still	remains	at	that	location),	whereas	all
criminals	and	all	guardians	move	towards	location	B.	As	a	result	of	this,	some	arrests	take	place,	which	leads	to	a	change	in	arrest	reputation	of
location	B.	As	a	consequence,	again,	the	criminals	move	(in	the	fifth	iteration,	around	time	point	160),	this	time	to	location	A	and	C.	Since
location	A	and	C	are	now	populated	by	criminals	and	passers-by,	but	not	by	guardians,	some	assaults	take	place	at	that	location,	which	again
leads	to	a	change	in	assault	reputation,	and	in	displacement	of	the	passers-by	and	the	guardians.	This	cycle	repeats	itself	until	the	end	of	the
simulation:	the	passers-by	move	away	from	the	criminals	(and	if	possible,	towards	the	guardians),	the	criminals	follow	the	passers-by	(as	long
as	they	do	not	encounter	too	many	guardians),	and	the	guardians	follow	the	criminals.	However,	it	is	important	to	note	that	there	is	no	strict
sequential	order	in	these	movements	(in	the	sense	that	one	of	the	groups	would	always	move	'earlier'	or	'faster'	than	the	others).	In	fact,	Figure	2
shows	that	in	the	third	iteration,	all	groups	move	simultaneously	(namely,	the	passers-by	move	away	from	location	B	whereas	the	other	two
groups	move	towards	location	B).	However,	the	result	of	these	movements	is	that	a	new	situation	emerges,	in	which	apparently	the	criminals	are
least	satisfied,	since	they	are	the	'first'	to	decide	to	move	again	(in	the	fifth	iteration),	whereas	the	other	two	groups	decide	to	stay.	This	leads
again	to	a	new	situation,	in	which	the	passers-by	decide	to	move	(in	the	seventh	iteration),	followed	by	the	guardians	(in	the	eighth	iteration),
and	so	on.
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Figure	2.	Displacement	of	the	three	types	of	criminals
Here	time	is	on	the	horizontal	axis	and	the	number	of	agents	is	depicted	on	the	vertical	axis.	The	upper	graph

represents	location	A,	the	middle	graph	location	B	and	the	graph	below	represents	location	C.	The	green	line	shows
the	amount	of	passers-by,	the	red	line	the	amount	of	criminals	and	the	blue	line	the	amount	of	guardians.

To	understand	the	influence	of	assaults	on	the	assault	reputation,	see	Figure	3,	which	depicts	the	dynamics	of	the	assault	reputation	of	location
A.	Note	that,	as	opposed	to	Figure	2,	this	picture	is	a	screenshot	of	the	LEADSTO	simulation	environment.	As	shown	in	Figure	3,	whenever	an
assault	is	performed,	the	assault	reputation	of	this	location	immediately	increases.	However,	when	no	assaults	are	performed,	the	assault
reputation	gradually	decreases.	For	example,	at	time	point	160,	190,	and	220,	location	A	contains	a	criminal	and	several	passers-by,	but	no
guardians	(see	Figure	2A).	As	a	result,	assaults	are	performed,	which	increases	the	assault	reputation	of	that	location	(after	a	small	delay),	as
shown	in	Figure	3.	This	figure	also	shows	the	gradual	decay	of	the	assault	reputation	in	between	these	three	assaults.

Figure	3.	Assault	reputation	of	location	A
This	figure	shows	an	immediate	increase	after	a	crime	has	been	committed.	When	no	crimes	are	committed,	the

assault	reputation	decreases	gradually	due	to	decay.

A	similar	trend	can	be	observed	in	Figure	4,	which	depicts	the	dynamics	of	the	arrest	reputation	of	location	A.	The	dynamics	of	the	reputations	of
the	other	locations	are	not	shown.	However,	these	show	similar	behaviour	as	depicted	in	Figure	3	and	4.

Figure	4.	The	arrest	reputation	of	location	A	
This	figure	shows	a	similar	pattern	as	the	assault	reputation.	After	an	arrest	the	reputation	of	the	location	increases

quite	rapidly.	When	no	arrest	is	performed	on	that	location,	the	reputation	decreases	gradually.

Visualisation	of	Simulation	Runs

To	provide	the	user	more	insight	in	the	exact	(spatial)	dynamics	of	a	simulation	trace,	a	visualisation	tool	has	been	developed	in	Matlab.	The	tool
takes	an	arbitrary	simulation	trace	as	input	and	generates	an	animation	of	the	crime	dynamics	(which	can	be	stored	as	.mpg-files).	In	Figure	5,	a
screenshot	of	such	an	animation	is	shown.	Here,	each	intersection	represents	a	location	in	a	city.	Note	that	this	example	is	unrelated	to	the
scenario	addressed	above.	In	the	example	addressed	here,	instead	of	3,	there	are	now	25	locations	in	total	that	are	connected	through	edges
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(according	to	a	grid	or	'block'	structure).	However,	the	numbers	of	agents	are	still	the	same	(i.e.,	24	passers-by,	4	criminals,	and	2	guardians).
The	different	agents	can	meet	each	other	at	the	intersections.	The	green	dots	denote	passers-by,	the	blue	dots	are	guardians	and	the	red	dots
are	criminals.	In	addition,	the	black	dots	represent	the	reputation	of	a	certain	location.	The	bigger	the	dot,	the	higher	the	assault	reputation	of
that	location.

Figure	5.	Screenshot	of	the	Visualisation	Tool.	In	this	figure,	twenty-five	locations	are	depicted	(i.e.,	the	intersections
of	the	dotted	lines).	Here	the	blue	dots	represent	the	guardians,	the	red	dots	the	criminals	and	the	green	dots	the

passers-by.	The	black	dots	represent	the	reputation	of	a	certain	location

	Formal	Analysis

All	in	all,	a	large	series	of	simulation	runs	has	been	performed.	The	detailed	settings	and	results	of	a	simple	example	of	these	simulations	(i.e.,
the	one	described	in	Section	5.1)	are	shown	in	Appendix	B.	Among	the	different	simulations,	various	parameter	settings	were	varied,	in
particular	the	number	of	agents,	the	ratio	between	different	types	of	agents,	the	number	of	locations,	the	basic	attractiveness	of	locations	for	the
agents,	and	the	weight	factors	of	the	agents.

To	analyse	the	resulting	simulation	traces	in	more	detail,	the	TTL	Checker	tool	( Bosse	et	al.	2009 )	has	been	used.	As	mentioned	earlier,	this	tool
takes	as	input	a	TTL	formula	and	a	set	of	traces,	and	verifies	automatically	whether	the	formula	holds	for	the	traces.	For	the	current	domain,	a
number	of	hypotheses	have	been	expressed	as	dynamic	properties	in	TTL,	which	were	inspired	by	the	questions	mentioned	in	the	Introduction.
For	example,	consider	the	following	dynamic	property	(P1),	which	expresses	that	the	location	of	hot	spots	keeps	on	changing	over	time:

P1	Continuation	of	Displacement	For	each	time	point	t	(except	the	end	of	the	trace [5]),	if	at	t	the	largest	hot	spot	is	at	location	x,	then	there	is	a
later	time	point	at	which	the	largest	hot	spot	is	at	some	other	location	y.

∀γ:TRACES ∀t:TIME ∀x:LOCATION
[ is_largest_hot_spot_at(x, t, γ) & t  <  last_time - δ ]
⇒ [ ∃t2:TIME ∃y:LOCATION is_largest_hot_spot_at(y, t2, γ) &
      t < t2 & x≠y]

In	this	formula,	is_largest_hot_spot_at	is	an	abbreviation,	which	can	be	determined	in	multiple	ways.	For	example,	by	taking	the
location:	1)	with	the	highest	assault	reputation,	2)	with	the	highest	number	of	criminals,	or	3)	with	the	highest	number	of	crimes.	These	different
possibilities	are	formalised	as	follows:

is_largest_hot_spot_at(x,t,γ) ≡
∃r:REAL state(γ, t) |= assault_reputation(x, r) &
∀y:LOCATION ∀r2:REAL
   [state(γ, t) |= assault_reputation(y, r2) ⇒ r2 ≤ r ]

is_largest_hot_spot_at(x,t,γ) ≡
∃i:INTEGER state(γ, t) |= number_of_criminals(x, i) &
∀y:LOCATION ∀i2:INTEGER
   [state(γ, t) |= number_of_criminals(y, i2) ⇒ i2 ≤ i ]

is_largest_hot_spot_at(x,t,γ) ≡
∃i:INTEGER state(γ, t) |= number_of_crimes(x, i) &
∀y:LOCATION ∀i2:INTEGER
   [state(γ, t) |= number_of_crimes(y, i2) ⇒ i2 ≤ i ]

In	addition,	a	combination	of	the	different	options	can	be	considered,	for	example,	by	calculating	the	weighted	sum	of	the	different	numbers.	Yet
another	variant	of	the	dynamic	property	can	be	created,	for	example,	by	counting	the	number	of	criminals	or	crimes	over	a	longer	time	period,
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instead	of	considering	the	current	time	point	only.

Note	that	the	term	hot	spot	is	used	in	many	different	ways	by	researchers	and	police.	Although	no	common	definition	of	the	term	hot	spot	of
crime	exists,	the	common	understanding	is	that	a	hot	spot	is	an	area	that	has	a	greater	than	average	number	of	criminal	or	disorder	events,	or
an	area	where	people	have	a	higher	than	average	risk	of	victimisation.	Hot	spot	analysis	can	be	performed	on	multiple	levels,	e.g.,	on	the	level
of	addresses,	blocks,	or	regions	(Eck	et	al.	2005 ).	This	variability	in	definition	is	reflected	in	our	approach	by	the	possibility	to	choose	one	out	of
multiple	formulae,	as	shown	above.

Besides	checking	whether	the	location	of	hot	spots	is	continuously	changing,	also	other	properties	can	be	verified.	A	relevant	property	from	the
viewpoint	of	crime	prevention	is	to	check	whether	specific	reoccurring	patterns	can	be	identified.	For	example,	is	it	always	the	case	that	the
criminals	follow	the	movement	of	the	passers-by,	and	that	the	guardians	follow	the	criminals?	And	if	not,	are	there	specific	circumstances	in
which	this	pattern	does	not	occur?	To	analyse	these	kinds	of	patterns,	properties	like	the	following	have	been	established:

P2a	Criminals	follow	Passers-by	For	each	time	point	t	(except	the	end	of	the	trace),	if	at	t	most	passers-by	are	at	location	x,	then	within	ε	time
points	most	criminals	will	be	at	location	x.

∀γ:TRACES ∀t:TIME ∀x:LOCATION
[most_passers_by_at(x, t, γ) & t  <  last_time - δ ]
⇒ [ ∃t2:TIME most_criminals_at(x, t2, γ) & t < t2 & t2 < t+ε]

Here,	most_passers_by_at	is	defined	as	follows:

most_passers_by_at(x,t,γ) ≡
∃i:INTEGER state(γ, t) |= number_of_passers_by(x, i) &
∀y:LOCATION ∀i2:INTEGER
   [state(γ, t) |= number_of_passers_by(y, i2) ⇒ i2 ≤ i ]

Similarly,	most_criminals_at	is	defined	by	taking	the	location	with	the	highest	number	of	criminals	(see	the	second	formalisation	of
is_largest_hot_spot_at	above).	In	addition	to	P2a,	a	similar	property	has	been	created	to	check	whether	the	guardians	follow	the
criminals:

P2b	Guardians	follow	Criminals	For	each	time	point	t	(except	the	end	of	the	trace),	if	at	t	most	criminals	are	at	location	x,	then	within	ε	time	points
most	guardians	will	be	at	location	x.

∀γ:TRACES ∀t:TIME ∀x:LOCATION
[most_criminals_at(x, t, γ) & t  <  last_time - δ ]
⇒ [ ∃t2:TIME most_guardians_at(x, t2, γ) & t < t2 & t2 ≤ t+ε]

Here,	obviously,	most_criminals_at	is	defined	as	follows:

most_criminals_at(x,t,γ) ≡
∃i:INTEGER state(γ, t) |= number_of_criminals(x, i) &
∀y:LOCATION ∀i2:INTEGER   [state(γ, t) |= number_of_criminals(y, i2) ⇒ i2 ≤ i ]

A	third	property	has	been	established	to	check	whether	there	are	any	periods	during	a	simulation	in	which	agents	spread	(more	of	less)	equally
over	the	different	locations.	This	may	be	an	indication	that	the	presence	of	hot	spots	has	(temporarily)	disappeared.	For	example,	for	criminals,
this	can	be	checked	via	the	following	property:

P3(Criminals)—Equal	spread	of	criminals	over	locations 	There	are	time	points	t1	and	t2	such	that	for	all	time	points	in	between,	and	for	all
locations	x,	the	amount	of	criminals	at	x	is	within	a	range	of	δ	of	the	total	amount	of	criminals	c	divided	by	the	number	of	locations	NL.

∃t1,t2:TIME ∀t3:TIME ∀x:location ∀i:real
   [t1 < t3 < t2 & state(γ, t3) |= number_of_criminals(x, i)  ⇒ c/NL = i ± c × δ]

In	the	trace	shown	in	Figure	2,	this	property	clearly	does	not	hold,	since	at	every	point	in	time	some	locations	are	more	attractive	than	other
locations.

Finally,	a	number	of	properties	have	been	specified	to	investigate	the	relation	between	the	emergence	of	hot	spots	and	the	number	of	locations,
and	the	relation	between	the	emergence	of	hot	spots	and	the	ratio	between	the	types	of	agents.	For	example,	the	following	formula	can	be	used
to	check	the	property	that	'more	locations	lead	to	less	crime':

P4—More	locations	lead	to	less	crime 	For	all	traces	γ1	and	γ2,	if	there	are	more	locations	in	 γ1	than	in	γ2,	then	at	the	end	of	the	simulation
there	will	be	less	crime	in	γ1.

∀γ1, γ2:TRACES ∀x1,x2,i1,i2:INTEGER
 state(γ1, te) |= total_number_of_locations(x1) &
 state(γ2, te) |= total_number_of_locations(x2) &
 state(γ1, te) |= total_number_of_crimes(i1) &
 state(γ1, te) |= total_number_of_crimes(i2) &
x1 > x2   ⇒ i1  <  i2

Here,	te	denotes	the	last	time	point	of	the	simulation.	Moreover,	the	predicate	 total_number_of_crimes	is	defined	by	summation	of
the	crimes	over	all	locations	and	all	time	points.	Note	that	this	property	usually	will	not	hold.	However,	in	addition	to	simply	checking	whether	the
property	holds,	the	TTL	checking	tool	also	allows	the	modeller	to	check	how	often	it	holds,	i.e.,	in	which	percentage	of	the	cases,	and	in	which
specific	situations	it	does	not	hold.	Such	checks	may	provide	the	researcher	important	information	about	the	relation	between	the	geography	of
a	city	and	the	emergence	of	hot	spots.
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All	in	all,	the	above	properties	have	been	checked	against	a	large	number	of	simulation	traces	under	different	parameter	settings	(see	also	the
appendix	mentioned	in	Bosse	and	Gerritsen	(2008)).	The	results	pointed	out	that	in	almost	all	of	the	simulations,	the	same	repeating	pattern	was
found:	the	passers-by	move	away	from	the	criminals,	the	criminals	follow	the	passers-by,	and	the	guardians	follow	the	criminals.	We	therefore
conclude	that	the	pattern	is	quite	robust	to	variations	in	parameter	settings,	which	is	an	encouraging	result,	since	the	pattern	is	similar	to	the
trends	described	in	criminological	literature	(Barr	and	Pease	1990 ;	Cornish	and	Clarke	1986 ;	Reppetto	1976),	and	game-theoretical	literature	on
crime	and	control	such	as	Rauhut	(2009).	Intuitively,	this	finding	makes	sense,	since	the	three	groups	involved	have	fundamentally	conflicting
interests	(e.g.,	passers-by	want	to	escape	criminals,	whilst	criminals	want	to	catch	passers-by).	In	the	game	theoretical	literature,	this	situation	is
referred	to	as	'discoordination	situation'	and	is	known	to	produce	cycles	due	to	the	non-existence	of	Nash	equilibria	in	pure	strategies.	In
addition,	the	model	has	similarities	with	the	classical	Lotka-Volterra	models	(also	known	as	predator-prey	models,	cf.	Morin	1999),	which	show
similar	cyclical	behaviour	(although	they	typically	involve	two	groups	instead	of	three).

Only	in	some	exceptional	cases,	this	cyclical	pattern	was	not	found.	For	example,	when	there	are	more	guardians	then	locations,	the	guardians
may	distribute	themselves	over	the	locations,	so	that	no	crime	will	ever	be	performed,	and	thus	no	displacement	will	occur.	This	case	may	be
compared	with	the	ideal	situation	that	a	city	has	sufficient	police	force	to	prevent	all	crime.	Another	exception	was	a	situation	in	which	many
agents	have	extreme	preferences.	For	instance,	if	a	certain	location	has	an	extremely	high	attractiveness	to	passers-by,	then	these	passers-by
will	stay	at	that	location,	even	though	they	run	the	risk	of	being	assaulted.

	Related	Work

The	part	of	criminology	concerned	with	the	displacement	of	crime	is	called	environmental	criminology.	Within	this	area	the	key	object	is	the	study
of	crime,	criminality,	and	victimization	as	they	relate	to	particular	places	and	to	the	way	that	individuals	and	organisations	shape	their	activities
spatially	(Bottoms	and	Wiles,	1997 ;	Bottoms	2007).	Among	the	main	research	groups	within	this	area	is	the	Chicago	School	of	Sociology.	Shaw
and	McKay,	two	researchers	from	this	school,	made	an	important	contribution	in	the	early	1940s	(Shaw	and	McKay	1942).	They	found	that
delinquency	rates	were	at	their	highest	in	inner-city	zones	and	decreased	the	further	one	moved	out	of	the	city	and	into	the	suburbs.	Further,
they	indentified	that	this	spatial	patterning	of	juvenile	crime	remained	stable	irrespective	of	the	neighborhood's	racial	or	national	demographic
composition	(McLaughlin	and	Muncie	2001;	Shaw	and	McKay	1942 ).	The	work	of	Shaw	and	McKay	concentrated	mainly	on	area	offender	rates.
After	that,	the	focus	shifted	towards	the	rediscovery	of	the	offence	and	later	on	the	explaining	of	offender	rates.	Recently,	crime	mapping	is	one
of	the	important	topics	within	the	field	of	environmental	criminology,	especially	by	means	of	computerised	geographical	information	systems
(GIS).	These	systems	can	act	as	the	means	of	linking	together	any	types	of	data	which	are	capable	of	being	geo-coded	(Bottoms	and	Wiles,
1997).	The	main	difference	with	the	approach	proposed	in	this	paper	is	that	GIS	record	empirical	crime	data	as	they	are,	and	use	these	for
visualisation	or	analysis.	Instead,	our	approach	attempts	to	make	predictions	of	crime-related	patterns	over	time	(possibly,	but	not	necessarily,
inspired	by	empirical	data;	see	the	discussion	section).

Besides	the	literature	in	Criminology,	also	in	Artificial	Intelligence	a	number	of	modelling	approaches	exist	that	have	similarities	to	the	approach
discussed	in	this	paper.	This	section	is	not	meant	to	provide	a	complete	overview	(see	Liu	and	Eck	2008	 for	that	purpose),	but	will	discuss	those
approaches	that,	to	our	knowledge,	are	most	related	to	the	current	paper.

To	start,	the	work	in	Groff	(2005)	systematically	investigates	the	geography	of	crime	trajectories	using	a	variety	of	spatial	analysis	techniques.
However,	a	difference	with	the	current	approach	is	that	these	models	do	not	contain	an	adaptive	element	(such	as	an	update	of	reputation),
which	causes	the	results	to	converge	quickly	to	an	equilibrium.

Another	approach	to	analyse	the	spatio-temporal	dynamics	of	crime	is	presented	in	Brantingham	et	al.	( 2005).	This	approach	is	based	on	a
Distributed	Abstract	State	Machine	(DASM)	formalism,	combined	with	a	multi-agent	based	modelling	paradigm.	Although	the	agents	involved
are	capable	of	learning	(using	a	form	of	behavioural	reinforcement	learning,	where	based	on	past	experiences	certain	preferences	are
developed	that	may	influence	future	choices),	the	notion	of	reputation	is	not	explicitly	incorporated.

A	third	interesting	approach	is	introduced	in	Liu	et	al.	( 2005),	which	also	explores	the	possibility	of	simulating	individual	crime	events	in	order	to
generate	plausible	crime	patterns.	This	approach	is	based	on	a	Cellular	Automaton	(CA),	in	which	the	main	elements	are	offenders,	targets,	and
crime	places.	Different	attributes	of	the	model	can	be	manipulated,	among	which	motivation	of	offenders,	capability	of	guardians,	and
accessibility	of	places.	Like	the	approach	mentioned	above,	the	main	difference	with	the	current	approach	is	that	it	does	not	contain	an	explicit
notion	of	reputation.

Furthermore,	a	more	specialised	approach	is	presented	in	Melo	et	al.	( 2005).	That	paper	describes	a	tool	to	investigate	the	influence	that
different	police	control	routes	have	on	the	reduction	of	crime	rates.	The	approach	comprises	an	artificial	society	consisting	of	various	agents,	in
particular	criminals	and	policemen.	As	a	follow-up	of	that	work,	in	Reis	et	al.	(2006)	the	first	results	are	presented	that	were	achieved	with
GAPatrol,	an	evolutionary	multi	agent-based	simulation	tool	devised	to	assist	police	managers	in	the	design	of	effective	police	patrol	route
strategies.

Another	more	specialised	approach	is	put	forward	in	Baal	(2004).	This	approach	specifically	aims	at	simulating	the	process	of 	deterrence.	A
simulation	model	is	presented	where	each	potential	offender	is	part	of	a	social	network	that	consists	of	several	agents.	All	agents	repeatedly	face
a	choice	between	rule	compliance	and	rule	transgression.	If	agents	transgress,	they	have	a	probability	of	being	audited	and	punished.	The	main
aim	of	the	work	is	to	investigate	how	the	probability	of	being	punished	influences	the	amount	of	crime.

Although	all	of	the	papers	mentioned	above	have	some	similarities	with	the	work	presented	here,	an	important	difference	is	that	they	all	focus	on
simulation	only.	In	contrast,	the	current	paper	proposes	an	approach	that	combines	simulation	with	logical	analysis.	Since	the	simulation	traces
that	result	from	the	LEADSTO	environment	can	directly	be	used	as	input	for	the	TTL	Checker,	it	is	relatively	easy	for	the	modeller	to	verify
certain	global	properties	of	the	model.	As	such,	the	paper	has	many	similarities	with	the	work	presented	in	Bosse	et	al.	(2007a),	which	also
combines	simulation	with	logical	analysis.	However,	the	domain	addressed	by	the	latter	paper	is	completely	different	(namely	the	psychological
and	biological	characteristics	underlying	the	behaviour	of	criminals	that	are	diagnosed	with	"Intermittent	Explosive	Disorder").	In	addition,	that
paper	does	not	consider	the	notion	of	reputation,	nor	does	it	address	any	notion	of	adaptivity.

	Discussion

Within	the	area	of	Criminology,	analysis	of	the	spatio-temporal	dynamics	of	crime	is	an	important	challenge.	In	particular,	criminologists	are
interested	in	the	question	where	criminal	hot	spot	may	emerge,	and	when	they	will	emerge.	As	a	first	step	towards	answering	such	questions,
the	current	paper	presents	an	agent-based	simulation	model	that	can	be	used	as	an	experimental	tool	to	analyse	spatio-temporal	dynamics	of
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crime.	The	simulation	model	particularly	focuses	on	the	interplay	between	hot	spots	and	reputation,	which	has	not	been	addressed	in	earlier
work.

As	usual	in	Agent-Based	Social	Simulation,	the	model	has	been	set	up	in	a	generic	manner,	according	to	the	principles	of	compositionality	and
knowledge	abstraction	(Brazier	et	al.	2000 ).	This	means	that,	when	one	wants	to	study	another	scenario	(i.e.,	analyse	the	behaviour	of	another
city,	or	population),	the	complete	behavioural	specification	of	the	system	(see	Appendix	A)	can	be	re-used.	All	that	needs	to	be	filled	in	is	a
number	of	domain	specific	slots,	e.g.,	concerning	the	geographical	environment,	or	the	initial	distribution	of	agents.

Using	the	model,	a	series	of	simulation	runs	has	been	performed,	under	different	parameter	settings.	The	results	of	the	simulations	have	been
automatically	verified	(by	means	of	the	TTL	Checker,Bosse	et	al.	2009 )	against	a	number	of	hypotheses,	expressed	as	logical	formulae.	In
almost	all	of	the	simulations,	the	same	repeating	pattern	was	found:	the	passers-by	move	away	from	the	criminals,	the	criminals	follow	the
passers-by,	and	the	guardians	follow	the	criminals.	Although	there	is	no	overall	agreement	in	the	criminological	literature	about	an	exact
definition	of	displacement	(see,	e.g.,Reppetto	1976),	this	pattern	is	quite	similar	to	the	displacement	trends	described	by	authors	such	as	Barr
and	Pease	(1990)	and	Cornish	and	Clarke	( 1986).

In	fact,	one	could	argue	that	this	is	a	rather	unsatisfactory	finding,	since	it	may	lead	to	the	conclusion	that	"the	police	always	arrive	too	late"	(or,
more	concretely,	that	decisions	to	establish	new	patrol	teams,	surveillance	cameras,	and	so	on,	are	only	made	after	the	hot	spots	have	already
emerged).	Therefore,	an	interesting	question,	which	we	are	currently	focussing	on,	is	whether	simulation	models	of	criminal	displacement	can	be
useful	for	anticipatory	policies	(i.e.,	to	increase	the	number	of	guardians	at	locations	where	hot	spots	are	likely	to	emerge,	instead	of	at	the
present	locations	of	hot	spots).	The	first	results	of	a	extensive	comparison	between	a	number	of	strategies	(varying	from	merely	reactive	to	more
anticipatory)	which	we	are	currently	performing	show	that	anticipatory	strategies	indeed	seem	to	lead	to	less	crime	than	reactive	strategies
(Bosse	and	Gerritsen	2009).

Furthermore,	note	that,	although	the	parameter	settings	used	for	the	simulations	described	in	this	paper	were	inspired	by	empirical	studies	such
as	Bottoms	and	Wiles	(1997)[6],	no	effort	was	put	into	creating	settings	that	correspond	exactly	to	the	characteristics	of	real	cities	and
populations.	Therefore,	the	results	of	the	presented	simulations	should	not	be	considered	as	conclusive	about	real	world	situations.	Rather,	they
provide	preliminary	insight	in	the	process	of	displacement,	and	provide	support	for	the	usefulness	of	the	presented	approach	as	an	analysis	tool.
As	shown	in	Section	5	and	6,	the	presented	combination	of	software	tools	(i.e.,	the	LEADSTO	simulation	tool,	the	TTL	Checker	tool,	and	the
Matlab	visualisation	tool)	can	be	very	useful	for	the	researcher	to	study	criminal	displacement.	In	particular,	the	LEADSTO	simulation	tool	can	be
used	to	generate	large	numbers	of	traces	under	different	parameter	settings.	Next,	the	TTL	Checker	tool	can	be	used	to	filter	out	those	traces
for	which	unexpected	behaviour	occurs.	After	that,	these	particular	traces	can	be	studied	in	more	detail	using	the	Matlab	visualisation	tool,	in
order	to	explain	the	unexpected	behaviour.

The	intended	users	of	these	tools	are	in	the	first	place	researchers	in	criminology,	although	on	the	long	term	they	may	be	also	useful	for	policy
makers.	When	one	considers	the	intended	users	of	similar	tools	that	have	been	proposed	in	the	literature	(Baal	2004;	Brantingham	et	al.	2005 ;
Groff	2005;	Liu	et	al.	2005 ;	Melo	et	al.	2005 ;	Reis	et	al.	2006 ),	it	turns	out	that	different	perspectives	are	taken.	For	example,	some	authors	have
attempted	to	develop	simulation	models	of	crime	displacement	in	existing	cities,	which	can	be	directly	related	to	real	world	data	(e.g.,Liu	et	al.
2005),	whereas	others	deliberately	abstract	from	empirical	information	(e.g., Bosse	et	al.	2008 ).	The	idea	behind	the	latter	perspective	is	that	the
simulation	environment	is	used	as	an	analytical	tool,	mainly	used	by	researchers	and	policy	makers,	to	shed	more	light	on	the	process	under
investigation,	and	perhaps	improve	existing	policies	(e.g.,	for	surveillance)	on	the	long	run	(Elffers	and	Baal	2008 ).	The	point	of	view	taken	in	the
current	paper	can	be	situated	in	between	these	two	extremes.	Initially,	the	simulation	model	was	developed	to	study	the	phenomenon	of
displacement	per	se.	However,	its	basic	concepts	have	been	defined	in	such	a	way	that	they	can	be	directly	connected	to	empirical	information,
if	this	becomes	available.	Indeed,	the	authors	also	plan	to	use	more	realistic	parameter	settings	in	the	future	(including	temporal	relationships),	in
order	to	investigate	to	what	extent	the	approach	is	able	to	reproduce	empirical	data.	As	soon	as	the	model	can	be	sufficiently	validated	in	such
settings	(i.e.,	the	global	patterns	produced	by	the	model	match	the	empirical	data),	the	model	may	be	of	interest	for	policy	makers,	e.g.	to	study
'what-if'	scenarios.	For	example,	one	may	investigate	how	the	crime	level	of	a	certain	city	will	change	if	the	policy	makers	invest	in	more
surveillance	in	a	certain	area.

When	such	more	realistic	parameter	settings	will	be	considered,	also	scaling	issues	will	have	to	be	addressed.	Although	the	current	simulation
model	handles	population	sizes	of	hundreds	of	(heterogeneous)	agents	relatively	easily,	the	simulation	time	is	polynomial	in	the	number	of
agents.	Therefore,	complexity	problems	will	arise	when	populations	of	(more	than)	thousands	of	agents	are	considered.	These	problems	could
be	solved	by	translating	the	current	simulation	model	to	a	stochastic	model,	as	is	done,	for	example,	in	the	analysis	of	epidemics	(Anderson	and
Britton	2000).	Also	for	the	displacement	of	criminal	hot	spots,	such	a	translation	is	currently	being	made.	An	initial	version	of	such	a	stochastic
model	of	criminal	displacement	(where	the	behaviour	of	the	different	agent	types	was	kept	simple)	is	presented	in	Bosse	et	al.	(Bosse	2008).
When	making	such	a	translation,	the	description	of	the	dynamics	of	a	population	shifts	from	a	"micro"	perspective	(at	the	level	of	individual
agents)	to	a	"macro"	perspective	(at	the	level	of	groups	of	agents).	For	example,	the	number	of	criminals,	assaults	and	arrests	at	certain
locations	can	be	described	by	global	variables,	which	are	influenced	by	probabilistic	rules.	A	comparable,	but	slightly	different	approach	is
presented	in	Bosse	et	al.	(2007a),	where	the	expected	number	of	crimes	in	certain	populations	is	estimated	on	the	basis	of	probabilities	of
opportunities.	The	main	advantage	of	these	types	of	macro-level	approaches	is	that	they	can	deal	with	larger	populations.	An	inevitable
drawback	is	however	that	they	imply	a	loss	of	detail	at	the	individual	agent	level.	In	current	work	in	progress,	the	benefits	of	such	approaches	are
explored	in	more	detail.

Concerning	other	future	work,	various	extensions	to	the	model	will	be	considered.	An	interesting	expansion	could	be	based	on	the	work	by
Sampson	et	al.	(1997).	They	state	that	the	social	cohesion	of	a	group	is	an	important	factor	in	the	emergence	of	crime.	Social	cohesion	among
neighbours	combined	with	their	willingness	to	intervene	on	behalf	of	the	common	good,	is	linked	to	reduced	violence.	An	interesting	direction	for
further	research	would	be	to	introduce	a	parameter	for	social	cohesion,	in	order	to	investigate	whether	that	increases	the	accuracy	of	the
simulation	model.

	Appendix	A—LEADSTO	Specification

Below,	the	complete	specification	of	the	criminal	displacement	model	is	shown,	in	LEADSTO	notation.	Note	that	the	LEADSTO	simulation
software	can	be	downloaded	from	the	following	URL:	http://www.cs.vu.nl/~wai/TTL/.

Decide Current Location Attractiveness

∀a:AGENT ∀l:LOCATION ∀n1,n2,v,w1:REAL ∀w2,w3:INTEGER
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basic_attractiveness_of_agent_for_location(v, l, a) ∧ belief(a,
assault_reputation_at_location(n1, l)) ∧
belief(a, arrest_reputation_at_location(n2, l)) ∧ has_weight_factor(a, w1, w2, w3) ∧
agents_counted
→→ 0, 0, 1, 1 
belief(a, current_attractiveness_of_location(l, w1 × v+w2 × n1+w3 × n2))

Go to Most Attractive Location

∀a:AGENT ∀l1,l2,l3:LOCATION ∀x1,x2,x3:REAL
belief(a, current_attractiveness_of_location(l1, x1)) ∧ belief(a,
current_attractiveness_of_location(l2, x2)) ∧
belief(a, current_attractiveness_of_location(l3, x3)) ∧ l1≠l2 ∧ l2≠l3 ∧ l1≠l3 ∧ x1>x2
∧ x1>x3 
→→ 0, 0, 1, 1
performed(a, go_to_location(l1))

Arrive at Location

∀a:AGENT ∀l:LOCATION
performed(a, go_to_location(l)) 
→→ 0, 0, 1, nr_agents+4 
is_at_location(a, l)

Observe all Agents

∀a:AGENT ∀l:LOCATION ∀r:INTEGER ∀t:TYPE
is_at_location(a, l) ∧ has_type(a, t) ∧ round(r)
→→ 0, 0, nr_agents+1, 1 
observes(a, agent_of_type_at_location(a, t, l))

Count Types of Agents at Locations

∀a:AGENT ∀l:LOCATION
performed(a, go_to_location(a, t, l)) 
→→ 0, 0, 1, 1 
counting_at(1) ∧ agents_counted_of_type_at_location(0, passer_by, locA) ∧
agents_counted_of_type_at_location(0, passer_by, locB) ∧
agents_counted_of_type_at_location(0, passer_by, locC) ∧
agents_counted_of_type_at_location(0, criminal, locA) ∧
agents_counted_of_type_at_location(0, criminal, locB) ∧
agents_counted_of_type_at_location(0, criminal, locC) ∧
agents_counted_of_type_at_location(0, guardian, locA) ∧
agents_counted_of_type_at_location(0, guardian, locB) ∧
agents_counted_of_type_at_location(0, guardian, locC)

∀k:between(0, nr_agents) ∀l:LOCATION ∀n:between(1, nr_agents+1) ∀t:TYPE
counting_at(n) ∧ n ≤ nr_agents agents_counted_of_type_at_location(k, t, l) ∧
is_at_location(agent(n), l) ∧ has_type(agent(n), t) 
→→ 0, 0, 1, 1 
agents_counted_of_type_at_location(k+1, t, l) ∧ counting_at(n+1)

∀k:between(0, nr_agents) ∀l,l2:LOCATION ∀n:between(1, nr_agents+1) ∀t:TYPE
counting_at(n) ∧ n ≤ nr_agents ∧ agents_counted_of_type_at_location(k, t, l) ∧
is_at_location(agent(n), l2) ∧ l≠l2 ∧ has_type(agent(n), t) 
→→ 0, 0, 1, 1 
agents_counted_of_type_at_location(k, t, l) ∧ counting_at(n+1)

∀k:between(0, nr_agents) ∀l,l2:LOCATION ∀n:between(1, nr_agents+1) ∀t,t2:TYPE
counting_at(n) ∧ n ≤ nr_agents ∧ agents_counted_of_type_at_location(k, t, l) ∧
is_at_location(agent(n), l2) ∧ t≠t2 ∧ has_type(agent(n), t2) 
→→ 0, 0, 1, 1 
agents_counted_of_type_at_location(k, t, l) ∧ counting_at(n+1)

Believe Counted Types of Agents

∀k:between(0, nr_agents) ∀l:LOCATION ∀n:between(1, nr_agents+1) ∀t:TYPE
counting_at(n) ∧ n > nr_agents ∧ agents_counted_of_type_at_location(k, t, l) 
→→ 0, 0, 1, 1
belief(all_agents, number_of_type_at_location(k, t, l)) ∧ agents_counted

Note: all_agents is an abbreviation for a conjunction of all the agents in the
simulation.

Visualise Counted Types of Agents

∀k:between(0, nr_agents) ∀l:LOCATION ∀t:TYPE
belief(all_agents, number_of_type_at_location(k, t, l)) 
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A.3

→→ 0, 0, 1, 10 
visualise_agents_of_type_at_location(k, t, l)

Perform Assault

∀a:AGENT ∀l:LOCATION
is_at_location(a, l) ∧ has_type(a, guardian) 
→→ 0, 0, 1, 1 
guardian_at_location(l)

∀a1,a2:AGENT ∀l:LOCATION
observes(a1, agent_of_type_at_location(a1, criminal, l)) ∧
observes(a1, agent_of_type_at_location(a2, passer_by, l)) ∧ not
guardian_at_location(l) 
→→ 0, 0, 1, 1
performed(a1, assault_at(a2, l))

Count Assaults

∀a1,a2:AGENT ∀l:LOCATION
performed(a1, assault_at(a2, l)) 
→→ 0, 0, 1, 1
assault_at(l)

∀l:LOCATION ∀a:AGENT ∀n:REAL
assault_at(l) ∧ belief(a, assault_reputation_at_location(n, l)) 
→→ 0, 0, 1, 1> 
belief(a, assault_reputation_at_location(n+inc, l))

∀l:LOCATION ∀a:AGENT ∀n:REAL
belief(a, assault_reputation_at_location(n, l)) ∧ not assault_at(l) 
→→ 0, 0, 1, 1 
belief(a, assault_reputation_at_location(n*dec, l))

Perform Arrest 

∀a1,a2:AGENT ∀l:LOCATION
performed(a1, assault_at(a2, l)) 
→→ 0, 0, 1, nr_agents × 4 
known_criminal(a1)

∀a1,a2:AGENT ∀l:LOCATION
observes(a1, agent_of_type_at_location(a1, guardian, l)) ∧ 
observes(a1, agent_of_type_at_location(a2, criminal, l)) ∧ known_criminal(a2) 
→→ 0, 0, 1, 1 
performed(a1, arrest_at(a2, l))

Count Arrests

∀a1,a2:AGENT ∀l:LOCATION
performed(a1, arrest_at(a2, l)) 
→→ 0, 0, 1, 1 
arrest_at(l)

∀l:LOCATION ∀a:AGENT ∀n:REAL
arrest_at(l) ∧ belief(a, arrest_reputation_at_location(n, l))
→→ 0, 0, 1, 1 
belief(a, arrest_reputation_at_location(n+inc, l))

∀l:LOCATION ∀a:AGENT ∀n:REAL
belief(a, arrest_reputation_at_location(n, l)) ∧ not arrest_at(l) 
→→ 0, 0, 1, 1 
belief(a, arrest_reputation_at_location(n × dec, l))

Maintain Rounds - needed for observations

∀r:INTEGER
round(r) 
→→ 3, 3, nr_agents+1, nr_agents+1 
round(r+1)

	Appendix	B—Simulation	1

In	this	section,	an	example	simulation	run	is	shown.	For	the	sake	of	readability,	a	simple	case	of	three	locations	is	chosen.

First,	the	simulation	settings	are	shown,	in	the	table	below.	The	first	column	indicates	the	name	of	the	agent,	the	second	column	indicates	the
type	of	agent	(criminal,	guardian,	or	passer-by),	the	next	three	columns	indicate	the	basic	attractiveness	of	that	agent	for	the	different	locations
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(A,	B,	and	C),	the	next	three	columns	indicate	the	three	weight	factors	of	that	agent	(w1,	w2,	and	w3),	and	the	last	column	indicates	the	initial
location	of	the	agent.

Agent Type A B C W1 W2 W3 Start
1 PB 0.87 0.81 0.74 0.1 0 0 A
2 PB 0.81 0.76 0.70 0.1 -1 0 A
3 PB 0.83 0.74 0.68 0.1 -2 -1 A
4 PB 0.77 0.60 0.51 0.1 -3 -2 A
5 PB 0.79 0.64 0.58 0.1 -4 -3 A
6 PB 0.85 0.60 0.66 0.1 -5 -4 A
7 PB 0.83 0.59 0.61 0.5 0 0 A
8 PB 0.84 0.63 0.70 0.5 -1 0 A
9 PB 0.89 0.66 0.72 0.5 -2 -1 A
10 PB 0.81 0.43 0.52 0.5 -3 -2 A
11 PB 0.86 0.51 0.62 0.5 -4 -3 A
12 PB 0.90 0.52 0.71 0.5 -5 -4 A
13 PB 0.81 0.90 0.74 1.1 0 0 B
14 PB 0.76 0.84 0.51 1.1 -1 0 B
15 PB 0.53 0.76 0.68 1.1 -2 -1 B
16 PB 0.60 0.81 0.76 1.1 -3 -2 B
17 PB 0.76 0.64 0.83 1.1 -4 -3 C
18 PB 0.78 0.61 0.81 1.1 -5 -4 C
19 PB 0.79 0.70 0.84 2.1 0 0 C
20 PB 0.70 0.63 0.76 2.1 -1 0 C
21 PB 0.81 0.75 0.90 0.1 -2 -1 C
22 PB 0.74 0.68 0.79 0.5 -3 -2 C
23 PB 0.60 0.79 0.85 1.1 -4 -3 C
24 PB 0.74 0.80 0.86 2.1 -5 -4 C
25 G 0.85 0.74 0.79 0.1 4 3 A
26 G 0.81 0.76 0.83 0.1 5 4 C
27 C 0.84 0.81 0.80 0.1 2 -3 A
28 C 0.76 0.86 0.84 1.1 3 -4 B
29 C 0.78 0.81 0.83 1.1 3 -5 C
30 C 0.83 0.82 0.85 2.1 4 -5 C

In	this	simulation,	there	are	24	passers	by,	2	guardians	and	4	criminals	in	the	world.	As	shown	in	the	resulting	trace,	initially,	they	are	distributed
over	the	location	by	means	of	their	personal	preferences	(i.e.,	a	predicate	that	states	which	location	they	find	most	attractive/interesting).	At	time
point	100,	there	are	13	passers	by	at	location	A	and	there	are	10	passers	by	at	location	C.	At	time	point	160,	the	criminals	go	after	the	passers
by.	There	is	1	criminal	at	location	A	and	3	criminals	went	to	location	C.	This	results	in	the	movement	of	passers	by.	They	want	to	move	away
from	the	criminals	and	they	go	to	location	B	(time	point	260).	Only	100	time	points	later,	the	criminals	follow	the	passers	by	and	they	also	arrive	at
location	B	(time	point	360).	The	passers	by	want	to	get	away	from	the	criminals	and	return	to	the	locations	A	and	C.	Again	100	time	points	later,
the	criminals	also	move	to	location	A	and	C	(respectively	1	and	3	criminals).	This	trend	repeats	itself	until	the	end	of	the	trace.	The	guardians
follow	the	criminals.	They	arrive	at	the	location	of	the	criminals	100	time	points	after	the	criminals	do.
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	Notes

1In	this	paper,	the	concept	of	reputation	is	studied	as	a	characteristic	of	a	location	(or	geographical	area).	More	specifically,	the	reputation	of	a
location	is	defined	as	a	(publicly	known)	measure	for	the	amount	of	crime-related	activities	(e.g.	assaults	or	arrests)	that	take	place,	which	is	built
up	on	the	basis	of	past	events	(involving	multiple	individuals)	at	that	location.	Note	that	this	definition	differs	from	the	idea	of	reputation	as	a
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characteristic	of	an	individual,	as	often	used	in	the	literature.	For	an	overview	of	the	different	notions	of	reputation	in	different	disciplines
(including	Evolutionary	Biology,	Economy,	and	Computer	Science),	see	Mui	et	al.	(2000).

2Note	that	this	is	an	over-simplification	of	police	deployment	practices.	Police	officers	are	indeed	more	attracted	to	places	with	high	crime	rates,
but	this	is	usually	part	of	larger	actions	against	crime.	An	example	is	the	Street	Crime	Initiative	in	the	UK	(Home	Office	2003).	This	is	an	initiative
taken	by	five	police	forces	which	together	accounted	for	72%	of	all	street	robberies	and	actually	targeted	the	ten	police	force	areas	where	street
crime	levels	were	highest.	Over	30	different	projects	were	designed	to	tackle	the	street	crime	problem	from	different	angles.	Youth	work,
environmental	planning,	increased	surveillance,	reducing	market	of	stolen	goods,	and	targeted	enforcement	are	just	a	number	of	possible
interventions	(Home	Office	2003).	For	practical	purposes,	in	our	model	we	decided	to	simplify	such	interventions	by	simply	assuming	that
criminals	attract	(both	formal	and	informal)	guardians.

3Although	a	location's	reputation	is	an	important	factor	in	the	process	of	displacement,	it	is	not	the	only	factor	that	determines	the	movement	of
offenders,	targets,	and	guardians.	Also	various	other	aspects	of	a	location	may	play	a	role	in	attracting	or	repelling	certain	groups	(e.g.,	escape
routes,	abandoned	buildings,	possibilities	to	buy	drugs,	and	so	on).	These	concepts	are	modelled	in	Section	4	by	means	of	the
basic_attractiveness	predicate.

4For	a	comprehensive	review	of	the	differences	between	forward-	and	backward-looking	decision	making	models	with	respect	to	crime	and
control	(including	empirical	evidence),	see	Rauhut	(2009).

5the	condition	t < last_time-δ	(where	δ	is	the	maximum	duration	of	displacement,	for	example	6	iterations)	was	added	to	make	sure
that	the	property	does	not	fail	for	the	end	of	the	trace.

6For	example,	the	authors	tried	to	pick	reasonably	realistic	settings	for	agents'	preferences	and	ratios	between	types	of	agents.
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