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Abstract: The utility of Agent Based Models (ABMs) for decision making support as well as for scientific applica-
tions can be increased considerably by the availability and use of methodologies for thoroughmodel behaviour
analysis. In view of their intrinsic construction, ABMs have to be analysed numerically. Furthermore, ABM
behaviour is o�en complex, featuring strong non-linearities, tipping points, and adaptation. This easily leads to
high computational costs, presenting a serious practical limitation. Model developers and users alike would
benefit frommethodologies that can explore large parts of parameter space at limited computational costs. In
this paper we present a methodology that makes this possible. The essence of our approach is to develop a
cost-e�ective surrogate model based on ABM output using machine learning to approximate ABM simulation
data. The development consists of two steps, both with iterative loops of training and cross-validation. In the
first part, a Support Vector Machine (SVM) is developed to split behaviour space into regions of qualitatively
di�erent behaviour. In the second part, a Support Vector Regression (SVR) is developed to cover the quantitative
behaviourwithin these regions. Finally, sensitivity indices are calculated to rank the importance of parameters for
describing the boundaries between regions, and for the quantitative dynamics within regions. Themethodology
is demonstrated in three case studies, a di�erential equationmodel of predator-prey interaction, a common-pool
resource ABM and an ABM representing the Philippine tuna fishery. In all cases, themodel and the corresponding
surrogate model show a goodmatch. Furthermore, di�erent parameters are shown to influence the quantitative
outcomes, compared to those that influence the underlying qualitative behaviour. Thus, the method helps to
distinguish which parameters determine the boundaries in parameter space between regions that are separated
by tipping points, or by any criterion of interest to the user.
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Introduction

1.1 Agent-based models (ABMs) are used for a wide range of applications (Macal 2016) and with various aims
(Edmonds et al. 2019). The most common aim (Heath et al. 2009) is ‘explanation’, i.e., using the ABM to assess
whether modelled interactions provide possible explanations for an observed phenomenon. When using ABMs
for explanation, sensitivity analysis is needed for two reasons. First, explanations may be tested by using
sensitivity analysis to vary relevant parameters. For example, Brown & Robinson (2006) tested the hypothesis
that heterogeneous agent preferences in an ABM of residential development can explain observed patterns
of sprawl. In this study, sensitivity analysis revealed that increasing heterogeneity does indeed increase the
amount of sprawl, confirming their hypothesis. Second, sensitivity analysis is used to assess the robustness of an
explanation (Grimm & Berger 2016). If the phenomenon to be explained depends on unrelated parameters, the
explanation might need revision, or alternative explanations may be involved. Thus, we need to test robustness
of the explanation to parameter changes. For example, in the Schelling model social segregation emerges under
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relatively small intolerances for neighbours of a di�erent type (Schelling 1969). Sensitivity analysis has shown
robustness of this emergence to changes in a number of assumptions and parameters, increasing the relevance
of the model as explanation (Gilbert 2002; Grimm & Berger 2016). ABMs are not o�en used to make quantitative
predictions (Heath et al. 2009), but when they are, sensitivity analysis is needed to reveal uncertainty of model
predictions, and assess which parameters contribute most to this uncertainty (Ligmann-Zielinska et al. 2014).
Note that this kind of assessment considers only uncertainty of predictions due to uncertain parameters, which
is one out of multiple sources of uncertainty (Walker et al. 2003; Kwakkel et al. 2010).

1.2 The main strength of ABMs is that they allow for modelling a wide range of features, such as heterogeneous
agents, local interactions, and various kinds of agent adaptation and learning. These features can lead to complex
behavioural structures, enabling for instance, tipping points, adaptation of populations, and resilience. While
this makes ABMs ideally suited for modelling complex adaptive systems, it also makes it challenging to perform
sensitivity analysis. Extensive exploration of ABM parameter space is usually not practical due to the large
number of parameters, high computational costs per model run, and strongly nonlinear relations between
parameters andmodel outcomes. As a result, it is especially di�icult to show robustness of model results, or
uncertainties of model predictions. Thus, it is an important challenge to analyse ABMs by e�iciently exploring
di�erent parameter settings and extracting relevant information from the simulation results (Macal 2016; Filatova
et al. 2016; Crooks et al. 2008).

1.3 Sensitivity analysis is an essential tool to analyse ABMs. One-factor-at-a-time sensitivity analysis is a good tool for
assessing e�ects of individual parameters. Furthermore, it can reveal the existence of tipping points in parameter
space, thus helping to distinguish qualitatively di�erent types of model behaviour. In fields like ecology, systems
biology, economics, or physics, distinguishing these behaviours is considered to be an important aim, and
specialised tools for bifurcation analysis are available (Kuznetsov 1998). For example, in ecology bifurcation
analysis may be used to assess whether or not populations will go extinct, or show cyclic behaviour. For ABMs
bifurcationanalysis tools arenotapplicableand themain tool formodel analysis is sensitivity analysis (TenBroeke
et al. 2016b). But, while one-factor-at-a-time sensitivity analysis is to some extent helpful for revealing di�erent
types of model behaviour, it ignores interaction e�ects (Ligmann-Zielinska et al. 2020). Variance-based global
methods (Sobol 2001) can assess interaction e�ects over an ABM’s entire parameter space and rank influential
parameters based on their contribution to model output variance. However, these methods have two important
limitations. First, theABMoutputs are aggregatedwithout regarding thebehaviour that underlies theseoutcomes.
Thus, variance-based sensitivity analysis methods give little insight into what types of behaviour the model
produces, which parameters determine the type of behaviour, or to what extent behaviour is robust (Ten Broeke
et al. 2016a; Magliocca et al. 2018). Thus, these methods do not really help to ‘open the black box’ (Lorscheid
et al. 2012) of ABMs. Second, the computational costs of gaining accurate variance-based sensitivity estimates
are o�en prohibitive. These might be reasons why most ABM studies do not include a systematic sensitivity
analysis (Thiele et al. 2014).

1.4 In this paper, we present amethod for sensitivity analysis that addresses the above limitations by using surrogate
models. Surrogate models can provide a way to explore ABM parameter space while keeping computational
costs managable (Dosi et al. 2018; Edali & Yücel 2018; Most & Will 2011). The idea is to scan parameter space, and
to fit a surrogate model to the resulting simulation data. Preliminary versions of the surrogate model are used
to assess where in parameter space additional simulation data should be gathered to improve the surrogate
model’s performance. Once the performance is su�icient, the surrogate model is used to generate additonal
simulation data. In this paper, we will use support vector machines (SVMs) and support vector regression (SVR)
as surrogate models. Both are machine learning techniques that are frequently used in Big Data applications
(Bennett & Campbell 2000). Other classification or regressionmethodsmay be considered instead of SVM or
SVR. Our main reasons for using SVM and SVR are that they are relatively simple, and known to be very flexible
for fitting di�erent kinds of relationship between input and output. SVM and SVR surrogate models allow for the
estimation of large amounts of simulation data at much lower computational costs than the ABM. We use this
data to compute sensitivity indices that would be too costly without a surrogate model. Preliminary versions of
the surrogate model are also used to predict where in parameter space additional samples are needed, thus
helping to further control the computational costs.

1.5 Surrogate models have been previously used as a tool for sensitivity analysis. For example, Edali & Yücel (2018)
fitted a SVR model to a simple tra�ic ABM. Van Strien et al. (2019) have fitted an SVM to identify stable and
unstable equilibria in an ABM of land-use change in a Swiss mountain region. They used the SVM to generate
bifurcation diagrams that give insight into the resilience of the case-study. These results confirm that SVR and
SVM can be suitable surrogatemodels for ABM. Other types ofmachine learning surrogatemodels have also been
applied to ABM. For example, Lamperti et al. (2018) have demonstrated the use of decision trees for calibration
of ABMs, and Barde & Van Der Hoog (2017) have proposed the use of Krigingmetamodels for empirical validation
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of ABMs. Several studies have used a Bayesian approach to demonstrate the use of Gaussian processes for
calibration (Ciampaglia 2013; O’Hagan 2006) and sensitivity analysis (Parry et al. 2013; O’Hagan 2006) of ABMs.
The novelty of our approach lies in the combination of qualitative and quantitative analysis.

1.6 Our method consists of two steps. In the first step, we classify ABM simulation data (e.g., using SVM) into distinct
behavioural regimes for which the ABM behaviour is di�erent according to a pre-defined criterion. This criterion
might distinguish regions separated by a tipping point, or can represent any quality of interest to the model user.
For example, in this paper behavioural regimes will correspond to whether or not a population goes extinct,
i.e., similar to a bifurcation diagram. We then compute sensitivity indices to show how robust this behaviour
is to parameter changes. In the second step, we use a regression method (e.g., SVR) to assess quantitative
di�erences within a regime, and estimate which parameters are influential. In this way, our method yields
additional insight over methods of global sensitivity analysis, which aggregate across parameter space as a
whole without considering qualitative di�erences in underlying model behaviour. While such an approach
does showwhich parameters are influential overall, it o�en remains unclear in what way they are influential
(Ten Broeke et al. 2016a). Our approach improves upon this, by distinguishing between whether a parameter is
influential in driving themodel towards a certain behavioural regime (e.g., extinction), or whether it is influential
on the quantitative behaviour within the regime. Furthermore, using a surrogate model that divides parameter
space in regions to accurately predict ABM output also helps to decrease the computational costs of global
sensitivity analysis.

1.7 We apply the method proposed in this paper to analyse three case studies. The first case study is a di�erential
equationmodel of predator-prey interaction. ABMs similar to this di�erential equationmodel have been dis-
cussed in scientific literature (Colon et al. 2015). Here we have chosen the di�erential equation model because
of its simplicity, and because it has already been thoroughly analysed (Van Voorn et al. 2007). Both ABM versions
and di�erential equation versions of themodel contain tipping points beyond which the population goes extinct.
Furthermore, it has been previously shown how these tipping points a�ect global sensitivity analysis results
(Ten Broeke et al. 2016a). The second case study is an ABM in which agents compete in a spatial environment for
a common-pool resource (Ten Broeke et al. 2016b). The third case study is an ABM of a Philippine tuna fishery
system (Libre et al. 2015). Like the di�erential equation model, both ABMs have tipping points where the system
collapses due to over-exploitation. The resource-consumer model has a relatively high level of abstraction,
whereas the fishery model is a more concrete case study. For all three case studies, we demonstrate how SVM
can be used to locate tipping points, which separate di�erent behavioural regimes. Next, we use SVR to further
investigate model behaviour within the region of parameter space for which the system does not collapse. In the
Methods Section we describe the machine learning and sensitivity analysis techniques used in this paper. The
Model Description Section gives a summarised description of the ABM test cases. The Results Section describes
the results of applying SVM and SVR to analyse these test cases. The Discussion Section discusses the insights
gained from applying the approach, and describes the strengths and limitations of the proposed method versus
current methods of ABM analysis.

Methods

2.1 Our approach consists of twomain parts. In the first part we classify the ABM’s output into di�erent behavioural
modes, and determine which parameters drive the ABM towards these behavioural modes. We assume here
that the behavioural modes are defined in advance based on the interests of the modellers. Thus, the modellers
need to already have some knowledge of what kind of behaviour can be produced by themodel. This knowledge
can for instance be obtained by performing an OFAT analysis (Ten Broeke et al. 2016b). For the examples in this
paper, the criterion is whether or not the system goes to extinction, but any other criterion could be used instead.
ABM output is compared directly to this criterion to determine to which behavioural modemodel runs belong.
An alternative approach would be to use an automated technique, such as a clustering procedure (Edali & Yücel
2019). This approach would help the modeller to explore what kind of behaviour the ABM generates without
any pre-defined criterion, and would make the method applicable without having knowledge of the behaviour
produced by the model. In the second part, we zoom in on a specific behavioural mode and we determine
which parameters strongly a�ect the output. In this step, we apply a surrogate model to predict continuous
ABM output. The approach is summarised in Figure 1 and discussed in more detail in the following paragraphs.
R code for the analysis of both example models is available as an electronic supplement (https://github.
com/GuustenBroeke/ABM-surrogates). All of the simulation data used during the analysis and the NetLogo
files of the ABMs is also available here. Both ABMs are also available on OpenABM (https://www.comses.
net/codebases/5374/releases/1.1.0/ for the resource-consumermodel, andhttps://www.comses.net/
codebases/a5823aa6-e45c-4d2e-b930-0bf9546cd514/releases/1.0.0/ for the fishery model).
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Sampling ABM parameter space

2.2 To train a surrogatemodel, we need a training set of sampled ABM parameter settings and corresponding output.
To each parameter we assign a probability density function that represents the range over which we want to
explore its e�ects (see e.g., Ligmann-Zielinska et al. (2014)). We draw a sample from these density functions
using a replicated Latin hypercube design (McKay et al. 1979) to achieve balanced coverage of parameter space.

2.3 For the case studies in this paper, wewill use an initial training sample of 1000 points. If the initial training sample
does not yield su�icient performance of the surrogate model, we add additional sample points to the training
sample using the adaptive sampling procedure described by Xu et al. (2014). The main idea is to draw additional
sample points in the vicinity of sample points in which the surrogate model shows large prediction errors. In this
way, the sampling density is increased in regions where the ABM dynamics show high activity. More precisely,
for each iteration of the procedure, a large (100 times the size of the training sample) pool of sample points
is generated. Each of these sample points is assigned to the closest training sample point based on Euclidian
distance in parameter space. We then select a number of training sample points for which the prediction errors
are largest (we use a batch size of 20). For each of these training sample points, we select a single sample point
from the pool that was assigned to it. This sample point is added to the training set. The process continues
either until the surrogate model fits su�iciently well (an F1 score exceeding 0.9 for classification, or a coe�icient
of prognosis exceeding 0.9 for regression), or until a maximum number of model runs has been performed. This
maximum number of runs will usually depend on the computational costs of the ABM. For our three case studies,
the details are provided in Sections 4.1, 4.6 and 4.11 respectively. In addition to the training sample we also draw
a test sample, using replicated Latin hypercube sampling. This test sample remains the same throughout the
analysis, and allows to test the performance of the surrogate model on an independent sample. For each of the
case studies we use a test sample size of 1000model runs.

Figure 1: Flowchart for sensitivity analysis using surrogate models.

Support vector machines

2.4 We use SVM surrogate models to classify ABM output into behavioural modes. Here we summarise the main
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ideas. A more thorough description of SVMs can be found in Appendix A and Ng (2008). For implementation
we have used the e1071 package in R (Meyer et al. 2018). While we consider classification into two behavioural
modes, the method can be extended to multiple modes by training a separate SVM for each mode. We write x′
for the training sample of ABM parameters, and y′ for the corresponding behavioural mode. The index i refers to
specific sample points x′i and their corresponding behavioural mode y′i . The criterion for classification is

h (x) =

{
−1 if

∑m
i=1 aiy

′
iK(x′i,x) + b ≥ 0

1 if
∑m
i=1 aiy

′
iK(x′i,x) + b < 0.

(1)

2.5 Here, we write x for a parameter setting to be classified, h(x) for the corresponding SVM prediction, andm for
the number of training sample points. Note that the point x to be classified di�ers from the training set x′. The
SVM prediction is based on the similarity between both, which is measured by the kernel functionK(x′i,x). A
weight ai is assigned to each training sample point. Training consists of optimising the values of ai and b such
that the training sample points are classified correctly. Choosing a good sample sizem is crucial for training
the surrogate. As discussed in Section 2.3, we will start withm = 1000, but will increase the sample size over a
number of iterations if needed.

2.6 ForK(x′i,x), any symmetric positive semi-definite function may be used (Ng 2008). The Gaussian kernel is the
most common choice because it has been shown to performwell for many applications (Hsu et al. 2003). For
this paper we have compared the performance of the Gaussian kernel against several other commonly used
kernel functions, and we indeed find that the Gaussian kernel yields the best performance (Appendix C). So,
throughout this paper we will use the Gaussian kernel,

K(x′i,x) = exp

(
− 1

2σ2
‖x′i − x‖2

)
. (2)

The value of K(x′i,x) ranges between 0 and 1. If K(x′i,x) = 1, both samples are identical, and K(x′i,x)
asymptotically decreases to zero as the distance between the samples increases. Thus, the SVM tends to give the
same prediction for nearby samples.

Support vector regression

2.7 We use SVR surrogate models to predict real-valued output data for some behavioural mode. This allows us to
zoom in on a region of parameter space identified using SVM, and to investigate which parameters a�ect model
output within this region the most. The prediction is given as

f(x) =

m∑
i=1

(ai − a∗i )K(x′i,x) + b. (3)

Similar to the SVM case, ai, a∗i , and b are optimised using the training data. Details of this procedure are given in
Appendix A, and by Smola & Schölkopf (2004). As for the SVM case, we will use an initial training sample of size
n = 1000, but will increase this sample size when needed. The kernel functionK(x′i,x) needs to satisfy the
same constraints for SVR as it does for SVM. We have tested several common alternatives (Appendix C), and we
found that the Gaussian kernel (Equation 2) yields the best overall performance. Therefore, we will thus use the
Gaussian kernel, also for SVR.

Cross-validation and testing

2.8 BothSVMand theSVR canbe tunedbychoosing thevaluesof a few ‘meta-parameters’, whichyieldsgreat flexibility
for fitting a wide range of functions (Appendix A). But, these values should be chosen such that overfitting or
underfitting are avoided. To this end we use fivefold cross-validation. The training set is split randomly in five
equal parts. Four parts are recombined and used as training set, for a given set of meta-parameter values. The
remaining part serves to assess the performance of the surrogatemodel. This is repeated five times, so that each
of the five parts once serves to assess the performance. Themeta-parameter values that on average yield the
best performance are selected. Themain idea behind this procedure is to avoid over-fitting by using independent
samples for choosing meta-parameter values and training the surrogate model.
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Sensitivity measures

2.9 We use sensitivity indices for two aims. The first aim is to indicate which parameters drive the model towards
a behavioural mode. The second aim is to zoom in on one behavioural mode, and indicate which parameters
strongly a�ect model output within this mode. A priori, we cannot know whether the same parameters are
influential for both aims. Potentially, some parameters might influence the location of the border between
behavioural modes, whereas other influence the quantitative results within a behavioural mode. Therefore, we
use di�erent indices to measure the contribution of each parameter for both aims.

2.10 When determining which parameters drive the model towards a behavioural mode, the model outcome is a
binary variable y(x) that shows whether or not the behavioural mode is found for parameter settings x. To
indicate the sensitivity of a single parameter p, we consider the conditional probability of a behavioural mode
(e.g., y(x) = 1), a�er fixing that parameter, P (y(x) = 1|xp). If the probability strongly depends on the value of
xp, this indicates that the parameter influences which behavioural mode the model will display. If, in contrast,
the parameter has little e�ect, then the conditional probability will vary little. As sensitivity index, we use the
total range over which the conditional probability varies

Sp = max
xp

(P (y = 1|xp))−min
xp

(P (y = 1|xp)). (4)

Sp ranges between 0 and 1, with larger values corresponding to influential parameters. We use the SVM surrogate
model to compute Sp. To compute P (y = 1|xp), we fix the parameter p, and sample from the remaining
parameters. The probability is computed as the probability of a random point from this sample corresponding
to a behavioural mode y = 1. The maximum andminimum in Equation 4 are then computed over a number of
di�erent values of the parameter p, covering its full range.

2.11 The second type of sensitivity index assesses the quantitative e�ect of a parameter within a behavioural mode.
A choice for this could be the standard variance-based sensitivity index as proposed by Sobol (2001); Saltelli
et al. (2008). This index assigns portions of variance in the output to di�erent parameters. If fixing a parameter
causes a considerable decrease in the variance of model output, the sensitivity of the model to this parameter is
apparently large. If fixing the parameter does not decrease the variance, then the parameter apparently has no
e�ect on the model output. This index is suitable when the variance is a goodmeasure of the variation of model
output, in which case the index also can be used to quantify interaction e�ects. However, for some models
the variance is not a good measure for output variation, for example if the output distribution is bimodal, or
contains strong outliers. This has been demonstrated for two of our case studymodels (Ten Broeke et al. 2016b,a).
In Ten Broeke et al. (2016a) it was shown that our first case study displays di�erent, distinct modes of behaviour,
which are separated by nonlinear boundaries in parameter space and are also dependent on initial conditions.
As a result, the output is far from normally distributed, limiting the usefulness of variance-based sensitivity
indices.

2.12 Several alternative indices are available that do not depend on the variance of the output distribution. Bor-
gonovo (2007) introducedmoment-free sensitivity indices that take into account the entire output distribution.
Essentially, these indices are based on a comparison between the output distribution, and the conditional output
distribution a�er fixing one parameter. This comparison is made for di�erent values of the fixed parameter. If the
fixed parameter is influential, both distributions will di�er strongly on average. Entropy-based indices (Krzykacz-
Hausmann 2001) are conceptually similar, but use an entropy-basedmeasure to compare both distributions.
Other possible alternatives include the DELSAmethod (Rakovec et al. 2014), risk-basedmeasures (Tsanakas &
Millossovich 2016), and Shapley e�ects (Molnar 2019). We believe any of these indices can be suitable for our
method, although the reliance of DELSA on local derivatives is problematic for stochastic ABMs. A comparison
between indices would be a useful topic of further study. For the present paper, we choose to use entropy-based
indices (Krzykacz-Hausmann 2001) for their embedding in information theory.

2.13 The entropy H(Y ) of output variable Y measures its unpredictability. Uncertain parameter values lead to
output that is to some extent unpredictable. This unpredictability will decrease when parameter values are
fixed. This decrease will be larger for parameters to which themodel is strongly sensitive. Based on this idea, the
entropy-based sensitivity is defined as,

ep =
I(xp, Y )

H(Y )
= 1− H(Y |xp)

H(Y )
. (5)

HereH(Y ) is the entropy of Y , and I(xp, Y ) is the ‘mutual information’ between parameter xp and the output
Y . If all information about Y is contained in xp, then I(xp, Y ) = H(Y ), so that ep = 1. In this case, the model
output would be exactly predictable upon learning the value of xp. If, in contrast, learning the value of xp does
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not yield any information on Y , then I(xp, Y ) = 0. Using the expressionH(Y ) = I(xp, Y ) +H(Y |xp) yields
the rightmost expression for ep in Equation 5. HereH(Y |xp) is the conditional entropy, i.e., the entropy in Y
that remains upon learning the value of xp. Note that the remaining uncertainty of Y can depend on the specific
value taken by xp. Thus, the computation ofH(Y |xp) involves aggregation over the probability distribution of
xp. For the computation ofH(Y ) andH(Y |xp)weused the R package byHausser & Strimmer (2009). For further
details regarding the computation of entropy-based sensitivity indices, we refer also to Krzykacz-Hausmann
(2001).

2.14 Equation 5 does not yield any information on interactions between xp and other parameters. Such interactions
can be relevant, because the e�ect of xpmay depend on the values of the other parameters. To assess parameter
interactions, we propose the following index,

e∗p =
1

H(Y )
Exp

[H(Y |x∼p)] (6)

whereH(Y |x∼p) represents the entropy of Y a�er learning the values of all parameters except for xp. Note that
this entropy depends on the values of all parameters except for xp (which is unknown) and the computation of
the entropy involves aggregation over those parameters. Therefore the mean in Equation 6 is computed over
the probability distribution of the remaining parameter xp. While ep expresses the decrease in uncertainty about
Y upon learning xp, e∗p expresses the uncertainty about Y that is expected to remain as long as xp remains
unknown. The former excludes interactions with other parameters, while the latter includes all such interactions.
Thus, e∗p should normally be equal to or larger than ep. If, for example, both are zero, it implies that xp has no
e�ect on the model output. But, if ep = 0 and e∗p is positive, it means that xp has no e�ect on the output by
itself, but it does have an e�ect if changed in combination with other parameters. Like for the computation of
H(Y |xp), for the computation ofH(Y |x∼p)we used the R package by Hausser & Strimmer (2009). To compute
the expection value in Equation 6 we repeated the computation ofH(Y |x∼p) for randomly sampled values of
xp and computed the mean over these values.

2.15 Computing Equation 5 and 6 over a subset of parameter space that corresponds to a behavioural modemay
cause dependencies between the model parameters. As a result, the e�ects of di�erent parameters can become
di�icult to disentangle. For example, a parameter might be indicated as influential because it has a direct e�ect
on themodel output, but it may also be influential because it limits the range of a di�erent parameter, which
in turn a�ects the model output. We therefore check the correlations between parameters. If parameters are
strongly correlated, there may be indirect e�ects like in the above example. To further account for such e�ects,
we will compare Equation 5 and 6 to a sensitivity index based on the mean gradient of the output with respect
to a parameter,

gp = Ex∼p

[
Y (x|xp = xp,max)− Y (x|xp = xp,min)

xp,max − xp,min

]
(7)

where xp,min and xp,max denote theminimum andmaximum value of xp, a�er fixing the other parameters. This
index isolates the e�ect of individual parameters. Thus, if a parameter were to be strongly influential according
to Equation 5 and 6, but not according to Equation 7, then this indicates an indirect e�ect.

2.16 The computation of above indices, especially Equation 5 (Krzykacz-Hausmann 2001) and Equation 6, requires a
very large number of model runs. We therefore use the SVR surrogate model to estimate the ABM output to keep
the computational costs within acceptable bounds.

Model Description

3.1 We study the following three test-cases.

Bazykin-Berezovskayamodel

3.2 The Bazykin-Berezovskaya model describes the interaction between a prey population with an Allee e�ect and a
predator population. The populations are described by an ordinary di�erential equation model,

dY1
dt

= Y1(Y1 − ζ)(κ− Y1)− Y1Y2 (8)

dY2
dt

= γ(Y1 − h)Y2 (9)
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where Y1 represents the prey population density, Y2 the predator population density, ζ the Allee threshold, κ
the prey carrying capacity, γ the conversion factor from prey to predator, and h the predator mortality rate. The
model contains a transcritical bifurcation in parameter space. On one side of this bifurcation the population
always goes extinct, while on the other side it either goes extinct or converges to a steady state, depending on
the initial conditions. In addition, it features a Hopf bifurcation beyond which the population oscillates, rather
than going to a steady state. For a more detailed analysis of these bifurcations and a standard global sensitivity
analysis of the model, we refer to Ten Broeke et al. (2016a). In that paper, it was shown that the presence of
bifurcations in parameter space a�ects the global sensitivity analysis outcomes, and can lead to misleading
outcomes.

3.3 In this paperwe showhowour approach based on surrogatemodels can be used to deal with these tipping points
in a sensitivity analysis. We consider whether or not the populations survive as distinct behavioural modes. In
the first part of the analysis we will investigate under what conditions extinction occurs, and which parameters
are involved. In the second part, we will focus on the region of parameter space where the populations survive.
As main output we consider the population density Y2 , averaged between time-steps t = 1000 and t = 5000
to decrease the e�ect of oscillations on the output. We use the same parameter ranges as in Ten Broeke et al.
(2016a) (see Appendix D). This means that to demonstrate the method we vary the parameters ζ and h and the
initial condition Y2(0), while keeping other parameters fixed.

Resource consumer ABM

3.4 The resource consumer ABMwas previously published as a test-case for sensitivity analysis methodologies for
ABMs (Ten Broeke et al. 2016b). Themodel is relatively simple, while still possessing essential characteristics that
complicate sensitivity analysis for ABMs. Themodel consists of a square grid of sites on which resource grows
and di�uses. Agents can move between sites and harvest from sites. Through these actions, agents compete for
the resource, which they need to survive, to act, and to procreate.

3.5 The original publication (Ten Broeke et al. 2016b) includes a one-factor-at-a-time sensitivity analysis, regression-
based global sensitivity analysis, andmodel-free global sensitivity analysis. It was concluded that the global
methods yielded little insight into model behaviour because tipping points where the population goes extinct
are ignored by these methods (Ten Broeke et al. 2016a). In the following we show that more insight is gained
by considering survival and extinction as distinct behavioural modes in our procedure. In the first part of the
analysis we will investigate under what conditions extinction occurs, and which parameters are involved. In the
second part, we will focus on the region of parameter space where the population survives. As main output we
consider the number of agents, averaged between time-steps t = 500 and t = 1000. This averaging was done
to allow for the model to converge to steady state, and to average out stochastic fluctuations. The considered
parameter ranges are given in Appendix D. Both the considered output and parameter ranges are the same as
those used in the previous analysis (Ten Broeke et al. 2016b).

Philippine fishery ABM

3.6 The fishery ABMwas published with the aim to ‘evaluate the e�ects of social factors and bounded rationality on
macro-level outcomes of fisheries’ (Libre et al. 2015). The spatial component of the model consists of a square
grid of patches, on which fish grows and di�uses. Fishing companies, which are modelled as agents, decide
yearly to buy or sell vessels. Fishing vessels, alsomodelled as agents, decide daily whether andwhere to fish. The
agent behaviour of the companies and vessels are based on data from interviews with Filipino fishers. Default
parameter values are based on the same interview data, aswell as reports from the Philippine Bureau of Fisheries
and Aquatic Resources and the Western and Central Pacific Fisheries Commission.

3.7 Previously, a one-factor-at-a-time sensitivity analysis was performed in which parameters are varied individually
over a wide range (Libre et al. 2015). No global sensitivity analysis was performed. For the global sensitivity
analysis in the present paper, we vary all parameters over the same range as used for the one-factor-at-a-time
sensitivity analysis (Table 3). We use uniform distributions, except for some parameters of which the summust
equal one. For those parameters, we used a Dirichlet distribution to vary the individual parameters while keeping
their sum constant. As main outputs we consider the total yearly profit of fishing companies and the total
biomass of fish in the system. Like in the original publication, we simulate a time-span of 50 years per model run.
To remove stochastic fluctuations, the output of each run is averaged over the second half of the simulation,
a�er which the model has converged.
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Results

Bazykin-Berezovskayamodel

Performance of method

4.1 Both the test set and the training set consist of 1000 sample points, drawn using replicated Latin hypercube
sampling. Since the model is deterministic, no replicates were used. Bifurcation analysis was used to determine
analytically for which sample points the population goes extinct. This analytical outcome was used to train
a SVM surrogate model to predict whether extinction occurs for sample points in the test set. We assess the
performance of the SVM by its F1-score (Sasaki 2007) (Appendix D). A score of 1 would correspond to all test
samples being classified correctly. Based on the training set of 1000 sample points, the surrogatemodel achieves
an F1-score of 0.96. Thus, even without adaptive sampling the surrogate model performs well.

4.2 For the sample points with a non-extinct population we train an SVR surrogate model to predict the population
density Y . Plotting the SVR predictions against the test set output reveals a goodmatch (Figure 3). Wemeasure
the performance of the SVR by the coe�icient of prognosis (Most & Will 2011) (Appendix B) between the model
output and SVR prediction. A coe�icient of prognosis of 1 means that bothmodels generate exactly the same
output, while a value of 0 means that there is no correlation between the outputs. Based on the training set of
1000 sample points, we obtain a coe�icient of prognosis of 0.98. Thus, the SVR accurately predicts the population
density, and no sequential sampling is needed.

Classification into behavioural models

4.3 In total, 139 out of 1000 sample points in the test set maintain a positive population. The SVM predicts for which
parameter settings the population goes extinct. Figure 2 shows the decision boundary as function of ζ and h for
y0 = 0.1. The population survives when h is su�iciently large, and ζ is su�iciently small. Based on the values of
the sensitivity indices Sp (Table 1) ζ is the most important parameter for the survival of the population. But h
and to a lesser extent Y2(0) also influence survival.

Analysis of behavioural mode with surviving population

4.4 The SVR surrogate model predicts the population size for parameter settings where the population survives.
The results show that when considering only the region of parameter space with a positive population, h is
clearly the most influential parameter. This is true for both the first-order indices and the total-order indices.
In contrast, when considering the entire parameter space, h and ζ are approximately equally influential. This
reveals that the influence of ζ on the population size is largely explained by its influence on the tipping point
where the population goes extinct. The variance-based indexSp shows ζ to bemore influential thanh, seemingly
contradicting the values of ep and ep,full. It has been previously shown that variance-based indices overestimate
the contribution of ζ compared to other indices. For a detailed discussion, we refer to Ten Broeke et al. (2016a).
In short, increasing ζ leads to increased output in all parts of parameter space. Increasing h increases the output
in some parts, but decreases it in other parts. Variance-based indices tend to be larger for parameters that have
a consistent e�ect throughout parameter space. Thus, which parameter is the most influential depends on the
used definition of influential.

4.5 Note that the values of gp , which separate the e�ects of parameter dependencies, which are reported in Appendix
E, confirm that h is the most influential parameter. The initial condition Y2(0) can drive the population to
extinction, but has no e�ect on the size of surviving populations, as indicated by the values of gp. This is
consistent with the existence of a global bifurcation in this model (Van Voorn et al. 2007), that works as a
separator of two domains of attraction. Depending on the initial condition, the population will hence persist or
go extinct.
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Figure 2: SVM decision boundary for the Bazykin-Berezovskaya model. In this visualisation, h and ζ are varied,
while all other parameters are fixed at their default values. The visualisation shows that large values of h
combined with small values of ζ lead to survival of the population.

Figure 3: Comparison of the di�erential equation model output and SVR predictions for the population density
Y2. The red line corresponds to both being equal. The test sample contains 1000 sample points, 139 of which
have a surviving population. The coe�icient of prognosis equals 0.98.
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Parameter Sp ep ep,full e∗p e∗p,full gp

Y2(0) 0.21 0.01 0.05 0.38 0.06 0.0
h 0.44 0.38 0.19 0.69 0.83 1.8
ζ 0.62 0.15 0.18 0.68 0.51 1.0

Table 1: Sensitivity indices of the Bazykin-Berezovskayamodel. Entropy-based indices are reported both over the
full range of all parameters (ep,full and e∗p,full) and over the range for which a positive population is maintained
(ep and e∗p). There are di�erences between the sensitivity indices calculated for the behavioural mode of interest,
for the full parameter space, and for the classification.

Resource consumer ABM

Performance of method

4.6 The test set for the resource-consumer ABM consists of 1000 sample points. For each points, we performed 5
replicate runs to assess the e�ect of stochasticity. This sample was drawn using a replicated Latin hypercube de-
sign, of 10 cubeswith 100 sample points each. For a number of samples the population goes extinct. Stochasticity
has little e�ect on the occurrence of extinction, since 99.4% of replicate pairs show the same outcome. A SVM
surrogate model was trained to predict where in parameter space extinction occurs. We assess the performance
of the SVM by its F1-score (Sasaki 2007) (Appendix B). A score of 1 would correspond to all test samples being
classified correctly. For a replicated Latin hypercube training sample of size 1500, a score of 0.87 is achieved.

4.7 Of the variance in population size, 2.9% is explained by stochasticity, and thus cannot be captured by the SVR
surrogate model. We measure the performance of the SVR by the coe�icient of prognosis (Most & Will 2011)
(Appendix B) between the ABM output and SVR predictions, both for replicated Latin hypercube sampling and
adaptive sampling. A coe�icient of prognosis of 1 means that bothmodels generate exactly the same output,
while a value of 0 means that there is no correlation between the outputs. To compare adaptive sampling to
random sampling, we start with a training set of 100 sample points, and expand this set using either sampling
method. The results show that adaptive sampling leads to a faster increase in the coe�icient of prognosis
(Figure 4). Note that for both methods the number of samples used for training is smaller than the number of
drawn samples, because some of the drawn sample points result in extinction and therefore are not used for
training the SVR. For the adaptive sampling, however, fewer points need to be discarded, since the use of the
surrogate model helps to avoid sample points outside the region of interest. If only samples with a non-extinct
population were included, the di�erence between both sampling methods would be smaller. For a training
sample size of 1000 runs, we obtain a coe�icient of prognosis of 0.83. The SVR predictions for the test set are
plotted against the true values in Figure 5. While there are some deviations, especially at the extremes, the
predictions generally match the ABM output well.
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Figure 4: Surrogate model performance as function of number of drawn samples. For adaptive sampling (red
squares), the coe�icient increases faster than for replicated Latin hypercube sampling (black circles). For both
sampling methods the coe�icient of prognosis was computed with respect to the same fixed test sample, which
was drawn using replicated Latin hypercube sampling (Section 2.1).

Figure 5: SVR prediction versus ABM output for the number of agents in the test sample. The straight line
corresponds to both being equal. The test sample contains 1000 sample points, 243 of which maintain a positive
population. The coe�icient of prognosis equals 0.83.
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Classification into behavioural modes

4.8 Out of 1000 sample points in the test set, 243 maintain a positive population. The SVM defines a decision bound-
ary in parameter space beyond which the population is predicted to go extinct. This decision boundary may be
visualised for any pair of ABM parameters, while keeping all other parameters fixed (similar to a bifurcation dia-
gram) (Fig 6). Visualisation of the decision boundary is not possible when varying all parameters simultaneously,
but a parallel coordinates plot (Inselberg et al. 1987) could be used to visualise which parameter combinations
lead to di�erent behavioural modes. Instead, we report the sensitivity indices Sp (Table 2). The indices show
that the conversion e�iciency, maximum resource harvest size and energy cost of harvesting strongly a�ect
the occurrence of extinction. All of these represent bio-physical parameters involved directly in the process of
harvesting resource.

Figure 6: SVM decision boundary. In this visualisation, the parameters conversion e�iciency and maximum
harvest size are varied, while all other parameters are fixed at their default values. The visualisation shows that
large values of both varied parameters lead to survival of the population.

Analysis of behavioural mode with surviving population

4.9 The entropy-based sensitivity indices have been estimated based on additional sample points for which the
output was obtained using the surrogate model. These indices showwhich parameters strongly a�ect the size
of the population if it survives. Considering only samples with surviving populations introduces correlations
between the input parameters, since certain parameter combinations are more likely to lead to extinction. As
discussed in the methods section, these correlations canmake it di�icult to disentangle the e�ects of di�erent
parameters in the entropy-based indices. For our model, the energy cost of harvesting is positively correlated
with both the conversion e�iciency, and the maximum resource harvest size. Other parameter pairs are not as
strongly correlated. These pairs all have correlation coe�icients with an absolute value below 0.2 (Appendix E).
For the conversion e�iciency, the correlation seems to lead to a low value of ep. The value of gp shows that the
parameter is influential not only on the classification, but also on the population size. The sensitivity indices
show that the resource growth rate clearly has the strongest e�ect on population size. Thus, while this parameter
has a relatively small e�ect on the survival of the population, it has a major e�ect on the size of the population,
if it survives. The maximum harvest size influences both the survival of the population and the population size.
Increasing this parameter increases chances of survival of the population, but decreases population size. I.e., if
agents can harvest more during a time-step, this generally leads to a smaller population, but it decreases the
chances of extinction.
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Description Dimensions Sp ep ep,full e∗p e∗p,full gp

Initial number of agents - 0.05 0.05
Initial resource per patch mass 0.05 0.04
Conversion e�iciency energy mass−1 0.42 0.05 0.47 0.45 0.24
Resource growth rate time−1 0.26 0.13 0.84 0.82 0.48
Resource di�usion length2 time−1 0.27 0.26 0.09
Max. resource harvest size mass 0.42 0.02 0.20 0.20 0.10
Energy for procreation energy 0.23 0.16 0.19 0.06
Observation uncertainty mass 0.10 0.10 0.03
Energy cost of harvesting energy 0.47 0.03 0.07 0.51 0.49 0.33
Agent birth coe�icient energy−1 0.05 0.04
Energy cost of maintenance energy 0.02 0.44 0.42 0.16
Agent mortality coe�icient energy−1 0.33 0.17 0.19 0.07
Energy cost of moving energy 0.14 0.13 0.04
Max. resource per patch mass 0.31 0.04 0.04 0.57 0.55 0.25

Table 2: Sensitivity indices of the resource-consumer ABM. Entropy-based indices are reported both over the full
range of all parameters (ep,full and e∗p,full) and over the range for which a positive population is maintained
(ep and e∗p). To improve legibility, any values of 0.02 or smaller have been omitted, values above 0.3 have been
printed bold, and values above 0.7 have been underlined. All indiceswere computed using a total training sample
size of 4100 for the surrogate models, obtained through adaptive sampling. The di�erences between ep and
e∗p indicate there are large interaction e�ects for some parameters. This translates into a nonlinear boundary
between the regions of extinction and persistence as depicted in Figure 6.

4.10 Comparison between the indices Sp, ep and ep,full reveals that generally the values of ep and ep,full show a
similar pattern. The same is true for the total-order indices e∗p and e∗p,full. Thus, for the number of agents as
output the results of the analysis are similar when applying the method over the full parameter space, versus
only the region that supports a population. The main contribution of our approach is that it also distinguishes
which parameters determine whether the population will go extinct. For example, the agentmortality coe�icient
is strongly influential on whether the population goes extinct, but not on the population size. In contrast,
the resource growth rate is the most influential parameter on the population size, but has little e�ect on the
occurrence of extinction.

Fishery ABM

Performance of themethod

4.11 The SVM surrogate model predicts accurately under which parameter settings the fishery disappears. For the
test set of 1000 sample points, which was drawn using replicated Latin hypercube sampling, 4.6% of replicate
run pairs show the same outcome. For these runs, the surrogate model cannot make accurate predictions. For
2000 training samples, an F1 score of 0.95 on the test set is achieved, showing that the surrogatemodel performs
very well.

4.12 SVRwas used to predict both the fish stock, and the combined yearly profit of fishing companies. We use the
same 1000 sample points for the test set as for the SVM. For both outputs, stochasticity explains less than 1% of
variance. Based on the same 2000 training samples that were used for the SVM, the SVR performance is very
good for both outputs, as measured by a coe�icient of prognosis of 0.97 for fish stock, and 0.95 for total profit.
The performance is visualised by plotting the SVR predictions against the ABM output (Figures 7 and 8).

Classification into behavioural modes

4.13 We use the SVM to examine which parameters determine whether or not the fishery still exists a�er 50 years.
In total, 886 of 1000 sample points in the test set maintain a positive number of fishing vessels. The estimated
sensitivity indices (Table 3) reveal that no single parameter is as influential as some of the parameters in the other
case studies. We could not find a good visualisation of the classification, since no single parameter has a strong
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enough e�ect for a clear visualisation. The indices show that theweight of available sites in P(entry) (and to some
extent the other weights involved in P(entry)), the number of potential entrants, and themaximum amount of
fish are relatively important parameters. Except for the maximum amount of fish, all of these parameters relate
to new fishing companies starting up. Thus, controlling the influx of new companies is important for sustaining
the fishery. This influx ensures that when companies go bankrupt, new companies are available to replace them.

Stock and profit

4.14 For themodel runswhere the fishery still exists a�er 50 years there areno strong correlationsbetweenparameters
in the training or test set, which enables us to easily identify the e�ects of each individual parameter. For fish
stock, the maximum amount of fish is clearly the most influential parameter. The value ep = 0.48 indicates that
a substantial part of the uncertainty in model predictions is solely attributed to this parameter. Furthermore, the
value of e∗p = 0.80 indicates that the parameter is also involved in interaction e�ects. A number of other model
parameters are also involved in interactions. Both economic parameters, such as base skipjack price and fuel
cost per liter, and ecological parameters, such as fish growth rate, are relevant. For a number of parameters,
e∗p = 0. This indicates that those parameters do not contribute to output uncertainty, even when considering
interaction e�ects.

4.15 Note that parameters that strongly a�ect the classification (measured by the indices Sp), may not be influential
on predictions of stock or profit, or vice versa. For example, while parameters related to entry of new fishing
companies are among themost important parameters for existence of the fishery a�er 50 years, these parameters
have little e�ect on stock or profit if the fishery persists. In contrast, skipjack price strongly a�ects profit of the
fishery, if it continues to exist, but has little e�ect on whether or not it does continue to exist. The only parameter
that is influential on all the considered outputs is themaximumamount of fish in the system. Di�erences between
ep and ep,full are minor. Thus, generally the same parameters are influential for both the full parameter space,
and the region where extinction does not occur. But, our method yields additional information over standard
global sensitivity analysis, since it also shows which parameters a�ect the continued existence of the fishery, as
measured by the indices Sp.

Figure 7: Comparison of ABM output and SVR predictions for stock biomass. The red line corresponds to both
being equal. The test sample contains 1000 sample points, 886 of which maintain a positive number of fishing
vessels. The coe�icient of prognosis equals 0.97.

JASSS, 24(2) 3, 2021 http://jasss.soc.surrey.ac.uk/24/2/3.html Doi: 10.18564/jasss.4530



Figure 8: Comparison of ABM output and SVR predictions for yearly profit. The red line corresponds to both
being equal. The test sample contains 1000 sample points, 886 of which maintain a positive number of fishing
vessels. The coe�icient of prognosis equals 0.95.
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Class. Stock Profit

Parameter Sp ep ep,full e∗p e∗p,full gp ep ep,full e∗p e∗p,full gp

Initial no. of companies .05 .05 .08 .12
Number of potential entrants .15 .07 .10
Target ratio of catch to capacity .09 .30 .30 .11 .37 .45 .11
Average catchability .08 .25 .26 .08 .43 .47 .08
Resistance to sell vessel .06 .06
Minimum entrepreneurship .05 .05
Congestion threshold .18 .18 .06 .26 .32 .06
Weight of catch in P(buy) .07 .05 .09
Weight of capital to cost in P(buy) .07 .07
Weight of buying ratio in P(buy) .05 .11 .06
Weight of available sites in P(buy) .10 .06
Weight of entrepreneurship in P(buy) .08 .12
Weight of catch in P(sell)
Weight of earning vessels in P(sell) .05
Weight of buying ratio in P(entry) .12 .07
Weight of catch info in P(entry) .06
Weight of available sites in P(entry) .19 .05 .07
Starting capital .05 .06
Investment costs of a vessel .06 .06
Annual fixed cost per vessel .05 .07
Fuel cost per liter .09 .09 .37 .43
Base skipjack price .14 .18 .08 .08 .58 .61
Price to catch coe�icient .05 .05
Maximum amount of fish .15 .48 .47 .80 .94 .69 .14 .16 .67 .70 .69
Initial amount of fish .05 .05
Growth rate of fish .28 .28 .10 .27 .33 .10
Di�usivity of fish .05 .05

Table 3: Sensitivity indices of the fishery ABM. Entropy-based indices are reported both over the full range of all
parameters (ep,full and e∗p,full) and over the range for which a positive number of vessels is maintained (ep and
e∗p). To improve legibility, any values of 0.04 or smaller have been omitted, values above 0.3 have been printed
bold, and values above 0.7 have been underlined. All indices were computed using a training sample size of
2000 for the surrogate models.

Conclusions and Discussion

5.1 In this paper, we introduced a sensitivity analysis approach that uses surrogate models to distinguish between
di�erent behavioural modes. We demonstrated the approach using three case studies. For all three case
studies, the SVM and SVR surrogate models yield good fits with the test data. Furthermore, our method yields
insight into the behaviour of the models. For the Bazykin-Berezovskaya model, the method shows that di�erent
parameters a�ect the survival of the population and the population density. Furthermore, this case also shows
that performing sensitivity analysis over the region of parameter space with a surviving population can yield
di�erentoutcomes fromperforminga standardglobal sensitivity analysis over theentireparameter space. For the
resource-consumer ABM a variance-based global sensitivity analysis was previously performed. Our procedure
improves upon this analysis by distinguishing between runs with qualitatively di�erent behaviour, which cannot
be achieved by standard variance-based sensitivity analysis. Using our procedure, we can distinguish between
parameters that impact the qualitative behaviour of the ABM, and parameters that influence the quantitative
outcomes, such as the size of the population. Thus, our method gives additional information, because it
shows that di�erent parameters are important for the quantitative and qualitative outcomes. For example, the
parameters for the conversion e�iciency, mortality coe�icient, and maximum harvest in the resource-consumer
model strongly influence the occurrence of extinction, but are relatively less influential on the quantitative
outcomes (Table 2). The same holds true in the fishery model for the four parameters related to entry of
fishing companies (Table 3). This information could not have been obtained using standard variance-based
sensitivity analysis, because that approach does not distinguish between di�erent qualitative behaviours. Thus,
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our approach is especially valuable if one aims to assess, in addition to the quantitative model outcomes,
transitions between di�erent types of behaviour, andwhich parameters influence these transitions. We therefore
believe that our approach presents one step towards addressing the need for methodologies to analysis for
ABMs (Macal 2016; Filatova et al. 2016; Crooks et al. 2008). In our examples, the behavioural modes are separated
by tipping points beyond which the system goes extinct, but any criterion of interest to the model user could be
substituted. In some cases, like the second and third case study, the parameters that influence the quantitative
behaviour within a behavioural modemay be the same as those that are influential in a standard variance-based
sensitivity analysis. When comparing these indices, it is relevant to consider the sample size corresponding to
the behavioural mode of interest relative to the total sample size. Other cases, like the first case study, display
clear di�erences between the sensitivity indices. If clear di�erences exist, this indicates that the parameter
sensitivities vary depending on the region of parameter space. Note that in particular the first case study has
strong non-linearities, which may explain such di�erences in the sensitivity indices.

5.2 We have used entropy-based sensitivity indices to express parameter importance. This includes the index ep
introducedbyKrzykacz-Hausmann (2001) and the index e∗p, which is based on the index ep, butwas not previously
used in this form. The more commonly used variance-based indices are not applicable in case of parameter
dependencies, because the normalisation breaks down. Entropy-based indices provide a good alternative.
Furthermore, they have the added advantage that they do not depend only on the second moment of the
distribution, but on its entire shape. In addition, we have used gradient-based indices, which can separate the
direct e�ect of a parameter on the output, from the indirect e�ect of limiting the range of other parameters when
a subregion of parameter space is considered. Alternative sensitivity indices or visualisation methods could
still be explored to express parameter importance. Our approach in this paper is mostly aimed towards global
analyses where all parameters are varied simultaneously. Compared to local methods, global methods have
much higher computational costs, which makes the training of a surrogate model worthwhile. An overview of
global sensitivity analysis methods is given by Iooss & Lemaître (2015). Since ABMs are o�en strongly non-linear
indices based on regression Pearson correlation coe�icients or standard regression coe�icients are not suitable.
The indices proposed by Borgonovo (2007) could be suitable, and have a similar interpretation to the entropy-
based indices in terms of first- and total-order e�ects. Other alternatives include risk-basedmeasures Tsanakas &
Millossovich (2016) or theDELSAmethod Rakovec et al. (2014), scatterplots can be useful, but are o�en di�icult to
interpret if the number of model parameters is large. Parallel coordinate plots can be a valuable tool for visualing
the classification outcomes, or for example the 5% largest simulation outcomes. Likewise, methods to increase
’interpretability’ of machine learning models (Molnar 2019) could also be applied. Methods like permutation
feature importance and Shapley values look especially promising, and could likely be used to generate indices
similar to first- and total-order indices. To evaluate the advantages and disadvantages of these di�erentmethods
in more detail, a direct comparison would be needed.

5.3 Previously we have compared several standard methods of sensitivity analysis based on application to the same
resource-consumer model discussed in this paper (Ten Broeke et al. 2016b). One of the main conclusions was
that one-factor-at-a-time sensitivity analysis, in which parameters are varied individually across a large range,
is a good starting point for sensitivity analysis of ABMs. Compared to themethod discussed here, one-factor-
at-a-time sensitivity analysis is computationally cheaper. Furthermore, the method shows causal e�ects of
changes in individual parameters on the model output, and can reveal tipping points. The disadvantage is that
interaction e�ects are not taken into account. The approach in this paper does assess interaction e�ects by
doing a more extensive exploration of parameter space. Note, however, that the global e�ect of a parameter
can di�er strongly from its local e�ect around a specific point in parameter space. For example, the sensitivity
indices of the fishery model show that di�usivity of fish has only a minor e�ect on the continued existence of
the fishery. This means that in some parts of parameter space, changes in this parameter will cross a tipping
point leading to disappearance of the fishery, as was noted in the original publication (Libre et al. 2015). Thus,
the method presented here is not a substitute for local one-at-a-time sensitivity-analysis. Both methods give
di�erent kinds of information, and can be used to complement each other.

5.4 The present methodology requires some prior information about the model behaviour to make a classification
and start up the analysis. Performing anOFAT analysis is one way to obtain information about e.g. tipping points
that function as boundaries between di�erent behavioural modes Ten Broeke et al. (2016b). An alternative
approach is to use a clustering procedure, as was done by Edali & Yücel (2018). This would make the method
applicable without previous knowledge about model behaviour. It depends on the aims of the researcher which
of these approaches is the most suitable. The approach in this paper is suitable if one is interested in specific
behavioural modes, while a clustering procedure would be suitable if one wants to explore what behavioural
modes the model can produce.

5.5 In the present paper temporal dynamics of themethod are not yet covered. Computing sensitivity indices as
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function of time, e.g., by using a sliding window with a mean value across a small time interval, can give insight
into the dynamics of ABM (Ligmann-Zielinska & Sun 2010) and this is a possible extension of themethod. Machine
learning techniques in particular may be helpful for gaining insight into these dynamics because they can allow
us to look in more detail at simulated sample paths (Nelson 2016). While the present paper does not yet address
this, by separating parameter space into regions it does present one step towards using more detailed analysis
methods to gain additional insight into ABM behaviour. Furthermore, using surrogate models ensures that this
additional insight over standard methods is gained at relatively low computational costs.

Appendix A: Support Vector Machines and Support Vector Regression

Classification

Support vector machines (SVMs) are a machine learning tool used to classify output data. While the method can
be extended to deal with a larger number of categories, here we describe it for two categories, marked as -1 and
1. The classification is based on the following decision criterion,

h(x) =

{
−1 ifwTx+ b ≥ 0
1 ifwTx+ b < 0.

(10)

Here, h(x) is the SVM classification, and the vectorx contains any number of features to be used for classification.
The vectorw assigns a weight to each feature, and b is a constant.

Todetermineoptimal values forw, weneeda set of training samples forwhichboth the features and classification
are known. Theweights are set such that the SVM correctly predicts the classification of asmany training samples
as possible. This is achieved by solving the following optimisation

min
w,b,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)

subject to
{

yi
(
wTxi + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, ..., n.

(11)

Here xi denotes the features of sample i, and yi the corresponding classification. It can be shown that the
minimisation of the weightsw ensures that the margin between the decision boundary (Equation 1) and the
training samples is maximised. The constraints ensure correct classification according to Equation 1. Since
correct classificaton of all samples may be impossible, slack variables ξi are introduced. If ξi > 0, sample i can
bemisclassified while still meeting theminimisation constraints. However, this misclassification is penalised
in the minimisation term. The regularisation parameter C weighs the penalty for slack variables against the
minimisation of w. Large values of C strongly penalise misclassification, and may lead to overfitting. Small
values ofC avoid overfitting, but may lead to a decreased classification accuracy.

For many applications, the linear decision criterion of Equation 1 is not suitable. An advantage of SVMs is that
the linear criterion can be replaced by a number of alternative criteria. This replacement is based on the dual
form of the mathematical model specified by Equation 10 and 11. This dual form is written as (Ng 2008),

max
a

 n∑
i=1

ai −
1

2

n∑
i,j=1

yiyjaiaj〈x′i,x′j〉


subject to

{
0 ≤ ai ≤ C∑n
i=1 aiyi = 0, i = 1, 2, ..., n.

(12)

where ai are Lagrange multipliers. Solving the dual problem yields the same solution as solving the primal
problem (Equation 11). Using the dual form, it can be shown that the decision criterion can be written as

wTx+ b =

m∑
i=1

aiyi〈x′i,x〉+ b. (13)

Both Equation 12 and Equation 13 depend on the inner product 〈x′i,x〉, rather than on x itself. Therefore, this
inner product can be replaced by a Kernel functionK(x′i,x) = φ(x′i)

Tφ(x), where φ(x) represents a feature
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mapping of x. A necessary and su�icient condition for this replacement is thatK(x′i,x) is symmetric positive
semi-definite. Furthermore, the Kernel function should measure the similarity between x and x′i. In this paper
we will use a Gaussian Kernel function

K(x′i,x) = exp

(
− 1

2σ2
‖x′i − x‖2

)
. (14)

The value of K(x′i,x) ranges between 0 and 1. If K(x′i,x) = 1, both samples are identical, and K(x′i,x)
asymptotically decreases to zero as the distance between the samples increases.

Regression

While SVM is used to classify output data, support vector regression (SVR) is used to predict real-valued output
data, rather than to classify data. This prediction is given as

f(x) =

n∑
i=1

wiK(x′i,x) + b, (15)

where we have used a Kernel in the same way as for SVM. To each sample x′i, a weight wi is assigned. These
weights are optimised when Equation 15 is fitted to the training data by solving the following optimisation
problem

minimise
1

2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i )

subject to


yi −

∑n
j=1 wjK(x′j ,x)− b ≤ ε+ ξi∑n

j=1 wjK(x′j ,x) + b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0.

(16)

The constraints ensure that if the di�erence between the prediction and the actual output yi of the training data
is smaller than ε, the sample does not contribute any cost to the objective function. If the di�erence is larger
than ε, then ξi or ξ∗i will be positive and will contribute to the objective function. Similar to SVM, we can write
the dual form of the mathematical model specified by Equation 16 and choose a Kernel function.

Appendix B: Performance Measures

We assess the performance of the SVM surrogate models by its F1-score (Sasaki 2007). The score is defined as the
harmonic mean of the precision and recall,

F1 =
2 Precision ∗ Recall
Precision+ Recall

. (17)

The precision is defined as

Precision =
tp

tp+ fp
, (18)

where tp denotes the number of true positives and fp denotes the number of false positives. The recall is defined
as

Recall =
tp

tp+ fn
, (19)

where fn denotes the number of false negatives. By considering both precision and recall it is ensured that
the F1-score yields a balanced performance measure, even when the numbers of positives and negatives di�er
strongly.
The performance of the SVR surrogate model is assessed by the coe�icient of prognosis (Most & Will 2011). It is
defined as

Coe�icient of prognosis =
(
E[Y(x) · f(x)]
σ(Y(x))σ(f(x))

)2

. (20)

HereY(x) is the ABM output and f(x) is the corresponding SVR prediction. Both are measured over test data
that is independent from the training data used to train the SVR. A value of 1 means that the ABM output and SVR
predictions are exactly equal. A value of 0 means that there is no correlation between them.
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Appendix C: Choice of Kernel Function

In this Appendix we compare the performance of several Kernel functions. Included are the Gaussian, linear,
polynomial (third order), and sigmoid kernels. These are themost commonkernel choices, and are all the options
available in the e1071 R package (Meyer et al. 2018). The performance was tested on the resource-consumer
model using a Latin hypercube sample with a training set size of 3000 sample points. The results are shown
in Table 4. For SVM classification, the Gaussian kernel clearly outperforms the other options. For the sigmoid
kernel no score could be given, because it predicts extinction for all test samples, leading to division by zero in
the F1 score. Thus, the sigmoid kernel has no predictive power at all. For SVR regression, the performance of the
Gaussian, linear, and polynomial kernel are very close.

Kernel SVM classification SVR regression

Gaussian 0.87 0.70
Linear 0.39 0.71
Polynomial 0.39 0.69
Sigmoid - 0.64

Table 4: Comparisonof kernel functions. TheSVMperformance ismeasuredby the F1 score. TheSVRperformance
is measured by the coe�icient of prognosis (Most & Will 2011)

Appendix D: Parameter Ranges Used in Sensitivity Analysis

Symbol Description Value/Range

Y1(0) Initial prey population 0.9
Y2(0) Initial predator population 0.1 0-1
γ Conversion factor 1
κ Carrying capacity 1
h Predator mortality rate 0 - 1
ζ Allee threshold (prey) density 0 - 1

Table 5: For each parameter in the Bazykin-Berezovskaya model, the symbol and description are listed here. For
the parameters that were varied in the sensitivity analysis, the range is listed. For parameters that were fixed,
the value is listed.

Description Dimensions Range

Initial number of agents - 1 - 200
Initial resource per patch mass 0 - 1
Conversion e�iciency energy mass−1 0 - 1
Resource growth rate time−1 0 - 0.5
Resource di�usion length2 time−1 0 - 0.1
Max. resource harvest size mass 0 - 1
Energy for procreation energy 0 - 10
Observation uncertainty mass 0 - 0.5
Energy cost of harvesting energy 0 - 0.5
Agent birth coe�icient energy−1 0 - 5
Energy cost of maintenance energy 0 - 0.05
Agent mortality coe�icient energy−1 0 - 5
Energy cost of moving energy 0 - 0.05
Max. resource per patch mass 0 - 5

Table 6: For each parameter in the resource-consumer model, the dimensions and range used in the sensitivity
analysis are listed here. We have used uniform distributions for each parameter.
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Parameter Units Range

Initial no. of companies Companies 0 - 49
Number of potential entrants Companies 0 - 44
Target ratio of catch to capacity - 0.01 - 0.99
Average catchability day−1 0.001 - 0.0015
Resistance to sell vessel - 0 - 1
Minimum entrepreneurship - 0 - 1
Congestion threshold - 0 - 1
Weight of catch in P(buy) - 0 - 1
Weight of capital to cost ratio in P(buy) - 0 - 1
Weight of buying ratio in P(buy) - 0 - 1
Weight of available sites in P(buy) - 0 - 1
Weight of entrepreneurship in P(buy) - 0 - 1
Weight of catch in P(sell) - 0 - 1
Weight of earning vessels in P(sell) - 0 - 1
Weight of buying ratio in P(entry) - 0 - 1
Weight of catch information in P(entry) - 0 - 1
Weight of available sites in P(entry) - 0 - 1
Starting capital USD 0 - 1.8 * 106
Investment costs of a vessel USD 0 - 3.0 * 106
Annual fixed cost per vessel USD year−1 0 - 1.0 * 105
Fuel cost per liter USD l−1 0.5 - 4.5
Base skipjack price USD 400 - 2400
Price to catch coe�icient USD ton−1 -0.001 - 0.001
Maximum amount of fish ton 1.25 * 104 - 1.75 * 104
Initial amount of fish ton 0 - 1
Growth rate of fish day−1 0.0005 - 0.0085
Di�usivity of fish miles−1 day−1 0 - 420

Table 7: For each parameter in the resource-consumer model, the units and range used in the sensitivity analysis
are listed here. We have used uniform distributions for each parameter, except for the di�erent weights. For the
weights, we used Dirichlet distributions to ensure that the sum equals one.

Appendix E: Parameter Correlations for Behavioural Mode of Interest

Considering only a specific behavioural mode, rather than the whole parameter space, introduces dependencies
between parameters. These dependencies can influence computed sensitivity indices, because one parameter
can have an indirect e�ect on the output through influencing the range of other parameters. Here, we provide the
correlation matrices for the model parameters for the Bazykin-Berezovskaya model, and the resource consumer
ABM. The most important results are discussed in the main paper. The values here are provided so that readers
can verify these results themselves. Thematrices have been computed on the test samples of the corresponding
case studies. For the fishery model, we do not give the full matrix, due to the large number of parameters. For
this model, all of the correlations are below 0.1, except for the correlation between the target ratio of catch to
capacity, and the weight of available sites in P (entry). The correlation between these two parameters equals
0.11.

ζ h Y2(0)

ζ 1 0.22 -0.43
h 1 -0.09
Y2(0) 1

Table 8: Correlation matrix for the behavioural mode of interest of the Bazykin-Berezovskaya model.

JASSS, 24(2) 3, 2021 http://jasss.soc.surrey.ac.uk/24/2/3.html Doi: 10.18564/jasss.4530



n0 R0 c r D Rmax Eb Runc Eh vb Em vd Emove z K

n0 1 -0.09 -0.00 0.03 -0.04 0.02 -0.01 0.03 0.06 0.03 -0.01 -0.04 -0.12 0.02 0.01
R0 1 -0.01 0.02 -0.01 0.03 0.12 -0.04 0.02 -0.02 0.08 0.01 -0.06 -0.07 0.03
c 1 0.10 0.09 -0.13 0.12 -0.06 0.35 -0.01 0.02 -0.13 0.01 0.01 -0.07
r 1 0.02 -0.08 -0.04 -0.02 -0.02 -0.02 0.03 -0.11 -0.08 -0.04 0.02
D 1 -0.03 0.06 -0.07 -0.01 -0.00 -0.06 -0.03 0.02 -0.06 -0.05
Rmax 1 0.02 0.02 0.33 0.08 0.01 0.18 0.02 -0.13 0.07
Eb 1 -0.13 0.09 -0.05 0.00 -0.17 -0.03 0.08 -0.16
Runc 1 -0.13 -0.13 0.06 0.09 0.01 0.08 0.07
Eh 1 -0.05 -0.04 -0.05 0.08 -0.07 0.17
vb 1 0.13 -0.09 -0.05 0.04 -0.07
Em 1 -0.05 -0.04 -0.03 -0.02
vd 1 0.04 -0.06 -0.06
Emove 1 0.02 -0.04
z 1 0.00
K 1

Table 9: Correlation matrix for the behavioural mode of interest of the resource-consumer ABM. Indices with an
absolute value above 0.1 have been printed bold.
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