
No Free Lunch when Estimating
Simulation Parameters
Ernesto Carrella1

1Department of Geography S Parks Rd, Oxford Oxford OX1 3QY United Kingdom
Correspondence should be addressed to ernesto.carrella@ouce.ox.ac.uk

Journal of Artificial Societies and Social Simulation 24(2) 7, 2021
Doi: 10.18564/jasss.4572 Url: http://jasss.soc.surrey.ac.uk/24/2/7.html

Received: 03-02-2020 Accepted: 22-03-2021 Published: 31-03-2021

Abstract: In this paper, wehave estimated the parameters of 41 simulationmodels to findwhich of 9 estimation
algorithms performs better. Unfortunately, no single algorithmwas the best for all or evenmost of themodels.
Rather, fivemain results emerge from this research. First, each algorithmwas the best estimator for at least one
parameter. Second, the best estimation algorithm varied not only betweenmodels but even between parame-
ters of the samemodel. Third, each estimation algorithm failed to estimate at least one identifiable parameter.
Fourth, choosing the right algorithm improved estimation performance bymore than quadrupling the number
ofmodel runs. Fi�h, half of the agent-basedmodels tested could not be fully identified. We therefore argue that
the testing performed here should be done in other applied work and to facilitate this we would like to share
the R package freelunch.

Keywords: Agent-based models, Individual-based models, Estimation, Calibration, Approximate Bayesian
Computation, Random Forest, Generalized Additive Model, Bootstrap

Introduction

Comparing estimation algorithms provides no winner

1.1 Amathematical model is a set of causal mechanisms connecting numerical variables. These mechanismsmay
depend on one or more parameters; some can be readily observed while many cannot. Because un-observed
parameters a�ect the model output, it may be possible to identify their value by comparing the model out-
put against what actually occurs in the data. Estimation is this process of identifying parameters by compar-
ing model output to data. Many estimation algorithms for simulation models have emerged over the past ten
years(for a general review seeHartig et al. 2011; for an agent-based review see Thiele et al. 2014; for agent-based
models in economics see Fagiolo et al. 2019; Platt 2020).

1.2 There are three limitations to current estimation literature. First, papers that introduce new estimation algo-
rithms tend to showcase their performance on few idiosyncratic examples so that comparisons acrossmethods
remain di�icult. Second, reviews that compare estimation algorithms tend to be small, focusing only on one
field, few models and estimation algorithms. Third, existing reviews tend to mix two steps together: the pro-
cessing of model outputs into useful summary statistics (or distance functions) and the actual algorithm used
for estimation. The processing phase is very specific to each discipline which makes it hard to apply lessons
from one paper to agent-basedmodels in another field.

1.3 Here, we have built a more thorough comparison of nine estimation algorithms across 41 simulation models
(both agent-based and not). Our original objective was to pick the best estimation algorithm so that authors
coulddefault to itwithoutworrying about the rest of the estimation literature. Rather, we established that there
is no single best algorithm: both the absolute and relative performance are context-dependent.

1.4 The best performing estimation algorithm changes not just betweenmodels but sometimes even between pa-
rameters of the same model. Worse, even though the best algorithm is context dependent, choosing the right
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onematters more than quadrupling the number of simulations. Worse still, for all estimation algorithms there
is always at least one case where they fail entirely to estimate a parameter that at least another algorithm has
identified.

1.5 This dooms the hope of there being a “best” estimation algorithm. More practically, this prevents agent-based
authors from delegating to a literature review such as this one the task of picking the estimation algorithm for
them. The cross-validation testing that we implement here needs to be repeated for any newmodel.

1.6 Critically, the same cross-validation testing that ranks algorithms can also be used to diagnose identification
failures: the inability to recover the parameters’ value from data (Lewbel 2019; Canova & Sala 2009). We show
that about half of the agent-based models tested have at least one unidentifiable parameter. Identification
failures are common in agent-based models but identifying them provides us with clues on how to solve them
or understand their causes and consequences.

The challenge of estimating agent-basedmodels

1.7 Two factors complicate the estimationof agent-basedmodels. First, agent-basedmodels tend to simulate com-
plex systemswithmanymoving parts and parameters. Second, it is almost always impossible to identify a like-
lihood function for an agent-based model (the only exception we know of is Monti et al. 2020). A likelihood
function is an equation connecting parameters with data and is useful to operationalize the estimation prob-
lem into a numerical maximization (change the parameters to maximize the likelihood). For simple models,
we can substitute the unknown likelihoodwith a quasi- or pseudo-likelihood object andmaximize that instead
(Hooten et al. 2020 provides a good overview on this topic in the context of agent-based models). This avenue
however remains too computationally expensive for most agent-basedmodels.

1.8 Without a likelihood, the only alternative is to condense both model output and data into a set of compara-
ble summary statistics. The challenge in agent-based models is that there is an immense number of potential
summary statistics to generate from extremely heterogeneous model outputs, such as maps, histograms and
time series (Lee et al. 2015 reviews the complexities of agent-based outputs). In principle having many sum-
mary statistics ought to be an advantage as we have many dimensions on which to measure the discrepancy
between data and simulation. In practice however many summary statistics will provide either noisy, useless
or duplicate information and degrade estimation performance.

1.9 Subject expertise can sometimes be used to select the most important summary statistics (the list of recent
developments in Fagiolo et al. 2019 for example deals almost exclusively with this task) but the choice of the
best summary statistics will o�en be arbitrary. An alternative is to start from a large set of summary statistics
and then use statistical methods to pick the summaries and weigh their information to (see Carrella et al. 2020
for an agent-based model application; see Blum et al. 2013 for an approximate Bayesian computation review;
Jiang et al. 2017 for a neural network approach to discover summary statistics from simulated data). Even a�er
choosing which summary statistic to deal with however, we still need to choose the right estimation algorithm:
the procedure that maps summary statistics back to the parameters that generated them.

The qualities to look for in an estimation algorithm

1.10 The theoretical literature on simulation inference, inherited fromeconomics and in particular the indirect infer-
ence tradition (Gourieroux et al. 1993; Smith 2008; Grazzini &Richiardi 2015), is concernedwith asymptotics and
in particular consistency. Consistency is achievedwhen the estimation algorithm converges to the real value as
the data used to train it (both real raw data and number of simulation runs) grows to infinity. Zhao (2011) shows
that two conditions are su�icient for consistency. First, no equifinality: two di�erent parameter inputs cannot
produce the samemodel output. Second, once we fix a parameter input and run themodel for an infinite time
steps and replications, all summary statistics must converge (that is, there cannot be summary statistics that
never “settle” or do so at di�erent values for di�erent runs).

1.11 This theoretical contribution remains largely ignored in the applied agent-based literature. There are three
justifications for this. First, consistency conditions are probably violated bymany agent-basedmodels as equi-
finality is common (Poile & Safayeni 2016; Williams et al. 2020) and many summary statistics are either gener-
ated by non-stationary dynamics (Grazzini & Richiardi 2015) or by distributions whose samplemoments do not
converge, particularly power laws (LeBaron 2001; Axtell 1999). Second, it is o�en impossible to test whether
consistency conditions are violated. Third, asymptotic results hold little appeal for applied work facing limited
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data and a finite computational budget. We are usually interested in the performance we can achieve for the
problem at hand rather than guaranteed consistency for infinite data we will never collect.

1.12 Applied work looks rather for three qualities in an estimation algorithm. First, we want to achieve good accu-
racy: estimating parameters as close as possible to the ones that generated the data we observe. Second, we
want to achieve good coverage: estimating the smallest range of values that includes the real parameters with
the correct pre-specified probability (confidence level). Third, we want high estimation e�iciency: achieving
the previous two objectives with the least amount of runs since agent-basedmodels are expensive to simulate.

1.13 The thesis of this paper is that a fourth practical quality, i.e., testing e�iciency, should be prioritized instead. We
should prefer estimation algorithms that can cheaply measure their own accuracy and coverage in any given
context. We can test any estimation algorithm by running a simulationwith known parameters, treat its output
as if itwas the real data and thenask the estimationalgorithm todiscover theparameterswe startedwith. While
the testing technique is universal, its computational costs di�er between algorithms.

Whywe focus exclusively on reference table algorithms

1.14 There are twomain families of estimation algorithms: rejection-based and search-based algorithms. Rejection
algorithms repeatedly run a model with random parameters until a stopping condition is reached. Reference
table algorithms (Cornuet et al. 2008) are the subset of rejection algorithms where the stopping condition is
simply to run the model a fixed amount of times.

1.15 Rejectionalgorithmsare ine�icientbecausemany runswill produceoutput far fromthe real data. Search-based
algorithms then replace randomsamplingwithminimizing a distance function betweenmodel output anddata
(Calvez & Hutzler 2006; Sisson et al. 2016; Pietzsch et al. 2020). This approach increases estimation e�iciency.

1.16 The estimation e�iciency of search-based methods becomes a liability when testing, however. Search algo-
rithms explore only the part of the parameter space closest to the original dataset while testing requires it to
minimize the distance to many new targets. Search-based algorithms have no alternative but to restart their
minimization for every new test. The computational costs of testing search-based algorithms quickly become
astronomical (a point well demonstrated in Platt 2020).

1.17 Testing reference table algorithms, by contrast, involves running no new simulation. The original simulation
runs were already spread out across the parameter space and the same runs used to estimate the parameters
of the real dataset can be used to estimate the parameters in any new test. The advantage is even greater when
wewant to rank the performance ofmany estimation algorithms. This is becausewe can recycle the simulation
output used to train one reference table algorithm to perform the same estimation with any other. In contrast
because search-based algorithms control the trajectory of parameters fed into the model, we need to re-run
the model again for each search-based algorithmwe want to rank.

1.18 A numerical comparison may help. Imagine producing a testing set of 500 runs with known input parameters.
We want to rank five alternative algorithms by their ability to re-discover the known parameters given a com-
putational budget of 1,000 simulations per estimation. Testing five search-based algorithms will require us to
run the simulationmodel 2,500,000 times: 1,000 runs for each of the five search algorithms for each of the 500
items in the testing set. Comparing five di�erent reference tablemethodswill require only 1,000 runs in total to
produce a training dataset which will be shared across each algorithm and re-used for each item of the testing
set.

Materials and Methods

2.1 Here, we define a simulation model as any function that depends on a set of parameter θ to generate a set of
summary statisticsS(θ). We are interested in the estimation problemwhere we observe summary statisticsS∗

and we want to knowwhich parameter θ∗ most likely generated them.

2.2 Weparametrized 41 simulationmodels (described in Section 2.5 and in the Appendix). We used nine estimation
algorithms todo so (described in Section 2.9). All are “reference table” algorithms: algorithmswhoseonly input
for estimation is a table of simulation parameters θ, selected by random sampling, and the summary statistics
S(θ) theygenerate. Wesplit this reference table into trainingand testing setsandaskeachalgorithmtoestimate
the parameters of the testing set observing only the training runs.
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2.3 Wewanted tomeasure the quality of an estimation algorithm along two dimensions: point predictions “perfor-
mance” and confidence interval “coverage.” Wemeasured point prediction performance as:

Performance = 1−

∑
j

√(
θ∗

j − θ̂j

)2

∑
j

√(
θ∗

j − θ̄
)2

(1)

where θ̂ is the estimated parameter, θ∗ is the real hidden parameter, θ̄ is the average parameter value in the
training data and j is the row of the testing dataset we are estimating. In other words, performance measures
how much more accurate (measured in root mean square error) estimation is compared to just guessing the
average parameter value without performing any estimation. Performance ranges from 1 (perfectly estimated)
to 0 (unidentified) to negative values (mis-identified). Without square roots this is equal to predictivity (Salle &
Yıldızoğlu 2014) andmodelling e�iciency (Stow et al. 2009).

2.4 Wedefined coverage as in Raynal et al. (2019) as the percentage of times the real parameter falls within the 95%
prediction intervals suggested by the estimating algorithm. The best coverage is 95%: higher generates type I
errors, lower generates type II errors.

Models

2.5 We estimated the parameters of 41 separate simulationmodels and them either as they appeared as examples
in at least another estimation paper (20 models) or because they were open source agent-based models (21
models) available on the COMSES model library (Rollins et al. 2014). We can roughly categorize these models
into four groups: simple, ill posed, complicated and agent-basedmodels. Table 1 lists themall. In the Appendix,
we provide a brief description of each.

Table 1: List of all estimatedmodels

Experiment No. of pa-
rameters

No. of
summary
statistics

No. of simu-
lations

Testing

α-stable 3 11 1,250 or
5,000

5-fold CV

Anasazi ABM 4 28 1,250 or
5,000

5-fold CV

Birds ABM 2 2 or 105 5,000 5-fold CV
Bottom-up Adaptive Macroeconomics ABM 8 180 1,250 or

5,000
5-fold CV

Broken Line 1 10 1,250 or
5,000

5-fold CV

Coalescence 2 7 100,000 Single test-
ing set

COVID-19 US Masks ABM 4 51 1,250 or
5,000

5-fold CV

Earthworm 11 160 100,000 Single test-
ing set

Ecological Traits 4 4 1,250 or
5,000

5-fold CV

Ebola Policy ABM 3 31 1,250 or
5,000

5-fold CV

FishMob ABM 5 104 1,250 or
5,000

5-fold CV

Food Supply Chain ABM 5 99 1,250 or
5,000

5-fold CV

Ger Grouper ABM 4 41 1,250 or
5,000

5-fold CV

g-and-k distribution 4 11 1,250 or
5,000

5-fold CV

Governing the Commons ABM 4 44 1,250 or
5,000

5-fold CV
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Experiment No. of pa-
rameters

No. of
summary
statistics

No. of simu-
lations

Testing

Hierarchical Normal Mean 2 61 1,250 or
5,000

5-fold CV

Intra-Organizational Bandwagon ABM 2 43 1,250 or
5,000

5-fold CV

Insulation Activity ABM 3 45 1,250 or
5,000

5-fold CV

Lotka-Volterra 2 16 (noisy or
non-noisy)

100,000 Single test-
ing set

Locally Identifiable 2 2 1,250 or
5,000

5-fold CV

Moving Average (2) 2 2 1,250 or
5,000

5-fold CV

Median and MAD 2 2 or 4 1,250 or
5,000

5-fold CV

Multilevel Selection ABM 4 44 1,250 or
5,000

5-fold CV

µ-σ2 2 2 10,000 5-fold CV
NIER ABM 4 60 1,250 or

5,000
5-fold CV

Normal 25 2 25 1,250 or
5,000

5-fold CV

Pathogen 4 11 200,000 Single test-
ing set

Partially Identifiable 2 2 1,250 or
5,000

5-fold CV

Peer Review Game ABM 5 77 1,250 or
5,000

5-fold CV

O�iceMoves ABM 3 36 1,250 or
5,000

5-fold CV

RiskNet ABM 4 40 1,250 or
5,000

5-fold CV

Real Business Cycle 6 44 or 48 2,944 or
2,961

5-fold CV

Scale 2 1 1,250 or
5,000

5-fold CV

Schelling-Sakoda Extended ABM 3 77 1,250 or
5,000

5-fold CV

Standing Ovation ABM 3 20 1,250 or
5,000

5-fold CV

Sugarscape ABM 5 146 1,250 or
5,000

5-fold CV

Unidentifiable 2 1 1,250 or
5,000

5-fold CV

Toy Model 2 2 1,250 or
5,000

5-fold CV

Two-factor Theory ABM 4 41 1,250 or
5,000

5-fold CV

Wilkinson 1 1 1,250 or
5,000

5-fold CV

Wolf Sheep Predation ABM 7 33 1,250 or
5,000

5-fold CV

2.6 Simple simulation models have few parameters and summary statistics. They feature prominently in the ABC
literature both as a teaching tool and to compare di�erent algorithms. They are useful because they run quickly
but they may bias comparisons towards simpler estimation algorithms.

2.7 Ill-posed simulation models face clear identification issues: the inability to recover parameters given the in-
formation we have. There are many sources of identification issues and each ill-posed model highlights one
particular form. A good estimation algorithm facing an ill-posed problem should display two features. First, it
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shouldmaximize thequality of our estimatedparameterswhen the information is availablebutnoisy (the lesser
problem of “weak” identification). Second, estimation algorithm should recognize when the model cannot be
identified and return wide confidence intervals, signaling estimation uncertainty.

2.8 We split complicated simulationmodels into two sets, agent-basedmodels and other complicated simulations.
They face similar problems: they tend to be large, involvemany input parameters and summary statistics. From
an estimation point of view there is no qualitative di�erence between the twobut in practice agent-basedmod-
els tend to be slower and produce more summary statistics.

Algorithms

2.9 We tested nine reference table algorithms to parametrize simulations: five are ABC (Approximate Bayesian
Computation) and four are regressions-only. We ignored search-based algorithms, such as synthetic likelihood
(Wood 2010; Fasiolo &Wood 2014), ABC-MCMC (Hartig et al. 2011) and Bayesian optimization (Snoek et al. 2012).
We also ignored regression-only algorithms that do not generate prediction intervals such as the deep neural
networks proposed in Creel (2017) and the elastic nets proposed in Carrella et al. (2018).

2.10 All reference table algorithms share a commonestimationprocedure. First, we ran themodel “many” times and
collected the random parameters we input and summary statistics the model outputs into a “reference table.”
The estimation algorithm allowed us to produces a rule to generalize the information in the reference table
and to go from summary statistics back to the parameters that generated them. Finally, we plugged in the real
summary statistics vector S∗ we observed from the data into this rule and obtained the estimated parameters.

ABC

2.11 The first algorithm we use was the simple rejection ABC (Pritchard et al. 1999; Beaumont et al. 2002). Start by
rankingall trainingobservationsby their euclideandistance to the testing summary statistics

∑
i (Si(θ)− S∗

i )2.
Let us ignore all training observations except the closest 10%. The distribution of θ parameters from the closest
training observations becomes the posterior of the estimate θ∗.

2.12 The second algorithm is the local-linear regression adjusted ABC (Beaumont et al. 2002). Weigh all training
observations by an Epanechnikov kernel with bandwidth equal to Euclidean the distance between the testing
summary statistics S∗ and the furthest S(θ)we would have accepted using simple rejection. Then run a local-
linear regression on the weighted training set to estimate θ∗ as the predictedE[θ|S(θ)], using the residuals of
that regression to estimate its posterior distribution.

2.13 The third algorithm, neural network ABC, inputs the same weighted training set to a feed forward neural net-
work (Blum & Francois 2010). The approach is similar to the local-linear regression described above but the
residuals are also weighted by a second regression (on the log squared residuals) to correct for heteroskedas-
ticity.

2.14 These three algorithms are implemented in the abc package (Csilléry et al. 2012) in R. We used the package
default settings for its neural networks (10 networks, 5 units in the hidden layer and weight decay randomly
chosen for each network between 0.0001,0.001 and 0.01).

2.15 The fourth and fi�h algorithmare semi-automatic ABCmethodswhich “pre-process” summary statistics before
applying rejection ABC (Prangle et al. 2014). More precisely, the original summary statistics S(θ) are fed into a
set linear regressions estimating ri = E[θi|S(θ)] (one for each parameter of the model) and the values are
used as summary statistics for the simple rejection ABC. The rationale is that these regressions will project the
summary statistics into a space where rejection ABC performs better. We did this in two di�erent ways here:
by running first or fourth degree linear regressions in the pre-processing phase. This was done using the R
package abctools (Nunes & Prangle 2015) and their default parameters: using half of the training set to run the
regression and the other half to run the rejection ABC.

2.16 A feature of all ABC methods is that they are local: they remove or weight training observations di�erently
depending on theS∗ (the “real” summary statistics). Thismeans that during cross-validationweneed to retrain
each ABC for each row of the testing set.
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Regression only

2.17 Estimating parameters by regression is a straightforward process. We build a separate regression r for each θ in
the reference table as dependent variable using the summary statistics S(θ) as the independent variables. We
plug the real summary statistic S∗ in each regression and the predicted value is the estimated parameter θ∗.

2.18 The simplest algorithm of this class is linear regression of degree one. It is linear, its output is understandable
and is fast to compute. This speed permits to estimate the prediction interval of θ∗ by resampling bootstrap
(Davison & Hinkley 1997): 200 bootstrap data sets are produced and the same linear regression is run on each
one. From each regression i, their prediction βiS(θ∗) are collected and one standardized residual e is sampled
(a residual divided by the square root of one minus the hat value associated with that residual). This produces
a set of 200 βiS(θ) + ei. The 95% prediction interval is then defined by 2.5 and 97.5 percentile of this set.

2.19 In practice, predictions are then distributed with the formula:

r(S) +A+B (2)

where r(S) is the regression prediction, A is an standard error adjustment due to uncertainty about the esti-
mated coe�icients (in this caseS(β̂−βi)where β̂ is theoriginalOLSestimatedparameters, andβi is a bootstrap
estimate of the same) and B is an adjustment due to irreducible noise (in this case, a random sample of stan-
dardized residuals).

2.20 Amore complex algorithm that is not linear but still additive is the generalized additivemodel(GAM), where we
regress:

θ̂ =
∑

si(Si(θ)) (3)

si is a smooth spline transformation (see Chapter 9 in Hastie et al. 2009; also Wood & Augustin 2002). To do so,
we used the mgcv R package (Wood 2017, 2004). The bootstrap prediction interval for the linear regression was
too computationally expensive to replicate with GAMs. Instead, prediction intervals are produced by assuming
normal standard errors (generated by the regression itself) and by resampling residuals directly: we generate
10,000 draws of z(S(θ)) + εwhere z is normally distributed with standard deviation equal to regression’s stan-
dard error at S(θ) and εwas a randomly drawn residual of the original regression. The 95% prediction interval
for θ∗ is then defined by 2.5 and 97.5 percentile of the generated z(S(θ∗)) + ε set.

2.21 A completely non-parametric regression advocated in Raynal et al. (2019) is the random forest (Breiman 2001).
This has been implemented in two ways. First, as a quantile random forest (Meinshausen 2006), using in
quantregForest R package (Meinshausen 2017); prediction intervals for any simulation parameter θ∗ are the
predicted 2.5 and 97.5 quantile at S(θ∗). Second, as a regression random forest using the ranger and caret
packages in R (Wright & Ziegler 2017; Kuhn 2008). For this method, we generate prediction intervals as in GAM
regressions. 10,000 draws of z(S(θ)) + ε are generatedwhere z is normally distributedwith standard deviation
equal to the infinitesimal jackknife standard error (Wager et al. 2014) at S(θ) and ε is a resampled residual; the
2.5 and 97.5 percentile of the z(S(θ∗)) + ε set are then taken as our prediction interval.

Results

Point performance

3.1 Table 2 summarizes the performance of each algorithm across all identifiable estimation problems (here de-
finedas thosewhereat least onealgorithmachievesperformanceof0.1 or above). Estimationby randomforests
achieves the highest average performance and the lowest regret (average distance between its performance
and the highest performance in each simulation). Even so, regression random forests produce the best point
predictions only for 77 out of 226 identifiable parameters. GAM regressions account for another 69 best point
predictions.

3.2 Local linear regression and neural-networks are also useful in the ABC context, achieving the highest perfor-
mance for 47 parameters. Local linear regressions face numerical issues when the number of summary statis-
tics increases and they were o�en unable to produce any estimation. The performance of neural network ABC
could be further improvedby adjusting its hyper-parameters, but thiswould quickly accrue high computational
costs. The Appendix contains a table with the performance for all parameters generated by each algorithm.
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Table 2: Table showing for each algorithm howmany parameters were
best estimated by that algorithm; regret, defined as themedian% loss
between the performance of the algorithm and the best performance
in each estimation; themedian performance overall. Only estimations
for which at least onemethod achieved performance above 0.05 were
considered.

Algorithm # of times highest performance Regret Median performance

Rejection ABC 2 -0.518 0.240
Semi-automatic ABC 4D 1 -0.256 0.437
Semi-automatic ABC 1D 4 -0.310 0.388
Local-linear ABC 16 -0.083 0.560
Neural Network ABC 33 -0.103 0.502
Linear Regression 11 -0.232 0.399
GAM 69 -0.034 0.518
Quantile Random Forest 14 -0.039 0.556
Regression Random Forest 77 -0.009 0.566

3.3 It is important to note that the advantages of random forests become apparent only when estimating agent-
basedmodels. Simpler estimation algorithms perform just as well or better in smaller problems. This is shown
in Table 3. This implies that interactions between summary statistics as well as the need to weigh them care-
fully matters more when estimating agent-based models than simpler simulations, justifying the additional
algorithm complexity.

Table 3: Table showing howmany times each algorithm had the high-
est performancewhenestimatingaparameter arrangedby typeof sim-
ulation problem

Algorithm ABM Complicated Ill-posed Simple

Rejection ABC 0 0 1 1
Semi-automatic ABC 4D 0 0 0 1
Semi-automatic ABC 1D 3 0 0 1
Local-linear ABC 1 3 1 11
Neural Network ABC 22 7 0 4
Linear Regression 3 0 4 4
GAM 39 10 9 11
Quantile Random Forest 11 2 0 1
Regression Random Forest 58 8 1 10

3.4 Another important qualification is that random forests tend to perform better for the parameters where max-
imum performance is below 0.3. This is intuitive because we expect non-linear regressions to function even
when summary statistics were noisy and uninformative but it also meant that many of the parameters that
were best estimated by random forests remain only barely identified (see Table 4).

Table 4: Table showing howmany times each algorithm had the high-
est performance when estimating a parameter, arranged by best per-
formance achieved by any algorithm for that parameter.

Algorithm 0.1-0.3 0.3-0.5 0.5-0.7 0.7-1

Linear Regression 2 1 2 6
Local-linear ABC 3 3 3 7
GAM 10 7 20 32
Neural Network ABC 2 9 9 13
Rejection ABC 1 0 1 0
Quantile Random Forest 0 1 7 6
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Algorithm 0.1-0.3 0.3-0.5 0.5-0.7 0.7-1

Regression Random Forest 23 9 26 19
Semi-automatic ABC 1D 1 3 0 0
Semi-automatic ABC 4D 0 0 1 0

3.5 Table 5 lists the number of identification failures: parameters for which the algorithm performance was below
0.1 but at least a competing algorithm achieved performance of 0.3 or above. In other words, we are tabulating
cases where the parameter are identified but an estimation algorithm fails to do so. Local-linear regression
struggled with the “natural mean hierarchy” simulation. Linear regression failed to estimate the b parameter
from the Lotka-Volterra models, the σ parameter from the normal distribution and the A parameter from the
ecological traits model. Random forests failed to identify µ and δ from the RBC macroeconomic model. GAM
regressions, in spite of having o�en been the best estimation algorithm, failed to identify 10 parameters, all in
agent-basedmodels (particularly in “Sugarscape” and “Wolf-Sheep predation”).

3.6 Table 5 also shows mis-identifications, cases where an algorithm estimated significantly worse than using no
algorithm at all (performance is below -0.2). These are particularly dangerous failures because the estimation
algorithm “thinks” it has found some estimation pattern which proves to be worse than assuming white noise.
Mis-identification seems to apply asymmetrically: it is more common for complicated approximate Bayesian
computations and simple regressions.

Table 5: In this table we tabulate the number of identification failures
and misidentifications for each algorithm. Identification failures are
parameters where the algorithm had performance below 0.1 but at
least another algorithm had performance above .3. Misidentification
occurs whenever an algorithm achieves negative performance below
-0.2 i.e. estimating significantly worse than just predicting the average

Algorithm Identification Failures Mis-identifications

Rejection ABC 32 2
Semi-automatic ABC 4D 2 0
Semi-automatic ABC 1D 2 0
Local-linear ABC 9 8
Neural Network ABC 1 5
Linear Regression 13 17
GAM 13 3
Quantile Random Forest 3 0
Regression Random Forest 3 0

3.7 Figure 1 compares algorithms pairwise with respect to their performance. Even the “best” algorithm, random
forest, has only a 52% chance of doing better than GAMs and performsworse than neural-network ABC for 30%
of the parameters. The humble first degree linear regression (even a�er accounting for its identification failures
andmis-identifications) wins more than half of the comparisons against any ABC except neural-networks.

3.8 While there was no overall winner, this does not mean that the algorithm choice is unimportant. On average,
we improvedpoint predictionperformancemore by choosing the right algorithm thanquadrupling the training
data size. Toprove this point, we focus onall parameters thatwere estimatedbothwith 1,250 and5,000 training
simulations. Across 237 estimated parameters, switching from the worst to the best algorithm improves point
prediction performance on average by 0.323 (standarddeviation of 0.248, 241 observations) and switching from
median to best algorithm improves performance by 0.230 (standard deviation of 0.204, 241 observations). Qua-
drupling the number of training runs but using the same estimation algorithm increases performance by only
0.0370 (standard deviation of 0.0736, 812 observations).

Identification failures in agent-basedmodels

3.9 The same approach used to rank estimation algorithms can be used to diagnose whether the model can be
identified at all: if all algorithms fail to achieve cross-validation performance above a threshold then the pa-
rameter cannot be identified. Table 6 lists how many parameters we failed to identify for each agent-based
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Figure 1: Percentage of times algorithm 1 has higher performance than algorithm 2 for all estimations where
at least one algorithm achieves .1 or more performance. A blue cell means that algorithm 1 performs generally
better, a red cell means that algorithm 2 does.
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model. We used two performance thresholds: “serious identification failures” were parameters where the best
performance among all algorithms was below 0.1 and “identification failures” when the best performance was
below 0.30. The 0.30 threshold derives from the “scale” model, the canonical example of impossible identifi-
cation, which in our tests achieves maximum performance of 0.30. Ten out of 21 agent-based models have at
least one serious identification failure, 14 out of 21 have at least one identification failure.

Table 6: Table showing for each agent-based model estimated, how
many parameters failed to be identified (which we define here as
achieving best performance below 0.30) and how many seriously so
(best performance below 0.1). 10 out of 21models had at least one seri-
ous identification failure. For each agent-based model listed here, we
only consider the estimation using the highest number of training sim-
ulations and summary statistics available.

Agent-based Model # of parameters # Identification Failures # Serious Identification Failures

Anasazi 4 2 2
Bottom-up Adaptive Macroeconomics 8 6 3
Intra-Organizational Bandwagon 2 1 1
Governing the commons 4 1 0
COVID-19 US Masks 4 3 2
Earthworm 11 5 3
Ebola Policy 3 1 1
FishMob 5 4 2
Ger Grouper 4 3 1
Two-factor Theory 4 0 0
Insulation Activity 3 2 1
Multilevel Selection 4 1 0
NIER 7 1 0
Peer Review Game 5 1 0
O�iceMoves 3 0 0
RiskNet 4 0 0
Schelling-Sakoda Extended 3 0 0
Standing Ovation 3 0 0
Sugarscape 5 0 0
Food Supply Chain 5 1 1
Wolf Sheep Predation 7 1 0

3.10 In applied work, identification failures will be more common than the table suggests for two reasons. First, we
did not model lack of data which o�en reduces the quality of summary statistics. For example, in the “Intra-
Organizational Bandwagon” agent-based model we assumed the ability to monitor adoption thresholds for
employees, something impossible in real world applications. Second, the thresholds for failure are somewhat
arbitrary and in some applied work wemay require higher performance for estimation to be useful.

3.11 Because identification failure hasmany causes, one needs to look at eachmodel to diagnose its source. Some-
times, we failed to estimatemultiple parameters because they governed the samebehaviour inways thatmade
themhard to separate. For example, fertility in theAnasazimodel dependsonboth abase fertility rate andmax-
imum fertile age and it is hard to disentangle the two by just looking at aggregate population dynamics. Some-
times, we failed to estimate parameters because their original bounds are small enough that their e�ects are
muted: in the COVID agent-based model the parameter controlling what percentage of the population wears
N95 masks varies between 0 and 5% and on its own this has no appreciable e�ect to the overall aggregate
behaviour of the contagion. Sometimes a parameter was dominated by others: in the Ebola model the param-
eter describing the ability to trace cases cannot be identified because two other parameters (the e�ectiveness
of the serum and the delay with which it is administered) matter far more to the overall aggregate dynamic.
Sometimes parameters just did not have much of an impact to the model, as for example the overall standard
deviation of catchability in the FishMob agent-basedmodel.

3.12 Understanding the nature of identification failures helped us to find ways to overcome them or judge whether
it is a problem at all. Disentangling multiple parameters that govern the same behaviour can be done by col-
lecting new kinds of data or simplifying themodel. Low performance of parameters with very narrow ranges is
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a signal of unreasonable accuracy requirements (or alternatively, low power of the data). The low performance
of dominated parameters has valuable policy implications since it shows some dynamics to be less important
than others to control.

3.13 The main inconvenience with testing for identification is that we need to test the performance of many esti-
mation algorithms before being confident of the diagnosis. When one algorithm achieves low performance, it
may be the algorithm’s fault rather than the model’s. Only when all algorithms achieve low performance, can
we be more confident about the model not being identifiable. If our threshold for identifiability is 0.30, the
smallest set of algorithms that finds all the identifiable parameters for all the examples in the paper is of size 4:
random forest, GAM, neural network ABC and local-linear ABC. However, it is probable thatwithmore examples
wewould expose at least one casewhere identification is achieved exclusivelywith another algorithm. In short,
a good identification test will require us to test as many estimation algorithms as possible.

Coverage

3.14 To test the quality of the confidence intervals, Table 7 shows how o�en the real testing parameter is within
the confidence intervals estimated by each algorithm. Two methods that achieved low point prediction per-
formance, rejection ABC and linear regression, achieve best coverage rates for 35% of the parameters. This
underscores how even when point prediction is di�icult, a good estimation algorithm will produce confidence
intervals that contain the real parameters with the pre-specified confidence level. Linear regressions have the
lowestmeanandmediancoverageerrorwhile regression-adjustedABCs tend toproduce toonarrowconfidence
intervals.

Table 7: Table showing for each algorithm median and average cov-
erage error: the absolute di�erence between 95% and the proportion
of parameters actually falling within the algorithm’s stated 95% confi-
dence interval (out of sample). The lower the error the more precise
the algorithm. For each algorithm we also list the number of parame-
ters forwhich the stated coveragewas themost accurate out of sample
compared to the other algorithms. Finally we listed how many times
the algorithmproduces deceptively small confidence intervals (that is,
that cover only 80% or 60% of the parameter in the testing set)

Algorithm # of times
most accu-
rate

Median Cov-
erage Error

Mean Cover-
age Error

# coverage
below 80%

# coverage
below 60%

Rejection ABC 36 0.0132 0.0188 2 2

Semi-automatic ABC 4D 18 0.0169 0.0193 0 0

Semi-automatic ABC 1D 7 0.0156 0.0185 0 0

Local-linear ABC 4 0.0276 0.0816 16 8

Neural Network ABC 9 0.0929 0.1824 85 42

Linear Regression 64 0.0064 0.0077 0 0

GAM 72 0.0062 0.0161 6 0

Quantile Random Forest 20 0.0260 0.0298 5 0

Regression Random Forest 48 0.0092 0.0130 0 0

3.15 When a parameter was unidentifiablemost algorithms returned very wide confidence intervals. This is a useful
feature that warns the user about the poor point estimation quality. Observing confidence intervals is however
not a good substitute for a full cross-validation test. This is because, as we show in Table 7, it is possible for the
confidence intervals to be too small, covering only 80% or even 60% of the true parameters. In other words,
sometimesestimationalgorithmsaremistakenly confident about their accuracyandweneedacross-validation
coverage test to verify. Perversely coverage errors aremore likelywith algorithms that achievedhigh estimation
performance (random forests, GAMs and neural networks).
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Discussion

A simple identification testing protocol even if we are not interested in estimation

4.1 In this paper, we argued that cross-validation testing is useful to rank estimation algorithms. There are however
many models where estimation is not a major concern. Models focusing on theoretical exposition, illustration
or description (to use Edmonds et al. 2019 definitions) are not concerned with the true value of any specific
parameter. We argue however that testing ought to be done even under these circumstances to notice identifi-
cation issues.

4.2 Identification represents an important feature of the model: whether it can be fit to data at all. We claim that
uncovering identification is of the same importance as sensitivity analysis and the two proceduresmutually re-
inforce one another. An un-identifiable parametermust be tested during sensitivity analysis over a large range,
since data will never narrow its value down. Vice-versa finding during sensitivity analysis that a model output
is insensitive to a parameter provides an important clue to explain identification issues. Performing only sensi-
tivity analysis and preferringmodels that are less sensitive creates a bias that leads us to prefer less identifiable
models

4.3 Ideally, we would like to test for identification without ever running new simulations. We can do this with
reference-tablemethodsby recycling the runsused for global sensitivity analysis (Ligmann-Zielinskaet al. 2020;
Magliocca et al. 2018; ten Broeke et al. 2016). Given the results from Section 3.9, we suggest at least looking at
the performance of random forests, GAMs, neural network ABC and local-linear regression ABC. If performance
is below 0.30 for all, we can be relatively confident that the parameter is not identifiable.

Weworry toomuch about e�iciency and too little about testing

4.4 Many recent developments in estimation of simulations have focused on e�icient search(see the various al-
gorithms featured in Cranmer et al. 2020 review of the “frontier” of simulation-inference). While we welcome
higher estimation e�iciency, we think this objective is o�en pursued at the expense of testing e�iciency.

4.5 The pursuit of estimation e�iciency can be explained by the desire to build complicatedmodels that run slowly
but can still fit to data. The more e�icient the estimation algorithm, the bigger our model can get and still be
estimated in a given computational budget. Here, however, we highlighted the trade-o� between estimation
and testing e�iciency. Recognizing that faster estimation comes at the price of slower testing, there is again an
incentive to focus on the kind of simpler agent-basedmodels advocated, for example, in Miller & Page (2009).

4.6 We are not claiming that search-based estimation algorithms should not be used. Given how context-
dependent performance is there must be many agent-based models that will be better estimated by
search-based algorithms. Our argument is that even when using a search-based algorithm we should perform
a cross-validation test using reference-table methods first, take notice of the unidentified parameters and
discount the value that search-based algorithms assign to them.

Estimation testing is not validation

4.7 The idea of cross-validation testing as a way to judge estimation accuracy, as well as the older statistical con-
vergence literature it tries to replace, is premised on a lie: the existence of the mythical “real” parameters. The
“real” parameters are the parameters of the “real” model that generated the data we observe. In other words,
during estimation and cross-validation we are forced to assume our model to be true when we know it to be
false. This is what Gelman & Shalizi (2013) calls “methodological fiction”.

4.8 Gelman & Shalizi (2013) goes on to stress that the question is not whether the model is true, but whether it is
close enough to be useful. Establishing whether the model is “good enough” is the process of validation. The
cross-validation tests we are advocating for here are not a validation tool but are instead part of the estimation
procedure that precedes validation. Once we have an estimated model, we can test its validity through, for
example, out of sample predictions or qualitative responses to shocks in ways experts find believable.
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Conclusion

4.9 This paper provides two key results. First, if we are concerned primarily with the quality of point estimates,
there is no substitute for trying multiple algorithms and ranking them by cross-validation. GAM and random
forests provide a good starting point. Second, identification failure is common in agent-based models but can
be spotted with the same cross-validation tests.

4.10 We know of no agent-based model that used cross-validation to choose how to estimate its parameters (with
the exception of the comparison between ABC MCMC and simulated minimum distance in Grazzini et al. 2017).
The common approach seems to be to pick one estimation algorithm and apply it. We have proven here that
this is sub-optimal: no estimation algorithm seems to be a priori better than the others.

4.11 We should abandon the hope that a large enough literature surveywill uncover the single best estimation algo-
rithm to use. Testing estimation algorithms is computationally expensive and we would have preferred such a
result. Unfortunately, we found here that performance is context dependent and there is no alternative to test
methods for each agent-basedmodel.

4.12 Papers proposing new estimation algorithms tend to showcase their approach against one or two examples. It
wouldhelp the literature tohavea larger, standardized set of experiments togaugeanynewcomer. Wehope this
paper and its code repository to be a first step. However, it may be impossible to find an estimation algorithm
that is always best and we should prioritize methods for which cross-validation can be done without having to
runmore simulations.

4.13 Theno free lunch theorem(Wolpert&Macready 1995) argues thatwhenaveragingover theuniverseof all search
problemsall optimization algorithms (including randomsearch) performequally. A supervised learning version
of the same (Wolpert 2011) suggests that “on average” all learning algorithms and heuristics are equivalent.
These are deeply theoretical results whose practical applications are limited: nobody has ever suggested aban-
doning cross-validation because of it, for example. However, some weak form of it seems to hold empirically
for simulation inference: for each estimation algorithm there is a simulation parameter for which it does best.
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Appendix

Experiment Descriptions

Simple simulations

Wecomputedperformance and coverage for all the experiments in this sectionby 5-fold cross-validation: keep-
ing one fi�h of the data out of sample, using the remaining portion to train our algorithms and doing this five
times, rotating each time the portion of data used for testing. We ran all the experiments in this section twice:
once the total data is 1,250 simulation runs and once it is 5,000 simulation runs.

α-stable: Rubio & Johansen (2013) used ABC to recover the parameters of an α-stable distribution by looking
at sample of 1096 independent observations from it. We replicated this here using the original priors for the
three parameters (α ∼ U(1, 2), µ ∼ U(−0.1, 0.1), σ ∼ U(0.0035, 0.0125)). We used 11 summary statistics
representing the 0%,10%,. . .,100% deciles of each sample generated.

g-and-k distribution: Karabatsos&Leisen (2017) usedABC toestimate theparametersof theg-and-kdistribution
(an extension of the normal distribution whose density function has no analytical expression). We replicated
this here using the gk package in R (Prangle 2017). We wanted to retrieve the 4 parameters of the distribution
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A,B, g, k ∼ U [0, 10] given the 11 deciles (0%,10%,. . . ,100%) of a sample of 1,000 observations from that distri-
bution.

Normal 25: Sometimes, su�icient summary statistics exist but the modeller may miss them and use others
of lower quality. In this example, 25 i.i.d observations from the same normal distribution ∼ N(µ, σ2)|µ ∼
U(−5, 5);σ ∼ U(1, 10) were used directly as summary statistics to retrieve the two distribution parameters
µ, σ2.

Moving Average(2): Creel (2017) used neural networks to recover the parameters of the MA(2) process with β1 ∼
U(−2, 2);β2 ∼ U(−1, 1). We generated a time series of size 100 and we summarise it with the coe�icients a
AR(10) regression.

Median and MAD: As a simple experiment we sampled 100 observations from a normal distribution
µ ∼ U(−5, 5) and σ ∼ U(0.1, 10) and we collected as summary statistics their median and median ab-
solute deviation, using them to retrieve the original distributions. We ran this experiment twice, the second
time adding two useless summary statistics S3 ∼ N(3, 1) and S4 ∼ N(100, .01).
µ-σ2: The abc package in R (Csilléry et al. 2012) provides a simple dataset example connecting two observed
statistics: “mean”" and “variance” as" generated by the parameters µ and σ2. The posterior that connects the
two derives from the Iris setosa observation (Anderson 1935). The dataset contained 10,000 observations and
we log-transformed σ2 when estimating.

Toy Model: A simple toy model suggested by the EasyABC R package (Jabot et al. 2013) involves retrieving two
parameters, a ∼ U [0, 1]; b ∼ U [1, 2], observing two summary statistics S1 = a+ b+ ε1;S2 = ab+ ε2|ε1, ε2 ∼
N(0, .12).
Ecological Traits: The EasyABC R package (Jabot et al. 2013) provides a replication of Jabot (2010), a trait-based
ecological simulator. Here, we fixed the number of individuals to 500 and the number of traits to 1, leaving four
free parameters: I ∼ U(3, 5), A ∼ U(0.1, 5), h ∼ U(−25, 125), σ ∼ U(0.5, 25). We wanted to estimate these
with four summary statistics: richness of community S, shannon indexH , mean and skewness of traiv values
in the community.

Wilkinson: Wilkinson (2013) suggested a simple toy model with one parameter, θ ∼ U(−10, 10), and one sum-
mary statisticS1 ∼ N(2(θ+ 2)θ(θ− 2), 0.1 + θ2). We ran this experiment twice, once where the total data was
1,250 sets of summary statistics and one where the total data was 5,000 sets of summary statistics.

Ill-posedmodels

As with simple simulations, we tested all the experiments with 5-fold cross validation and ran each twice: once
where the total reference table had 1,250 total rows, and once where it had 5,000.

Broken Line: we observed 10 summary statistics S = (S0, . . . , S9) generated by:

Si =
{

ε i < 5
βi+ ε i ≥ 5 (4)

and where β ∼ U(0, 2)
Hierarchical Normal Mean: Raynal et al. (2019) compared ABC to direct random forest estimation in a “toy” hi-
erarchical normal meanmodel:

yi|θ1, θ2 ∼ N(θ1, θ2)
θ1|θ2 ∼ N(0, θ2)
θ2 ∼ IG(κ, λ)

(5)

where IG(·)was the inverse gamma distribution. We wanted to estimate θ1, θ2 given a sampled vecor y of size
10 which is described by 61 summary statistics: the mean, the variance, the median absolute deviation of the
sample, all possible combinations of their products and sums aswell as 50 noise summary statistics∼ U(0, 1).
Locally Identifiable: macroeconomics o�en deals with structural models that are only locally identifiable (see
Fernández-Villaverde et al. 2016). These are models where the true parameter is only present in the data for
some of its possible values. Here, we used the example:

Si =
{
y ∼ N(θ1, θ2) θ1 > 2, θ2 > 2
y ∼ N(0, 1) Otherwise (6)
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where θ1, θ2 ∼ U [0.1, 5], each simulation we sampled the vector y of size 100 and we collected its mean and
standard deviation as summary statistics.

Scale: a common source of identification failure in economics occurs when “when two structural parameters
enter the objective function only proportionally,making themseparately unrecoverable” (Canova&Sala 2009).
In this example, two people of weightw1, w2 ∼ U [80, 150] step together on a scale whose reading S1 = w1 +
w2 + ε|ε ∼ N(0, 1) is the only summary statistic we can use. This problemwas locally identifiable to an extent:
very low readings means both people are light (and viceversa).

Unidentifiable: in some cases, the model parameters are just unrecoverable and we hope that our estimation
algorithm does not tell us otherwise. In this example, the three summary statistics S1, S2, S3 ∼ N(x, 1)|x ∼
U [0, 50] provided no information regarding the two parameters we were interested in: µ ∼ U(0, 50), σ ∼
U(0, 25).
Partially Identifiable: Fernández-Villaverde et al. (2016) mention how partial identification can occur when a
model is the real data generating process conditional on some other unobserved parameter. This makes the
model identifiable in some samples but not others. In our case, we used a slight modification of the original:
we tried to retrieve parameter θ ∼ U [1, 5] when we observed mean and standard deviation of a size 10 vector
y generated as follows:

y ∼ N(θ · x, 1), x =
{

0 with probability 1
2

∼ N(1, 1) Otherwise (7)

Complicatedmodels

Birds ABM: Thiele et al. (2014) estimated the parameters of a simple agent-based bird population model (origi-
nally in Railsback & Grimm 2011) with ABC. Their paper provided an open source NETLOGO implementation of
themodel. Themodel depends on two parameters: scout-prob∼ U [0, 0.5] and survival-prob∼ U [0.95, 1].
We ran this experiment twice, oncewhere there are only 2 summary statistics: mean abundance andmean vari-
ation over 20 years, and one where are 105 (comprising the average, last value, standard deviation, range and
the coe�icients of fitting an AR(5) regression to the time series of abundance, variation, months spent foraging
and average age within bird population). This experiment is useful because in the original specification (with 2
summary statistics) the scout-prob parameter is unidentifiable. For each experiment we ran the model 5000
times.

Coalescence: theabctoolspackage (Nunes&Prangle 2015) provides 100,000observationsof 7 summary statis-
tics from a DNA coalescent model depending on two parameters θ ∼ u[2, 10] and ρ ∼ U [0, 10]. Blum et al.
(2013) in particular used this dataset to compare the quality of ABC dimensionality reduction schemes to better
estimate the two parameters. This dataset was too big for cross-validation. Thus, in this experiment, we simply
used 1,250 observation as the testing data-set and the rest for training.

Lotka-Volterra: Toni et al. (2009) showcases SMC-ABC with a 2 species deterministic Lotke-Volterra model with
2 parameters: a, b. {

dx
dt = ax− yx
dy
dt = bxy − y (8)

Here, we assumed a, b ∼ U(0, 10) (avoiding the negative values in the original paper). For each simulation,
we sampled 8 observations for predator and prey at time t = 1, 1.2, 2.4, 3.9, 5.7, 7.5, 9.6, 11.9, 14.5 (as in the
original paper). We ran this experiment twice, once where data was observed perfectly and one where to each
observation we added noise ∼ N(0, 0.5). In both experiments, we did not perform 5-fold cross validation,
rather we generate 100,000 sets of summary statistics for training and another 1,250 sets of summary statistics
to test the parametrization.

Real Business Cycle: we wanted to parametrize the default Real Business Cycle model (a simple but outdated
class ofmacro-economicsmodels) implemented in the gEconRpackage (Klima et al. 2018). It had 6parameters
(β, δ, η, µ, φ, σ) andwe tried to parametrize them in two separate experiments. In the first, we used as summary
statistics the -10,+10 cross-correlation table between output Y , consumption C, investment I , interest rates r
and employment L (44 summary statistics in total). For this experiment, we had 2,944 distinct observations.
In the second experiment, we followed Carrella et al. (2018) using as summary statistics (i) coe�icients of re-
gressing Y on Yt−1, It, It−1, (ii) coe�icients of regressing Y on Yt−1, Ct, Ct−1, (iii) coe�icients of regressing
Y on Yt−1, rt, rt−1, (iv) coe�icients of regressing Y on Yt−1, Lt, Lt−1, (v) coe�icients of regressing Y on C, r
(vi) coe�icients of fitting AR(5) on Y , (vii) the (lower triangular) covariance matrix of Y, I, C, r, L. 48 summary
statistics in total. For this experiment, we had 2,961 distinct observations.
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Pathogen: another dataset used by Blum et al. (2013) to test dimensionality reduction methods for ABC con-
cerned the ability to predict pathogens’ fitness changes due to antibiotic resistance (the original model and
data is from Francis et al. 2009). Themodel had four free parameters and 11 summary statistics. While the orig-
inal data-set contained 1,000,000 separate observations, we only sampled 200,000 at random for training the
algorithms and 1,250 more for testing.

Earthworm: van der Vaart et al. (2015) calibrated an agent-basedmodel of earthworms with rejection ABC. The
simplified version of themodel contained 11 parameters and 160 summary statistics. The original paper already
carried out cross-validation proving some parameters to be unidentifiable: the model contained a mixture of
unidentified, weakly identified and well identified parameters. We used 100,000 runs from the original paper,
setting 1,250 aside for out of sample testing and using the rest for training.

COMSES Agent-basedmodels

Strictly speaking, agent-based models are just another kind of complicated simulation. Agent-based models
tend to be slow to run, containmanymoving parts and interacting components and they tend to producemany
summary statistics as they picture the evolution of systems along many dimensions. The agent-based models
we describe here are all Netlogo models available at the COMSES computational model library (Rollins et al.
2014) and we tried sampling across disciplines.

• Anasazi: This simulation follows Janssen (2009) replication of the famous Kayenta Anasazi agent-based
model (Axtell et al. 2002). We varied four parameters: harvestAdjustment, a productivity variable,
harvestVariance, the variance of the productivity, as well as Fertility, representing the fertility rate
and FertilityEndsAge which represents the maximum fertile age for the population. The first three
parameters had uniform priors ∈ [0.1, 0.9]while the last parameter was uniform between 25 and 37. We
only looked at one time series, i.e., the total number of households. We generated summary statistics on
this time series by looking at its value every 25 time steps as well as its maximum, minimum, average,
standard deviation and trend. We ran each simulation for 550 steps.

• Bottom-up Adaptive Macroeconomics: we use Platas-López et al. (2019) implementation of the
BAM (Delli Gatti et al. 2011) and we varied eight parameters: wages-shock-xi ∼ U [0.01, 0.5],
controlling wage shocks due to vacancies, interest-shock-phi∼ U [0.01, 0.5], controlling in-
terest shocks due to contracting, price-shock-eta∼ U [0.01, 0.5], parameter exploring price
setting, production-shock-rho∼ U [0.01, 0.5], parameter exploring production setting, v∼
U [0.05, 1], capital requirements coe�icient, beta∼ U [0.05, 1], preference for smoothing consumption,
dividends-delta∼ U [0.01, 0.5], fraction of profits returned as dividends, size-replacing-firms∼
U [0.05, 0.5], parameter governing inertia in replacing bankrupt firms. We looked at 9 time series:
unemployment rate, inflation, net worth of firms, production, wealth of workers, le�over inventory, CPI
index, real gdp and total household consumption. We turned these time series into summary statistics
by looking at their value every 25 time steps as well as their maximum, minimum, average, standard
deviation and trend. We ran each simulation for 400 steps with 100 steps of spinup (where data was not
collected).

• Intra-Organizational Bandwagon: Secchi & Gullekson (2016) simulates the adoption of innovation within
an organization depending on tolerance to bandwagons. We varied two variables: vicinity∼ U [2, 50]
representing the size of the space workers were aware of when thinking about jumping on a bandwagon
and K∼ U [0.1, 0.9] representing the ease with which imitation occurs. We followed four time series: the
numberof adopters, themean threshold for adoption, its standarddeviationand themaximumthreshold
in the organization. We turned these time series into summary statistics by looking at their value every
50 time steps as well as their maximum, minimum, average, standard deviation and trend. We ran each
simulation for 250 steps.

• Governing the Commons: an example of socio-ecological system from an introductory textbook (Janssen
2020). A landscape of logistic-growth patches were harvested by agents who can imitate each other’s
threshold for action. We modified four parameters: discount∼ U [0.9, 1], the discount rate in each
agent’s utility,costpunish∼ U [0, 0, 1], the percentage of wealth lost by agents monitoring others,
costpunished∼ U [0, 0.2], the percentage of wealth lost by agents caught having too much wealth
and percent-best-land∼ U [5, 25] which determines carrying capacity. We tracked four time series:
average unharvested resource remaining, average wealth of the turtles and average threshold before
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harvesting. We turn these time series into summary statistics by looking at their value every 50 time steps
as well as their maximum, minimum, average, standard deviation and trend. We run each simulation for
500 steps.

• COVID-19 Masks: Brearcli�e (2020) is a simple epidemiological model where randomly moving
agents progress through a COVID-19 SIR model with only masks to slow down the spread. We
modified four parameters infectiousness∼ U [80, 99], representing how easily the disease
spread on contact and three parameters representing the availability of masks of di�erent forms:
masks-n95∼ U [0, 5],masks-medical∼ U [0, 30],masks-homemade∼ U [0, 65]. We tracked three time
series: number of exposed, recovered and infected agents. We turned these time series into summary
statistics by looking at their value every 25 time steps as well as their maximum, minimum, average,
standard deviation and trend. We ran each simulation for 400 steps.

• Ebola Policy: Kurahashi (2016) replicated and enhanced the original smallpox agent-based model
in Epstein et al. (2012) by adding public transportation and Ebola-specific treatment strategies. We
modified three parameters: trace-delay∼ U [1, 10], days it takes to run an epidemiological trace for
an infected individual, trace-rate∼ U [0.3, 0.7], the probability of tracing each individual correctly,
serum-effect∼ U [0, 1] which represents the ability of the serum to inoculate the patient. We track
three time series: number of infections, recoveries anddeaths. We turned these time series into summary
statistics by looking at their value every 25 time steps as well as their maximum, minimum, average,
standard deviation and trend. We ran each simulation for 500 steps.

• FishMob: a socio-economic model introduced in Lindkvist (2020). FishMob involved four fishing
areas and a diverse set of fleets moving and adapting to resource consumption. We varied five pa-
rameters: share.mobile∼ U [.01, 1] representing the percentage of fishers that can change port,
profitmax-vs-satisficers∼ U [0, 1] the percentage of fishers that maximize profits (the remaining
population acting like satisficers), intr_growthrate∼ U [0.1, 0.8] representing the average growth rate
of the stock, globalcatchabilitySD∼ U [0, 0.5] representing the standard deviation in catchability
across regions and min-viable-share-of-K∼ U [0.05, 1] which represents the depletion level below
which biomass defaults to 0. We observed eight time series: the exploitation index and total biomass
in each of the four region. We turned these time series into summary statistics by looking at their value
every 25 time steps as well as their maximum, minimum, average, standard deviation and trend. We ran
each simulation for 200 steps.

• Ger Grouper: a model of human adaptation to the mutable environment of northern Mongolia (Clark &
Crabtree 2015). We varied four parameters: gerreproduce∼ U [1, 5] which represents the probability
each step of a household with enough energy to reproduce, patch-variability∼ U [1, 100] which is
the probability per time step of any grassland to turn to bare, ger-gain-from-food∼ U [2, 20] which
represents the harvest to energy transformation ratio, and grass-regrowth-time∼ U [1, 10]which con-
trols the regrowth of the resource. We observed five time series: total population and population of each
of the four “lineages”(subpopulations that share the same cooperation rate). We turned these time series
into summary statistics by looking at their value every 50 time steps aswell as theirmaximum,minimum,
average, standard deviation and trend. We ran each simulation for 200 steps.

• Two-factor Theory: Iasiello et al. (2020) agentizes the interaction between motivation and envi-
ronment hygene in a human resources management model. The model depends on four pa-
rameters motivation-consistent-change-amount, tolerance-consistent-change-amount,
hygiene-consistent-change-amount, potential-consistent-change-amount all ∼ U [−1, 1]
which govern the changes in motivation styles or hygene factor whenever there is a mismatch between
satisfaction and dissatisfaction. We monitored three time series: the number of dissatisfied workers,
the number of workers that moved and the number of new workers. We turned these time series into
summary statistics by looking at their value every 100 time steps as well as their maximum, minimum,
average, standard deviation and trend. We ran each simulation for 1000 steps.

• Insulation Activity: a model of homeowners adoption of energy e�iciency improvements respond-
ing to both economic and non-economic motivations (Friege et al. 2016). We varied four pa-
rameters: radius∼ U [0, 10], representing the spatial range over which homeowners compare
their neighbors, av-att∼ U [−1, 1] the overall trend in general propensity to adopt insulation,
weight-soc-ben∼ U [0, 10] a scaling factor increasing the importance of positive information,
fin-con∼ U [0, 10] an inertia factor slowing down insulation adoption due to financial constraints.
We observed five time series: average age of windows, average age of roofs, total and average energy
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e�iciency rates and average heating e�iciency rates. We turned these time series into summary statistics
by looking at their value every 25 time steps as well as their maximum, minimum, average, standard
deviation and trend. We ran each simulation for 100 steps.

• Peer Review Game: Bianchi et al. (2018) simulates a set of incentive andmotivation structures that gener-
ates papers, citations and di�ering levels of scientific quality. In this paper, we focused on “collaborative
and fair” decision making where agents increased e�ort whenever they believed their paper deserved
the fate it received (high quality led to acceptance, low quality led to rejection). We varied five param-
eters: effort-change∼ U [0, .2] representing how much authors adaptad whenever a paper was peer-
reviewed, overestimation∼ U [0, .5] representing the bias authors had in evaluating their own paper,
top∼ U [1, 40] represented the number of best papers that made up the “top quality” publication list,
published-proportion∼ U [.01, 1] represented the percentage of authors that publish in a given time
step, researcher-time∼ U [1, 200]was the budget of time available to each agent. We tracked six time
series: evaluation bias, productivity loss, publication quality, quality of top publications, gini coe�icient
for publications and reviewing expenses. We turned these time series into summary statistics by looking
at their value every 25 time steps as well as their maximum, minimum, average, standard deviation and
trend. We ran each simulation for 200 steps.

• O�ice Moves: Dugger (2020) simulates the interaction between three kinds of employees (workers, shirk-
ers and posers). We vary three parameters, %_workers∼ U [2, 48] the percentage of employees that are
workers, %_shirkers∼ U [2, 48] the percentage of employees that are shirkers, and window∼ U [2, 10]
which represents the moving average smoothing factor of average performace that employees compare
themselves to. We track four time series: percentage of happy employees, percentage of happy workers,
percentage of happy shirkers and average performance. We turn these time series into summary statis-
tics by looking at their value every 25 time steps as well as their maximum, minimum, average, standard
deviation and trend. We run each simulation for 100 steps.

• Multilevel Selection: Sotnik et al. (2019) models a commons problem where agents may cooperate and
share someof thebenefitsofhigher valueareas. Wevaried fourparameters: initial-percent-of-contributors∼
U [10, 80] representing thenumberof cooperating agents at the start of the simulation, resource-size∼
U [0.1, 2] which represents the size of resource shared by cooperating agents, multiplier-effect∼
U [1, 5] scales personal contribution when valued by the common, social-pressure-vision∼ U [1, 5]
which governs how close agents need to be to force one another to contribute. We tracked five time se-
ries: di�erence between between-group andwithin-group selections, the average payo�, the percentage
of non-contributors, percentage of people that were pressurized and assortativity among contributors.
We turned these time series into summary statistics by looking at their value every 25 time steps as well
as their maximum, minimum, average, standard deviation and trend. We ran each simulation for 100
steps.

• NIER: Boria (2020) is a thesis that deals with e�iciency upgrades and the distribution of transition costs
across income groups. We varied four parameters: %_EEv_upgrade_at_NR∼ U [0.01, 0.5] e�iciency gain
due to retrofit, diminishing_returns_curve∼ U [1, 10] is a slope of a function reducing retrofit e�i-
ciency when done at already e�icient houses, %-Leaders∼ U [1, 50] is the percentage of agents that try
to convince others to upgrade, %-Stigma-avoiders∼ U [1, 50] is the percentage of population that does
not want to be the minority. We tracked ten time series: the number of households belonging to each
quartile of the energy e�iciency distribution both within and outside of the simulated district as well as
the mean and standard deviation of energy e�iciency within the district. We turn these time series into
summary statistics by their maximum, minimum, average, standard deviation and trend. We ran each
simulation for 100 steps.

• RiskNet: Will et al. (2021) is a model of risk-sharing and insurance decision for stylized smallhold-
ers. We varied four parameters: shock_prob∼ U [0.01, 0.5] the per-step probability of an adverse
shock, covariate-shock-prob-hh∼ U [0.5, 1] which correlates village-level shocks with house-
holds, shock-intensity∼ U [0, 1] percentage of sum insured that is part of the insurance payout,
insurance-coverage∼ U [0, 1] which shows the initial insurance coverage rate. We track five time
series: gini coe�icient, budget for all households, budget for uninsured households, fraction of active
households and fraction of uninsured active households. We turned these time series into summary
statistics by looking at their value every 25 time steps as well as their maximum, minimum, average,
standard deviation and trend. We ran each simulation for 100 steps.
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• StandingOvationThe standing ovation problem, originally introduced inMiller & Page (2004) but here us-
ing aNetlogoversionby Izquierdoet al. (2008), a simpleproblemwhere spectators have to synchronously
choose whether to clap standing or stay seated at the end of a performance. We varied three parame-
ters: intrinsic-prob-standing∼ U [0.1, 0.9]which represents theoriginal probability of a spectator to
stand,noise∼ U [0, 0.1]which represents the probability of a spectator randomly changing their stance
and cone-length∼ U [1, 5] which represents the cone of vision the agent has to imitate other specta-
tors. We tracked two time series: number of agents standing and number of agents feeling awkward. We
turned these time series into summary statistics by looking at their value every 10 time steps as well as
their maximum, minimum, average, standard deviation and trend. We ran each simulation for 50 steps.

• Schelling-Sakoda Extended: Flache & de Matos Fernandes (2021) implemented a 4-populations netlogo
version of the famous Schelling-Sakoda segregation model (Schelling 1971; Sakoda 1971; Hegselmann
2017).We varied three parameters: density∼ U [50, 90] representing the percentage of area that is al-
ready occupied by a hose, %-similar-wanted∼ U [25, 75] representing the percentage of people of
the same population required by any agent to prevent them from moving and radiusNeighborhood∼
U [1, 5] which determines the size of the neighborhood agents look at when looking for similiarity. We
tracked seven time series: percentage of unhappy agents, unhappy red and unhappy blue agents; per-
centage of similar agents in any neighborhood as well as this percentage computed for red and blue
agents; percentage of “clustering” for red agents. We turned these time series into summary statistics
by looking at their value every 50 time steps as well as their maximum, minimum, average, standard de-
viation and trend. We ran each simulation for 300 steps.

• Sugarscape: Janssen (2020) replicates the famous Sugarscape model (Epstein & Axtell 1996)
(restoring the trade functionality that the Netlogo model library does not have). We varied five
parameters: initial-population∼ U [100, 500] the number of initial agents, pmut∼ U [0, 0.2]
the probability of mutating vision on reproduction, maximum-sugar-endowment∼ U [6, 80] and
maximum-spice-endowment∼ U [6, 80] theamountof initial resourcesavailableandwealth-reproduction∼
U [20, 100] the amount of resources needed to spawn a new agent. We tracked six time series: the num-
ber of agents, the gini coe�icient in wealth, the total amount of sugar and spice that can be harvested,
the total number of trades and the average price. We turned these time series into summary statistics
by looking at their value every 25 time steps as well as their maximum, minimum, average, standard
deviation and trend. We ran each simulation for 500 steps.

• Food Supply Chain: van Voorn et al. (2020) presents a model of a food supply network where
higher e�iciency is achieved only by lowering resilience to shocks. We vary five parameters:
TotalProduction∼ U [100, 200] and TotalDemand∼ U [50, 200] the total available source and
sinks in the network, StockPersistence∼ U [.5, .99] represents spoilage rate per time step,
base-preference∼ U [.01, .2] represents a normalizing factor in customer preferences for each
trader and exp-pref∼ U [1, 100] which governs customers inertia into changing suppliers. We tracked
nine time series: the inventory of the three traders, total produced, total consumed, and maximum,
minimum, mean and standard deviation of consumer health. We turn these time series into summary
statistics by looking at their value every 15 time steps as well as their maximum, minimum, average,
standard deviation and trend. We span up the model for 40 time steps, then we ran the model to a
stationary, a shock and another stationary phase, each 20 time steps long.

• Wolf Sheep Predation: a model from the NETLOGO library (Wilensky & Reisman 2006), this agen-
tizes a three species (grass, sheep and wolves) Lotka-Volterra di�erential equation system. We
vary seven parameters: grass-regrowth-time∼ U [1, 100], initial-number-sheep∼ U [1, 250],
initial-number-wolves∼ U [1, 250], sheep-gain-from-food∼ U [1, 50], wolf-gain-from-food∼
U [1, 100], sheep-reproduce∼ U [1, 20] and wolf-reproduce∼ U [1, 20]. We tracked three time series:
total number of sheep, total number of wolves and total grass biomass available. We turned these time
series into summary statistics by looking at their value every 50 time steps as well as their maximum,
minimum, average, standard deviation and trend. We ran each simulation for 200 steps.

Full performance table
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Experiment Parameter Rejection
ABC

SA-
ABC
4D

SA-
ABC
1D

Local-
linear
ABC

Neural
Net-
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ABC

Linear
Re-
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sion

GAM Quantile
Ran-
dom
For-
est

Regression
Ran-
dom
For-
est

alpha-stable 5,000 alpha 0.425 0.591 0.608 0.705 0.745 0.476 0.522 0.551 0.561
alpha-stable 5,000 mu 0.633 0.727 0.727 0.993 0.989 0.993 0.993 0.992 0.993
alpha-stable 5,000 sigma 0.039 0.715 0.718 0.883 0.885 0.881 0.877 0.744 0.795
alpha-stable 1,250 alpha 0.414 0.559 0.602 0.686 0.705 0.469 0.439 0.499 0.516
alpha-stable 1,250 mu 0.656 0.718 0.705 0.993 0.983 0.994 0.993 0.990 0.993
alpha-stable 1,250 sigma 0.019 0.706 0.714 0.873 0.878 0.879 0.874 0.595 0.698
Anasazi ABM 1,250 Fertility -

0.008
-
0.020

-
0.011

NA -
0.106

0.000 0.008 -
0.064

0.004

Anasazi ABM 1,250 FertilityEndsAge -
0.004

-
0.010

-
0.003

NA -
0.080

0.035 0.026 -
0.048

0.016

Anasazi ABM 1,250 harvestAdjustment 0.488 0.386 0.362 NA 0.536 0.289 0.024 0.552 0.555
Anasazi ABM 1,250 harvestVariance 0.240 0.211 0.203 NA 0.385 0.093 0.121 0.348 0.367
Anasazi ABM 5,000 Fertility 0.006 0.016 0.011 NA 0.002 0.017 0.024 -

0.011
0.021

Anasazi ABM 5,000 FertilityEndsAge 0.002 0.013 0.020 NA 0.001 0.032 0.029 -
0.008

0.020

Anasazi ABM 5,000 harvestAdjustment 0.501 0.361 0.412 NA 0.578 0.287 0.398 0.572 0.578
Anasazi ABM 5,000 harvestVariance 0.252 0.182 0.209 NA 0.452 0.086 0.146 0.405 0.442
Bottom-up Macroeconomics ABM 1,250 beta -

0.007
NA -

0.019
NA -

0.159
< -10 -

0.005
-
0.042

-
0.020

Bottom-up Macroeconomics ABM 1,250 dividends.delta -
0.006

NA -
0.013

NA -
0.174

< -10 0.046 0.030 0.049

Bottom-up Macroeconomics ABM 1,250 interest.shock.phi -
0.009

NA -
0.031

NA -
0.160

< -10 -
0.015

-
0.030

-
0.010

Bottom-up Macroeconomics ABM 1,250 price.shock.eta 0.217 NA 0.266 NA 0.370 < -10 0.630 0.608 0.592
Bottom-up Macroeconomics ABM 1,250 production.shock.rho 0.040 NA 0.008 NA -

0.047
< -10 0.076 0.096 0.103

Bottom-up Macroeconomics ABM 1,250 size.replacing.firms -
0.006

NA -
0.010

NA -
0.181

< -10 0.028 0.056 0.060

Bottom-up Macroeconomics ABM 1,250 v -
0.012

NA -
0.003

NA -
0.108

< -10 0.142 0.159 0.179

Bottom-up Macroeconomics ABM 1,250 wages.shock.xi 0.527 NA 0.247 NA 0.716 < -10 0.795 0.802 0.811
Bottom-up Macroeconomics ABM 5,000 beta -

0.003
0.012 -

0.006
NA -

0.005
< -10 -

0.002
-
0.023

-
0.005

Bottom-up Macroeconomics ABM 5,000 dividends.delta -
0.004

0.083 0.020 NA -
0.013

< -10 0.166 0.083 0.085

Bottom-up Macroeconomics ABM 5,000 interest.shock.phi -
0.001

-
0.006

-
0.004

NA -
0.043

< -10 -
0.003

-
0.025

-
0.009

Bottom-up Macroeconomics ABM 5,000 price.shock.eta 0.232 0.318 0.321 NA 0.467 < -10 0.670 0.701 0.689
Bottom-up Macroeconomics ABM 5,000 production.shock.rho 0.032 0.073 0.056 NA 0.060 < -10 0.122 0.130 0.137
Bottom-up Macroeconomics ABM 5,000 size.replacing.firms 0.005 0.031 0.008 NA -

0.014
< -10 0.083 0.083 0.089

Bottom-up Macroeconomics ABM 5,000 v 0.003 0.095 0.058 NA 0.027 < -10 0.202 0.215 0.220
Bottom-up Macroeconomics ABM 5,000 wages.shock.xi 0.533 0.276 0.337 NA 0.770 -

5.857
0.803 0.832 0.833

Intra-Organizational Bandwagon ABM 1,250 K -
0.010

-
0.028

-
0.016

NA -
0.206

-
0.123

-
0.001

-
0.064

-
0.015

Intra-Organizational Bandwagon ABM 1,250 vicinity 0.227 0.205 0.223 NA 0.272 0.130 0.268 0.287 0.294
Intra-Organizational Bandwagon ABM 5,000 K -

0.005
-
0.009

-
0.008

-
0.022

-
0.055

-
0.013

-
0.004

-
0.047

-
0.017

Intra-Organizational Bandwagon ABM 5,000 vicinity 0.237 0.299 0.260 0.209 0.343 0.241 0.300 0.304 0.320
Birds ABM - 2 SS scout.prob 0.004 0.051 0.004 NA 0.067 0.000 0.059 -

0.024
0.013

Birds ABM - 2 SS survival.prob 0.851 0.776 0.842 NA 0.884 0.755 0.876 0.869 0.874
Birds ABM - 105 SS scout.prob 0.194 0.472 0.405 NA 0.348 0.382 0.501 0.577 0.587
Birds ABM - 105 SS survival.prob 0.731 0.791 0.757 NA 0.803 0.870 0.885 0.880 0.881
Broken Line 5,000 b 0.810 0.905 NA 0.906 0.902 0.907 0.909 0.905 0.907
Broken Line 1,250 b 0.810 0.899 NA 0.901 0.884 0.906 0.907 0.898 0.904
Coalescence rho 0.094 0.161 0.146 0.172 0.172 0.130 0.163 0.149 0.161
Coalescence theta 0.382 0.428 0.422 0.431 0.432 0.392 0.437 0.422 0.434
Governing the Commons ABM 1,250 costpunish 0.071 NA 0.099 NA NA 0.117 0.042 0.153 0.166
Governing the Commons ABM 1,250 costpunished 0.442 NA 0.497 NA NA 0.525 0.557 0.589 0.589
Governing the Commons ABM 1,250 discount 0.518 NA 0.656 NA NA 0.912 0.836 0.896 0.916
Governing the Commons ABM 1,250 percent.best.land 0.514 NA 0.664 NA NA 0.939 0.939 0.931 0.940
Governing the commons ABM 5,000 costpunish 0.083 NA 0.151 NA NA 0.139 0.297 0.240 0.249
Governing the commons ABM 5,000 costpunished 0.449 NA 0.521 NA NA 0.540 0.633 0.633 0.634
Governing the commons ABM 5,000 discount 0.516 NA 0.683 NA NA 0.911 0.949 0.927 0.937
Governing the commons ABM 5,000 percent.best.land 0.529 NA 0.690 NA NA 0.939 0.939 0.932 0.941
COVID-19 US Masks ABM 1,250 infectiousness 0.001 -

0.015
-
0.013

NA -
0.164

-
0.009

0.010 -
0.044

-
0.002

COVID-19 US Masks ABM 1,250 masks.homemade 0.445 0.398 0.413 NA 0.356 0.414 0.514 0.480 0.501
COVID-19 US Masks ABM 1,250 masks.medical 0.102 0.070 0.102 NA -

0.064
0.094 0.130 0.072 0.115

COVID-19 US Masks ABM 1,250 masks.n95 -
0.013

-
0.040

-
0.024

NA -
0.246

-
0.021

0.000 -
0.084

-
0.030

COVID-19 US Masks ABM 5,000 infectiousness 0.006 0.008 -
0.001

-
0.036

-
0.037

0.006 0.007 -
0.039

0.001

COVID-19 US Masks ABM 5,000 masks.homemade 0.456 0.450 0.439 0.455 0.467 0.439 0.513 0.495 0.511
COVID-19 US Masks ABM 5,000 masks.medical 0.121 0.118 0.119 0.116 0.088 0.124 0.140 0.108 0.135
COVID-19 US Masks ABM 5,000 masks.n95 0.005 0.002 -

0.004
-
0.020

-
0.035

0.001 0.004 -
0.035

0.001

Earthworm B_0 -
0.021

-
0.019

-
0.019

NA -
0.019

0.003 0.003 -
0.012

0.000

Earthworm E 0.216 0.254 0.261 NA 0.455 0.384 0.485 0.688 0.676
Earthworm E_c 0.023 0.048 0.038 NA 0.038 0.039 0.058 0.057 0.060
Earthworm E_s -

0.002
0.000 0.000 NA -

0.003
0.009 0.011 -

0.008
0.006

Earthworm IGm 0.196 0.327 0.334 NA 0.643 0.544 0.708 0.746 0.768
Earthworm M_b 0.053 0.306 0.284 NA 0.648 0.934 0.947 0.932 0.872
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Earthworm M_c 0.051 0.112 0.101 NA 0.099 0.111 0.135 0.151 0.160
Earthworm M_m 0.304 0.341 0.267 NA 0.581 0.867 0.900 0.940 0.951
Earthworm M_p 0.117 0.268 0.118 NA 0.391 0.132 0.462 0.577 0.550
Earthworm r_B 0.236 0.330 0.326 NA 0.603 0.695 0.888 0.870 0.862
Earthworm r_m 0.026 0.118 0.100 NA 0.105 0.126 0.147 0.147 0.150
Ebola Policy ABM 1,250 serum.e�ect 0.344 0.307 0.347 NA 0.454 0.390 0.482 0.467 0.498
Ebola Policy ABM 1,250 trace.delay 0.025 0.180 0.125 NA 0.348 0.145 0.379 0.300 0.326
Ebola Policy ABM 1,250 trace.rate -

0.009
-
0.001

-
0.004

NA -
0.101

0.025 0.049 -
0.048

0.007

Ebola Policy ABM 5,000 serum.e�ect 0.335 0.340 0.362 NA 0.494 0.385 0.482 0.479 0.496
Ebola Policy ABM 5,000 trace.delay 0.043 0.283 0.174 NA 0.438 0.163 0.394 0.368 0.397
Ebola Policy ABM 5,000 trace.rate 0.010 0.040 0.030 NA 0.024 0.029 0.052 -

0.022
0.017

FishMob ABM 1,250 globalcatchabilitySD 0.003 -
0.028

-
0.025

NA NA -
0.031

0.026 0.019 0.039

FishMob ABM 1,250 intr.growthrate 0.010 -
0.012

0.044 NA NA 0.012 0.164 0.155 0.167

FishMob ABM 1,250 min.viable.share.of.K 0.363 0.057 0.473 NA NA 0.518 0.534 0.519 0.532
FishMob ABM 1,250 profitmax.vs.satisficers -

0.010
-
0.023

-
0.023

NA NA -
0.060

-
0.001

-
0.036

-
0.005

FishMob ABM 1,250 share.mobile 0.074 -
0.013

0.110 NA NA 0.150 0.202 0.194 0.203

FishMob ABM 5,000 globalcatchabilitySD 0.015 0.004 -
0.003

NA NA 0.013 0.043 0.036 0.051

FishMob ABM 5,000 intr.growthrate 0.011 0.134 0.070 NA NA 0.078 0.183 0.189 0.196
FishMob ABM 5,000 min.viable.share.of.K 0.408 0.494 0.501 NA NA 0.519 0.531 0.526 0.531
FishMob ABM 5,000 profitmax.vs.satisficers -

0.002
-
0.007

-
0.009

NA NA -
0.008

-
0.005

-
0.047

-
0.009

FishMob ABM 5,000 share.mobile 0.080 0.185 0.171 NA NA 0.179 0.213 0.215 0.219
Ger Grouper ABM 1,250 ger.gain.from.food 0.172 0.145 0.151 NA 0.053 0.165 0.189 0.177 0.198
Ger Grouper ABM 1,250 gerreproduce 0.133 0.167 0.242 NA 0.128 0.239 -

0.065
0.170 0.232

Ger Grouper ABM 1,250 grass.regrowth.time 0.008 -
0.008

0.012 NA -
0.242

0.032 0.034 -
0.066

0.011

Ger Grouper ABM 1,250 patch.variability 0.245 0.225 0.240 NA 0.171 0.262 0.259 0.237 0.272
Ger Grouper ABM 5,000 ger.gain.from.food 0.153 0.158 0.161 NA 0.163 0.156 0.168 0.183 0.201
Ger Grouper ABM 5,000 gerreproduce 0.121 0.261 0.244 NA 0.282 0.243 0.305 0.214 0.257
Ger Grouper ABM 5,000 grass.regrowth.time 0.018 0.022 0.024 NA -

0.002
0.040 0.037 -

0.008
0.026

Ger Grouper ABM 5,000 patch.variability 0.244 0.231 0.250 NA 0.264 0.264 0.274 0.263 0.291
g-k distribution 5,000 A 0.322 0.634 0.574 0.932 0.695 0.928 0.929 0.925 0.928
g-k distribution 5,000 B 0.206 0.567 0.543 0.660 0.588 0.606 0.648 0.688 0.697
g-k distribution 5,000 g 0.045 0.401 0.404 0.381 0.417 0.305 0.356 0.335 0.388
g-k distribution 5,000 k 0.625 0.524 0.481 0.817 0.853 0.305 0.529 0.882 0.887
g-k distribution 1,250 A 0.334 0.589 0.563 0.762 0.651 0.927 0.882 0.915 0.924
g-k distribution 1,250 B 0.195 0.531 0.530 0.560 0.548 0.625 0.280 0.656 0.670
g-k distribution 1,250 g 0.052 0.356 0.398 0.323 0.327 0.326 0.280 0.266 0.327
g-k distribution 1,250 k 0.623 0.445 0.438 0.790 0.836 0.275 0.521 0.864 0.868
Hierarchical Normal Mean 1,250 theta1 0.409 0.509 0.510 < -10 0.626 0.695 0.693 0.679 0.687
Hierarchical Normal Mean 1,250 theta2 0.380 0.421 0.436 < -10 0.447 0.494 0.543 0.538 0.543
Hierarchical Normal Mean 5,000 theta1 0.429 0.430 0.522 < -10 0.536 0.699 0.703 0.683 0.696
Hierarchical Normal Mean 5,000 theta2 0.383 0.317 0.414 < -10 0.323 0.473 0.514 0.522 0.531
Two-factor Theory ABM 1,250 hygiene 0.387 0.390 0.390 NA 0.537 0.413 0.461 0.533 0.539
Two-factor Theory ABM 1,250 motivation 0.293 0.385 0.352 NA 0.641 0.388 0.486 0.576 0.586
Two-factor Theory ABM 1,250 potential 0.376 0.415 0.384 NA 0.563 0.412 0.486 0.522 0.535
Two-factor Theory ABM 1,250 tolerance 0.296 0.395 0.367 NA 0.595 0.413 0.490 0.599 0.596
Two-factor Theory ABM 5,000 hygiene 0.386 0.463 0.412 NA 0.662 0.418 0.518 0.615 0.619
Two-factor Theory ABM 5,000 motivation 0.294 0.479 0.388 NA 0.714 0.409 0.546 0.645 0.652
Two-factor Theory ABM 5,000 potential 0.398 0.477 0.414 NA 0.669 0.429 0.535 0.608 0.614
Two-factor Theory ABM 5,000 tolerance 0.300 0.462 0.387 NA 0.699 0.418 0.554 0.670 0.673
Insulation Activity ABM 1,250 av.att 0.842 0.609 0.727 NA 0.539 0.829 1.000 1.000 0.995
Insulation Activity ABM 1,250 radius 0.003 -

0.001
-
0.028

NA -
0.271

-
0.011

-
0.007

0.010 0.025

Insulation Activity ABM 1,250 weight.soc.ben 0.067 0.109 0.107 NA -
0.023

0.117 0.208 0.200 0.225

Insulation Activity ABM 5,000 av.att 0.842 0.802 0.783 NA 0.000 0.829 0.972 0.982 0.981
Insulation Activity ABM 5,000 radius 0.005 0.013 0.001 NA -

0.085
0.005 0.026 0.009 0.024

Insulation Activity ABM 5,000 weight.soc.ben 0.076 0.196 0.137 NA 0.150 0.141 0.244 0.232 0.247
Lotka-Volterra Noisy a 0.576 0.785 0.769 0.900 0.926 0.634 0.841 0.933 0.934
Lotka-Volterra Noisy b 0.258 0.436 0.263 0.523 0.663 -

0.229
0.490 0.652 0.671

Lotka-Volterra Non-Noisy a 0.529 0.792 0.774 < -10 0.969 0.592 0.922 0.992 0.993
Lotka-Volterra Non-Noisy b 0.231 0.464 0.336 0.854 0.971 -

0.058
0.557 0.965 0.969

Locally Identifiable 5,000 theta1 0.199 0.207 0.202 0.209 0.205 0.211 0.232 0.147 0.201
Locally Identifiable 5,000 theta2 0.203 0.150 0.199 0.200 0.197 0.210 0.224 0.146 0.191
Locally Identifiable 1,250 theta1 0.184 0.191 0.186 0.190 0.165 0.194 0.215 0.103 0.171
Locally Identifiable 1,250 theta2 0.209 0.176 0.200 0.212 0.184 0.212 0.231 0.142 0.208
Moving Average 5,000 ma1 0.384 0.427 0.398 0.426 0.456 0.308 0.440 0.461 0.488
Moving Average 5,000 ma2 0.385 0.635 0.494 0.610 0.664 0.232 0.659 0.668 0.678
Moving Average 1,250 ma1 0.358 0.375 0.347 0.355 0.355 0.312 0.414 0.424 0.450
Moving Average 1,250 ma2 0.373 0.613 0.458 0.584 0.605 0.232 0.654 0.642 0.664
Median and MAD 5,000 - 2 SS mu 0.754 0.747 0.752 0.775 0.774 0.761 0.774 0.757 0.763
Median and MAD 5,000 - 2 SS sigma 0.769 0.769 0.768 0.795 0.794 0.772 0.797 0.774 0.785
Median and MAD 1,250 - 2 SS mu 0.743 0.735 0.741 0.770 0.761 0.759 0.768 0.752 0.760
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Median and MAD 1,250 - 2 SS sigma 0.768 0.760 0.759 0.796 0.791 0.772 0.800 0.775 0.785
Median and MAD 5,000 - 4 SS mu 0.648 0.744 NA 0.766 0.695 0.755 0.768 0.759 0.764
Median and MAD 5,000 - 4 SS sigma 0.657 0.769 NA 0.788 0.707 0.771 0.796 0.783 0.791
Median and MAD 1,250 - 5 SS mu 0.620 0.732 NA 0.762 0.680 0.754 0.765 0.753 0.765
Median and MAD 1,250 - 5 SS sigma 0.654 0.763 NA 0.786 0.705 0.777 0.799 0.783 0.799
Multilevel Selection ABM 1,250 initial.percent.of.contributors 0.515 0.560 0.561 0.712 0.743 0.722 0.743 0.707 0.702
Multilevel Selection ABM 1,250 multiplier.e�ect 0.280 0.444 0.441 0.488 0.561 0.481 0.575 0.530 0.527
Multilevel Selection ABM 1,250 resource.size 0.486 0.556 0.518 0.650 0.719 0.619 0.742 0.737 0.737
Multilevel Selection ABM 1,250 social.pressure.vision 0.020 0.064 0.050 0.033 -

0.187
0.063 0.098 0.097 0.107

Multilevel Selection ABM 5,000 initial.percent.of.contributors 0.505 0.599 0.588 0.723 0.795 0.720 0.754 0.754 0.753
Multilevel Selection ABM 5,000 multiplier.e�ect 0.315 0.519 0.461 0.532 0.683 0.489 0.606 0.608 0.608
Multilevel Selection ABM 5,000 resource.size 0.507 0.596 0.547 0.683 0.796 0.626 0.763 0.770 0.775
Multilevel Selection ABM 5,000 social.pressure.vision 0.023 0.122 0.088 0.092 0.124 0.074 0.127 0.134 0.140
mu-sigma mu 0.004 0.004 0.004 0.868 0.812 0.891 0.907 0.481 0.715
mu-sigma sigma2 0.471 0.471 0.471 0.909 0.899 0.909 0.909 0.896 0.903
NIER ABM 1,250 diminishing.returns.curve 0.098 0.428 0.435 NA 0.113 0.449 0.572 0.489 0.483
NIER ABM 1,250 X..EEv.upgrade.at.NR 0.308 0.655 0.683 NA 0.399 0.845 0.881 0.824 0.831
NIER ABM 1,250 X..Leaders 0.113 0.640 0.661 NA 0.179 0.836 0.886 0.871 0.883
NIER ABM 1,250 X..Stigma.avoiders 0.254 0.648 0.669 NA 0.287 0.861 0.884 0.852 0.860
NIER ABM 5,000 grass.regrowth.time 0.136 0.480 0.377 NA 0.456 0.461 0.333 0.771 0.768
NIER ABM 5,000 initial.number.sheep 0.050 0.433 0.356 NA 0.432 0.394 0.086 0.696 0.704
NIER ABM 5,000 initial.number.wolves 0.072 0.381 0.335 NA 0.351 0.353 0.072 0.614 0.632
NIER ABM 5,000 sheep.gain.from.food 0.033 0.113 0.049 NA 0.102 0.045 0.084 0.164 0.184
NIER ABM 5,000 sheep.reproduce 0.146 0.323 0.257 NA 0.354 0.276 -

0.015
0.462 0.470

NIER ABM 5,000 wolf.gain.from.food 0.231 0.395 0.306 NA 0.421 0.325 0.024 0.560 0.582
NIER ABM 5,000 wolf.reproduce 0.152 0.362 0.305 NA 0.353 0.311 0.378 0.515 0.528
Normal 25 5,000 mean 0.605 0.603 0.590 0.541 0.581 0.600 0.608 0.566 0.552
Normal 25 5,000 sd -

0.563
0.624 0.120 -

0.774
0.272 -

0.003
0.518 0.597 0.596

Normal 25 1,250 mean 0.629 0.572 0.591 0.375 0.600 0.621 0.603 0.564 0.545
Normal 25 1,250 sd -

0.530
0.529 0.098 -

1.086
0.384 -

0.010
0.500 0.536 0.546

Scale 5,000 weight1 0.297 0.295 NA 0.299 0.299 0.302 0.302 0.105 0.188
Scale 5,000 weight2 0.300 0.298 NA 0.301 0.301 0.303 0.303 0.110 0.190
Scale 1,250 weight1 0.260 0.257 NA 0.260 0.260 0.276 0.276 0.054 0.137
Scale 1,250 weight2 0.268 0.263 NA 0.268 0.267 0.281 0.280 0.054 0.143
Unidentifiable 5,000 mean -

0.003
-
0.007

-
0.005

-
0.009

-
0.022

0.000 0.000 -
0.100

-
0.039

Unidentifiable 5,000 sd -
0.004

-
0.006

-
0.006

-
0.007

-
0.016

0.001 0.000 -
0.085

-
0.025

Unidentifiable 1,250 mean -
0.021

-
0.036

-
0.025

-
0.038

-
0.072

0.000 -
0.002

-
0.135

-
0.041

Unidentifiable 1,250 sd -
0.015

-
0.024

-
0.039

-
0.034

-
0.089

-
0.002

-
0.002

-
0.139

-
0.048

Partially Identifiable 5,000 theta 0.205 0.182 0.142 0.205 0.192 0.074 0.196 0.105 0.174
Partially Identifiable 1,250 theta 0.188 0.153 0.119 0.179 0.139 0.058 0.187 0.089 0.159
Peer Review Game ABM 5,000 e�ort.change 0.161 0.439 0.379 NA 0.286 0.358 0.481 0.617 0.609
Peer Review Game ABM 5,000 overestimation 0.094 0.429 0.384 NA 0.257 0.409 0.496 0.532 0.536
Peer Review Game ABM 5,000 published.proportion 0.420 0.591 0.554 NA 0.535 0.951 0.976 0.979 0.983
Peer Review Game ABM 5,000 researcher.time 0.298 0.564 0.531 NA 0.513 0.575 0.717 0.833 0.835
Peer Review Game ABM 5,000 top 0.005 0.214 0.144 NA 0.233 0.096 0.169 0.178 0.180
O�iceMoves ABM 1,250 window 0.087 0.272 0.124 -

0.031
0.380 0.134 -

0.304
0.331 0.341

O�iceMoves ABM 1,250 X..shirkers 0.222 0.501 0.392 0.420 0.609 0.363 0.626 0.541 0.551
O�iceMoves ABM 1,250 X..workers 0.716 0.616 0.667 0.692 0.806 0.782 0.824 0.803 0.811
O�iceMoves ABM 5,000 window 0.117 0.359 0.169 0.388 0.500 0.168 0.029 0.414 0.425
O�iceMoves ABM 5,000 X..shirkers 0.240 0.591 0.434 0.629 0.688 0.393 0.662 0.622 0.626
O�iceMoves ABM 5,000 X..workers 0.716 0.699 0.678 0.824 0.832 0.787 0.837 0.826 0.829
Real Business Cycle - 48 SS beta 0.467 0.602 0.574 NA 0.690 0.935 0.966 0.882 0.886
Real Business Cycle - 48 SS delta 0.009 0.490 0.200 NA 0.502 0.172 0.572 0.039 0.061
Real Business Cycle - 48 SS eta -

0.002
0.551 0.456 NA 0.722 0.475 0.599 0.148 0.329

Real Business Cycle - 48 SS mu -
0.001

0.537 0.559 NA 0.772 0.639 0.491 0.023 0.044

Real Business Cycle - 48 SS phi 0.385 0.580 0.576 NA 0.666 0.842 0.870 0.732 0.747
Real Business Cycle - 48 SS sigma 0.261 0.469 0.399 NA 0.463 0.412 0.577 0.492 0.504
Real Business Cycle - 44 SS beta 0.561 0.499 0.505 0.862 0.826 0.783 0.892 0.770 0.792
Real Business Cycle - 44 SS delta 0.001 0.327 0.275 0.260 0.359 0.244 0.278 0.001 0.039
Real Business Cycle - 44 SS eta -

0.001
0.079 0.065 -

0.032
0.073 0.057 0.065 -

0.026
-
0.001

Real Business Cycle - 44 SS mu -
0.004

0.007 0.001 -
0.108

-
0.015

0.000 0.001 -
0.043

-
0.008

Real Business Cycle - 44 SS phi 0.409 0.484 0.529 0.817 0.847 0.743 0.803 0.659 0.670
Real Business Cycle - 44 SS sigma -

0.007
-
0.012

-
0.009

-
0.249

-
0.042

-
0.013

-
0.007

-
0.066

-
0.018

RiskNetABM 1,250 covariate.shock.prob.hh 0.050 NA 0.207 NA NA 0.149 0.381 0.328 0.346
RiskNetABM 1,250 insurance.coverage 0.008 NA 0.320 NA NA 0.209 0.306 0.178 0.194
RiskNetABM 1,250 shock.intensity 0.408 NA 0.374 NA NA 0.437 0.262 0.661 0.659
RiskNetABM 1,250 shock.prob 0.295 NA 0.382 NA NA 0.371 0.547 0.551 0.566
RiskNetABM 5,000 covariate.shock.prob.hh 0.059 NA 0.247 NA NA 0.200 0.431 0.450 0.452
RiskNetABM 5,000 insurance.coverage 0.016 NA 0.355 NA NA 0.271 0.455 0.343 0.355
RiskNetABM 5,000 shock.intensity 0.392 NA 0.344 NA NA 0.436 0.717 0.707 0.712
RiskNetABM 5,000 shock.prob 0.305 NA 0.397 NA NA 0.388 0.613 0.640 0.639
Standing Ovation ABM 1,250 cone.length 0.049 0.197 0.176 0.194 0.134 0.191 0.267 0.158 0.205
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Standing Ovation ABM 1,250 intrinsic.prob.standing 0.456 0.509 0.542 0.649 0.682 0.579 0.580 0.544 0.570
Standing Ovation ABM 1,250 noise 0.631 0.690 0.678 0.785 0.773 0.758 0.805 0.775 0.782
Standing Ovation ABM 5,000 cone.length 0.056 0.243 0.180 0.311 0.319 0.195 0.285 0.213 0.258
Standing Ovation ABM 5,000 intrinsic.prob.standing 0.485 0.544 0.558 0.700 0.742 0.584 0.589 0.616 0.636
Standing Ovation ABM 5,000 noise 0.629 0.709 0.698 0.810 0.809 0.765 0.810 0.793 0.797
Schelling-Sakoda Extended ABM 1,250 density 0.120 0.404 0.451 0.399 0.609 0.471 0.636 0.541 0.530
Schelling-Sakoda Extended ABM 1,250 radiusNeighborhood 0.208 0.438 0.467 0.561 0.719 0.555 1.000 0.671 0.696
Schelling-Sakoda Extended ABM 1,250 X..similar.wanted 0.718 0.628 0.691 0.728 0.845 0.840 0.856 0.849 0.855
Schelling-Sakoda Extended ABM 5,000 density 0.128 0.588 0.481 0.619 0.692 0.482 0.662 0.629 0.623
Schelling-Sakoda Extended ABM 5,000 radiusNeighborhood 0.235 0.563 0.486 0.724 0.748 0.567 1.000 0.712 0.748
Schelling-Sakoda Extended ABM 5,000 X..similar.wanted 0.717 0.731 0.717 0.841 0.868 0.838 0.866 0.866 0.872
Sugarscape ABM 1,250 initial.population 0.170 NA 0.468 NA NA 0.513 0.528 0.417 0.416
Sugarscape ABM 1,250 maximum.spice.endowment 0.144 NA 0.423 NA NA 0.387 0.328 0.434 0.441
Sugarscape ABM 1,250 maximum.sugar.endowment 0.156 NA 0.424 NA NA 0.399 0.311 0.385 0.392
Sugarscape ABM 1,250 pmut 0.225 NA 0.338 NA NA -

0.131
0.328 0.506 0.503

Sugarscape ABM 1,250 wealth.reproduction 0.598 NA 0.567 NA NA 0.394 -
1.329

0.759 0.764

Sugarscape ABM 5,000 initial.population 0.184 0.509 0.545 0.579 0.588 0.606 0.651 0.475 0.474
Sugarscape ABM 5,000 maximum.spice.endowment 0.151 0.476 0.521 0.281 0.519 0.546 0.533 0.463 0.465
Sugarscape ABM 5,000 maximum.sugar.endowment 0.156 0.458 0.506 0.475 0.510 0.539 0.545 0.446 0.448
Sugarscape ABM 5,000 pmut 0.227 0.449 0.371 0.334 0.502 0.279 0.428 0.536 0.538
Sugarscape ABM 5,000 wealth.reproduction 0.590 0.624 0.605 0.730 0.736 0.734 -

0.894
0.790 0.797

Food Supply Chain ABM 1,250 base.preference 0.003 0.012 0.007 NA -
0.470

0.002 0.029 0.032 0.037

Food Supply Chain ABM 1,250 exp.pref 0.058 0.264 0.430 NA 0.183 0.482 0.558 0.454 0.448
Food Supply Chain ABM 1,250 StockPersistence 0.201 0.583 0.610 NA 0.657 0.828 0.928 0.854 0.872
Food Supply Chain ABM 1,250 TotalDemand 0.162 0.544 0.611 NA 0.637 0.836 0.923 0.841 0.860
Food Supply Chain ABM 1,250 TotalProduction 0.053 0.581 0.632 NA 0.681 1.000 1.000 0.996 0.999
Food Supply Chain ABM 5,000 base.preference 0.018 0.047 0.042 NA 0.031 0.043 0.061 0.042 0.047
Food Supply Chain ABM 5,000 exp.pref 0.070 0.506 0.489 NA 0.433 0.519 0.589 0.527 0.537
Food Supply Chain ABM 5,000 StockPersistence 0.205 0.613 0.622 NA 0.685 0.835 0.928 0.887 0.899
Food Supply Chain ABM 5,000 TotalDemand 0.174 0.615 0.632 NA 0.653 0.838 0.929 0.898 0.906
Food Supply Chain ABM 5,000 TotalProduction 0.066 0.644 0.655 NA 0.738 1.000 1.000 0.999 1.000
Pathogen param_1 0.265 0.378 0.362 0.394 0.303 0.346 0.414 0.400 0.413
Pathogen param_2 0.327 0.396 0.381 0.429 0.347 0.375 0.418 0.382 0.409
Pathogen param_3 0.235 0.317 0.297 0.353 0.256 0.268 0.341 0.310 0.336
Pathogen param_4 0.185 0.257 0.238 0.288 0.212 0.251 0.280 0.236 0.275
Toy Model 1,250 a 0.648 0.650 0.650 0.671 0.669 0.616 0.669 0.656 0.657
Toy Model 1,250 b 0.486 0.504 0.502 0.509 0.507 0.466 0.506 0.488 0.490
Toy Model 5,000 a 0.642 0.638 0.642 0.664 0.658 0.610 0.662 0.644 0.647
Toy Model 5,000 b 0.465 0.480 0.478 0.488 0.475 0.443 0.484 0.452 0.461
Ecological Traits 5,000 A 0.455 0.497 0.382 0.539 0.551 0.022 0.598 0.516 0.566
Ecological Traits 5,000 h 0.240 0.270 0.246 0.288 0.281 0.253 0.281 0.232 0.270
Ecological Traits 5,000 I 0.528 0.495 0.645 0.862 0.835 0.687 0.828 0.882 0.881
Ecological Traits 5,000 sigma -

0.004
-
0.009

-
0.006

-
0.022

-
0.030

-
0.001

-
0.001

-
0.109

-
0.039

Ecological Traits 1,250 A 0.427 0.490 0.394 -
0.163

0.488 0.012 0.576 0.487 0.533

Ecological Traits 1,250 h 0.240 0.275 0.252 0.102 0.238 0.264 0.288 0.203 0.261
Ecological Traits 1,250 I 0.536 0.522 0.628 0.849 0.824 0.688 0.821 0.852 0.856
Ecological Traits 1,250 sigma -

0.017
-
0.021

-
0.017

-
0.057

-
0.106

-
0.003

-
0.005

-
0.091

-
0.026

Wilkinson 5,000 theta 0.828 0.814 NA 0.885 0.884 0.569 0.810 0.860 0.873
Wilkinson 1,250 theta 0.829 0.814 NA 0.894 0.891 0.587 0.818 0.881 0.888
Wolf Sheep Predation ABM 1,250 grass.regrowth.time 0.144 0.417 0.366 NA 0.394 0.453 0.640 0.673 0.688
Wolf Sheep Predation ABM 1,250 initial.number.sheep 0.038 0.372 0.346 NA 0.301 0.395 0.499 0.622 0.627
Wolf Sheep Predation ABM 1,250 initial.number.wolves 0.053 0.316 0.310 NA 0.261 0.332 0.407 0.556 0.580
Wolf Sheep Predation ABM 1,250 sheep.gain.from.food 0.029 0.078 0.030 NA 0.040 0.028 0.103 0.114 0.136
Wolf Sheep Predation ABM 1,250 sheep.reproduce 0.133 0.303 0.265 NA 0.317 0.255 0.373 0.394 0.391
Wolf Sheep Predation ABM 1,250 wolf.gain.from.food 0.233 0.312 0.285 NA 0.406 0.323 0.329 0.492 0.513
Wolf Sheep Predation ABM 1,250 wolf.reproduce 0.145 0.292 0.289 NA 0.316 0.297 0.427 0.452 0.466
Wolf Sheep Predation ABM 5,000 grass.regrowth.time 0.136 0.480 0.377 NA 0.456 0.461 0.333 0.771 0.768
Wolf Sheep Predation ABM 5,000 initial.number.sheep 0.050 0.433 0.356 NA 0.432 0.394 0.086 0.696 0.704
Wolf Sheep Predation ABM 5,000 initial.number.wolves 0.072 0.381 0.335 NA 0.351 0.353 0.072 0.614 0.632
Wolf Sheep Predation ABM 5,000 sheep.gain.from.food 0.033 0.113 0.049 NA 0.102 0.045 0.084 0.164 0.184
Wolf Sheep Predation ABM 5,000 sheep.reproduce 0.146 0.323 0.257 NA 0.354 0.276 -

0.015
0.462 0.470

Wolf Sheep Predation ABM 5,000 wolf.gain.from.food 0.231 0.395 0.306 NA 0.421 0.325 0.024 0.560 0.582
Wolf Sheep Predation ABM 5,000 wolf.reproduce 0.152 0.362 0.305 NA 0.353 0.311 0.378 0.515 0.528

Introduction to freelunch package

The package freelunch can be installed fromgithub at https://github.com/CarrKnight/freelunch. The
package is composedof a seriesof functions thathelpestimatemodels andcheck theperformanceof estimated
models by cross-validation.
In this package, the methods to estimate parameters all start with fit_* and they all have the same interface
requiring 4 arguments:
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fit_rejection_abc(training_runs = ...,
target_runs = ...,
parameter_colnames =...,
summary_statistics_colnames = ...
)

fit_loclinear_abc(...)
fit_semiauto_abc(...)
fit_neural_network_abc(...)
fit_linear_regression(...)
fit_gam(...)
fit_quantile_random_forest(...)
fit_random_forest(...)
fit_gam(...)

The four parameters needed are just the training_runs (i.e. the reference table), the real data observed
target_runs, parameter_colnames ( the column names that refer to the parameter in the reference table)
and summary_statistics_colnames (the column names that refer to summary statistics).

The testing methods in this package all start with cross_validate_* and have the same interface:

cross_validate_rejection_abc(total_data = ...,
parameter_colnames = ...,
summary_statistics_colnames = ...

)
cross_validate_loclinear_abc(...)
cross_validate_semiauto_abc(...)
cross_validate_neural_network_abc(...)
cross_validate_linear_regression(...)
cross_validate_gam(...)
cross_validate_quantile_random_forest(...)
cross_validate_random_forest(...)
cross_validate_gam(...)

A simple example

Here, we generated the output of a simple 2 by 2 model, where paramone and paramtwo generate ssone and
‘sstwo. We collected 5,000 runs in a reference table:

library(freelunch)
library(tidyverse)

##paramone's prior is normally distributed
paramone<-rnorm(n=5000)
##paramtwo's prior is uniformly distributed
paramtwo<-runif(n=5000,min=2,max=5)
##this is the extend of the model:
ssone<-2*paramone + rnorm(n=5000)
sstwo<- paramone/paramtwo + rnorm(n=5000)
## collect the runs in a reference table!
reference_table<-

data.frame(
paramone,
paramtwo,
ssone,
sstwo

)
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Our task was to recover paramone and paramtwo having only observed the summary statistics. All the estima-
tion algorithms in the paper have been implemented, but here we focused on GAM:

gam.cv<-
freelunch::cross_validate_gam(total_data=reference_table,

parameter_colnames = c("paramone","paramtwo"),
summary_statistics_colnames = c("ssone","sstwo"))

When looking at performance, we see that paramone is relatively well identified but paramtwo is simply not.
However, in terms of confidence intervals, we see that they are both contained at about 95%:

gam.cv$performance
#> paramone paramtwo
#> 0.548289921991 -0.000006456405

gam.cv$contained %>% scales::percent()
#> paramone paramtwo
#> "94.940%" "94.900%"

which means that the algorithm knows it fails to find a good parameter estimate for paramtwo and defaults to
returning large confidence intervals. We can see this graphically by running an helper plot (red dots being the
true value, black lines being the confidence intervals):

freelunch::plot_confidence_intervals(gam.cv)
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Now, we can estimate the model using the real data, which here we assumed to be ssone=1.37 and
sstwo=1.11.
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estimates<-
freelunch::fit_gam(training_runs = reference_table,

target_runs = c(1.37,1.11),
parameter_colnames = c("paramone","paramtwo"),

summary_statistics_colnames = c("ssone","sstwo"))

which estimates paramone somewhere between -0.3 and 1.49 while paramtwo across its whole range:

estimates$predictions
#> # A tibble: 1 x 2
#> paramone paramtwo
#> <dbl> <dbl>
#> 1 0.605 3.49

estimates$lows
#> # A tibble: 1 x 2
#> paramone paramtwo
#> <dbl> <dbl>
#> 1 -0.279 2.08

estimates$highs
#> # A tibble: 1 x 2
#> paramone paramtwo
#> <dbl> <dbl>
#> 1 1.50 4.91

An ill-posed example

The classic example of under-identifiedmodel: two people with weights weight1 and weight2 stand together
on a scale and we read their combined weight total.
Reading only totalwe are asked to get the two individual weights. We observe the total weight of 5,000 pairs
of people. There is already an example of this in the package so we just load it here:

data("scale_experiment")
glimpse(scale_experiment)
#> Rows: 5,000
#> Columns: 3
#> $ total <dbl> 259.8286, 244.7187, 213.4538, 248.0799, 213.7402, 278.4608,...
#> $ weight1 <dbl> 135.94215, 126.21180, 121.82348, 123.92908, 125.67809, 129....
#> $ weight2 <dbl> 123.24073, 118.69401, 92.68997, 123.20384, 87.20287, 149.87...

We can try to solve this problem with rejection ABC and random forests. We first performed a standard set of
cross-validations:

abc.cv<-cross_validate_rejection_abc(total_data = scale_experiment,
parameter_colnames = c("weight1","weight2"),
summary_statistics_colnames = c("total"))

rf.cv<-cross_validate_random_forest(total_data = scale_experiment,
parameter_colnames = c("weight1","weight2"),
summary_statistics_colnames = c("total"))

We then discovered that rejection ABC performed better than random forests for both parameters. This makes
sense since the main advantage of random forests (weighing multiple conflicting summary statistics) is null
here.
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##
abc.cv$performance
#> weight1 weight2
#> 0.2809824 0.2913560
rf.cv$performance
#> weight1 weight2
#> 0.1734766 0.1845600

Now, while it is nice to know the general performance, a bit more analysis will provide further insights. For
example, here the performance of the rejection ABC was not consistent across the parameter space. The indi-
vidual weights were easier to guess when both people were either very light or very heavy; the estimation will
alsowork if bothpeople on the scale are about of the same size since rejectionABC tends todefault to averaging
weights when in doubt. We can see this graphically plotting the average RMSE for a grid of parameters:

freelunch::plot_grid_rmse(abc.cv,parameter1="weight1",parameter2="weight2",
intervals_first_parameter = 15,intervals_second_parameter = 15)
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which is useful because it shows that themethod is very poor at estimating individualweightswhenoneperson
is heavy and the other is thin.

Eventually, if the applied work indicates that the “real life” observation we are trying to estimate has
total=200, we can estimate with abc as follows:

abc.estimate<-fit_rejection_abc(training_runs = scale_experiment,
target_runs = c(200),
parameter_colnames = c("weight1","weight2"),
summary_statistics_colnames = c("total"))
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abc.estimate$predictions
#> weight1 weight2
#> 1 101.197 99.27007

abc.estimate$lows
#> weight1 weight2
#> 1 81.04695 80.85538

abc.estimate$highs
#> weight1 weight2
#> 1 121.9863 121.0303

Which guesses a weight of approximately 100 for both individuals, with a confidence interval between approx-
imately 80 and 120.
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