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Abstract: Li�ing social restrictions is one of the most critical decisions that public health authorities have to
face during a pandemic such as COVID-19. This work focuses on the risk associated with such a decision. We
have called the period from the re-opening decision to epidemic expiration the ’final epidemic phase’, and con-
sidered the critical epidemic conditionswhich could possibly emerge in this phase. The factorswe have consid-
ered include: the proportion of asymptomatic cases, amitigation strategy based on testing and the average du-
ration of infectious states. By assuming hypothetical configurations at the time of the re-opening decision and
the partial knowledge concerning epidemic dynamics available to public health authorities, we have analyzed
the risk of the re-opening decision based on possibly unreliable estimates. We have presented a discrete-time
stochastic model with state-dependent transmission probabilities and multi-agent simulations. Our results
show the di�erent outcomes produced by di�erent proportions of undetected asymptomatic cases, di�erent
probabilities of asymptomatic cases detected and contained, and a multivariate analysis of risk based on the
average duration of asymptomatic and contained states. Finally, our analysis highlights that enduring uncer-
tainty, typical of this pandemic, requires a risk analysis approach to complement epidemiological studies.
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Introduction

1.1 The looming presence of a large number of asymptomatic positive cases in the current COVID-19 pandemic,
un-detected and unaware of their conditions, has been widely debated, both in scientific publications and in
the popular press (Flaxman et al. 2020; Qiu). Evidence from clinical studies has not yet fully clarified the real
extent of the proportion of asymptomatic individuals and their role in prolonging the pandemic. However, it is
probably safe to say that there is a concrete possibility that they are an important factor in the increase in con-
tagions (Massaro et al. 2018; Prem et al. 2020) and could be relevant in possible secondwaves, a�er restrictions
are li�ed (Cli� & Haggett 2006).

1.2 Incomplete knowledge of critical epidemic factors, as with asymptomatic cases, are a challenge for studies and
models of the epidemic. It needs to be tackled together with many uncertain factors, whose evaluation from
historical cases or direct measurement from samples is riddled with di�iculties (Gandhi et al. 2020; Ioannidis
2020). Theproportionof asymptomatic cases is oneof themost relevant uncertainty factor, but there are others
which could dramatically reduce the predictive capability of many models (Holmdahl & Buckee 2020; Siegen-
feld et al. 2020). For instance, the actual viral load of asymptomatic cases, the number and viral load of mildly
symptomatic cases misdiagnosed as harmless conditions (e.g., common cold), the infectivity of incubating in-
dividuals and theduration and timedistribution of infectious states such as incubating, asymptomatic and fully
symptomatic cases could all considerably influence COVID-19 epidemic dynamics.

1.3 Our work consists in the design and development of a stochastic agent-based model inspired by the COVID-19
pandemic. We have included most of the factors just mentioned, explicitly accounting for their uncertainty
by considering a range of possible values, in a scenario-oriented approach. Our model analyzes an epidemic
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dynamic at the system-level, with the aim of providing better understanding of the mechanisms and possible
co-evolving processes at the basis of pandemic behaviour. By design, it is amechanistic and imperfectly mixed
model basedonassumptions that are exploratory innature anddonot aim tobepredictive (Holmdahl&Buckee
2020). Moreover, it is network-based, as contacts between agents are represented through a static network,
whose characteristics are specified in Appendix A.

1.4 This work has a specific research aim, which is to focus on the critical decision by public health authorities, of
li�ing restrictionmeasures, to define certain hypothetical conditions of the epidemic dynamics and the partial
knowledgeof authoritiesof suchepidemic conditionsat the timeof thedecision, and toevaluatewhetherornot
the partial knowledge leads to a safe decision. To this end, we have called final epidemic phase the time period
from the decision to li� restrictions until the epidemic expiration. We then introduced a simple risk metric to
establish the level of risk associated with the decision by public health authorities. We will give an operational
definition of final epidemic phase and use it for comparing the outcome of di�erent simulations.

1.5 The main reason for specifically focusing on this research goal is that strategies for reopening activities and
li�ing restrictions are the result of di�icult trade-o�s that public health authorities have to face. To date (CNN
2020; Lee et al. 2020; Spurrell 2020), decision criteria adopted by public authorities have varied considerably
and appear to be closely dependent on local (e.g., regional, national) interests and priorities. Epidemiological
considerations are certainly not the only criterion (in certain cases may not even be themost important) or ap-
parently, expert opinions di�er onwhen an epidemic should be considered under control (Cashore & Bernstein
2020).

1.6 The scientific literature on epidemic responses is o�en aimed at enriching epidemiological models with some
behavioural aspects, such as fear or awareness. They also o�en present new analyses of predictive compart-
mental models. Some work has adopted a di�erent approach, i.e., by focusing more specifically on certain
behavioral aspects. This is the case of Davis et al. (2015), who investigated the reasons why the general public
resists communications frompublichealthauthorities. Theyobserved"apredominant individualistic approach
to pandemic risks" that lead people to mostly ignore the risk to others and consider only the risk they them-
selves face. The samemayalsobe relevant inour analysis of the final epidemicphase,whenapure containment
approach to epidemic control comes to an end and the possible benefits of re-opening weigh in.

1.7 With respect to risk communications, Barrelet et al. (2013) analyzed the negative e�ects of ambiguous risk com-
munication by public o�icials during a pandemic and the feeling of uncertainty in public opinion. A generalized
tendency of risk denial has also been discussed by Seale et al. (2010), in reference to the H1N1 pandemic. This
adds a newperspective to our observations regarding re-opening decisions possibly takenwithout the support
of reliable epidemic incidence estimates, given the uncertainty a�ecting the size of the asymptomatic class.
The need for new tools for risk communication during pandemics has also been discussed by Abraham (2011).
On the other hand, recently published papers, such as Gilbert et al. (2020), discussed how to approach the end
of the lockdown, providing indications based on epidemiological experience, but no system-level analyses or
criteria for evaluating the final epidemic phase. Others, like Goscé et al. (2020), have not accounted for the
uncertainty that still persists regarding certain key factors of epidemic dynamics. On the contrary, European
Union and UK o�icials seem aware of the uncertainty a�ecting current estimates and ask for ’epidemiological
criteria’ and ’reliable data’ as requirements for li�ing restrictions (Day 2020).

1.8 Major contributions of our work can be summarized as:

• an analysis of the final epidemic phase and epidemic dynamics in relation to varying proportions of un-
detected infected cases (asymptomatic ormildly symptomatic) compared to contained cases (fully symp-
tomatic);

• an evaluation of the e�ectiveness of amitigation strategy based on the detection of asymptomatic cases,
testing various configurations;

• a multivariate analysis based on the average permanence of agents in asymptomatic state and in con-
tained state, with evaluation of a risk metric;

• a comparative analysis by including the mitigation strategy based on containing a fraction of asymp-
tomatic cases.

1.9 In summary, fromourperspective, the keyaspect of studying the final epidemicphaseandderivinga riskmetric
is to evaluate the possible e�ects of some of themost uncertain factors. Thismay give some useful insights into
the epidemic. In addition, the emphasis on uncertainty a�ecting the ability to produce reliable estimates at
re-opening, could help to focus on one of the most critical problem for public health authorities’ decisions.
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1.10 Our work also has many limitations, as it is inevitable for a model attempting to describe the context of the
re-opening decision, when many di�erent factors could possibly play an important role. We chose to focus on
only a few aspects (i.e., the proportion of asymptomatic cases, possible variations through testing and contain-
ment and the duration of agents permanence in infectious states), while ignoring many others. For example,
we did not take into account immunity and re-infection, limiting our analysis to the riskmetric. We did not how-
ever include behavioural responses based on fear, awareness, or gregariousness, which may certainly play an
important role in the final epidemic phase and produce di�erent behaviour from a heterogeneous population.
We leave these aspects for future work, focusing on possible outcomes a�er the final epidemic phase.

1.11 The rest of the paper is structured as follows: First, we introduce the model by presenting the state transition
diagramwithadescriptionof the states. Then,wedescribe themodel execution, first by introducingadefinition
of final epidemic phase, then by describing the model initialization with the di�erent configurations tested.
Then, we present our main results, first related to the basic epidemic dynamics, then discussing a mitigating
strategy, and finally with a multivariate analysis of time-dependent factors. Finally, we discuss the results and
draw some conclusions. Appendices provide details on the contact network and on two special cases aimed at
providing additional insights about epidemic dynamics.

Model Definition

2.1 Wepresent adiscrete-time stochasticmodelwith state-dependent transmissionprobabilities derived fromoth-
ers developed to study pandemic influenza (Ferguson et al. 2005; Longini et al. 2004, 2005), the SARS dynamics
of 2002-2003 (Brauer 2006), and the current COVID-19 pandemic (Li et al. 2020c). Individuals, when infected,
proceed through di�erent stages of an epidemic progression, possibly associated to di�erent transmission
probabilities. A typical example of epidemic stages is a person who incubates the infection, then she/he might
develop full symptoms, and finally is diagnosed and isolated. These three states have di�erent transmission
probabilities in the model. Analogously, others could incubate the infection and develop only mild symptoms,
possiblymisinterpreted as a harmless seasonal cold and for this reason neither be diagnosed nor isolated until
the spontaneous recovery. In this case, they only go through two infectious states in the model, with di�erent
transmission probabilities. In addition to di�erent transmission probabilities, our model also accounts for dif-
ferent probability distributions of the time spent in one state, such as the time spent incubating the infection,
the timewith full symptoms before being diagnosed and isolated, or the time spent freely roaming the contact
network being infected but with mild symptoms, before the spontaneous recovery.

State transition diagram

2.2 The definition of agent’s states and transitions inherits intuitions from the literature and adds some variations
to better serve to our research goal (Eubank et al. 2004; Holme& Saramäki 2012; Salathe et al. 2012; Stehlé et al.
2011). In Figure 1, we show the state transition diagramwith states as nodes and edges labelled with transition
probabilities. For the sake of clarity, transition probabilities are showed with a notation di�erent from typical
epidemiological studies, which adopt Greek letters. Here a probability is showedwith a single parameter when
meant to be the probability to remain in their current state (e.g., P(S) is the probability of an agent to remain
susceptible). Rather, it is shown with two parameters to denote the probability to change state (e.g., P(II,AI) is
the probability of an Incubating Infected node (II) to move in the Acute Infected state (AI)). Probability P(C) to
remain in stateContained (C) dependsonprevious transition, as epidemiological studies andmedical reports of
the COVID-19 pandemics (Li et al. 2020c) have shown the probability distribution of the recovery time appears
to have distinct ranges for individual with mild or with acute infection. Choosing a single state C keeps the
model as simple as possible, the trivial solution would have been with two distinct C states, for Mild and Acute
individuals, with no advantage for our study. Still for sake of clarity, we added subscripts to signal when, within
a simulation, a probability varies for each agent according to a probability distribution (subscript agent), or it
varies among di�erent configurations tested with simulations (subscript config).

2.3 Table 1 summarizes the characteristics of model’s states.

2.4 With regard to themodel’s state transition diagram, we have added some context and details to the definitions
given in Table 1. The assumption we made for state II is that it is infectious with a reduced viral load. Same
assumptionof reducedviral loadhasbeenmade for stateMild Infected (MI), bothathalf the full viral loadof state
Acute Infected (AI). These are simplifying assumptions, based on medical reports (Li et al. 2020c; Longini et al.
2005), to account for heterogeneous transmissionprobabilities betweenagents. In Appendix B,wedescribe the
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Subscripts aremeant to signal the variability of correspondingprob-
abilities. Subscript agent is associated to probabilities as distribu-
tionsover a time frame (e.g., thenumberof timesteps agents remain
in state II varies over a probability distribution). Subscript config
refers to di�erent tested configurations (e.g., di�erent proportions
AI:MI corresponds to di�erent probabilities for an agent in II state to
become AI or MI).

Figure 1: State transition diagram consisting of six states: S (Susceptible), II (Incubating Infected), MI (Mild In-
fected), AI (Acute Infected), C (Contained), and R (Recovered/Removed).

Symbol Compartment Description

S Susceptible The initial state for all individuals in themodel except theones seeding the epidemic.
At each discrete time step, individuals interact through the contact network with di-
rectly connected peers and could become infectedwith a certain probability that de-
pends on the number of infected peers and their infected state (II, MI, AI, or, but only
for some simulations, C).

II Incubating Infected Incubating infected are Susceptible individuals that become infected. Infectivity de-
velops in this phase, although reduced with respect to the symptomatic state, ac-
cording to current medical analyses. This is the state assigned to the initial seeding
nodes in simulations. Individuals stay in this state according to a probability distri-
bution within a time frame derived from the literature.

MI Mild Infected Infected persons showing no symptoms or mild symptoms easily misdiagnosed or,
due to the mildness of the condition, reluctant to self-quarantine and look for med-
ical assistance. Persons in this state are o�en assumed to carry a reduced viral load
with respect to those that develop full acute symptoms. MI individuals could at some
point be diagnosed and contained (state C) or they remain in the same state until
spontaneous recovery (state R). A special case has also been tested for the hypothe-
sis of MI cases carrying a full viral load.

AI Acute Infected Infected persons that develop full symptoms and carry the full viral load. We assume
that all AIs certainly receive a diagnose within a time frame, and then move to state
C. The possibility that AI individuals are not diagnosed and thus contained exists in
practice. However, in simulations, we have considered that case as not relevant for
the outcome and ignored.

C Contained Infected persons that have been diagnosed and then isolated. Our base assumption
is that individuals in state Cdonot transmit the infection to peers andmove to recov-
ery/removed (state R) according to a probability distributionwithin a time frame de-
rived from the literature. The time frame is di�erent for the case of an individual in C
being previously AI or MI. The possibility of contained infected individuals spreading
thedisease is of course verywell-known (e.g., in hospitals or othermedical facilities),
but this case is out of the scope of this work.

R Recovered/Removed This is the final stateof the transitiondiagramreachedbyall individuals inourmodel.
The transition fromMIor fromCdependsonprobabilitydistributionswithindi�erent
time ranges.

Table 1: Model’s states with description of characteristics and assumptions for simulations.

results of tests on a variant of the II state, meant to include a pre-infectious period in the incubating state. This
incubating pre-infectious state is well-known in the epidemiological literature. To the best of our knowledge
however, there is scant evidence for such a state in COVID-19 cases and scientific references useful to fit related
parameters. For this reason, here we did not include this case in the main text and only produced a limited set
of tests. Tests have been carried out with hypothetical settings and with the aim of confirming the well known
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e�ect of prolonging the epidemic duration, produced by a pre-infectious state.

2.5 To put these modelling choices into a broader context, it should be recalled that a state representing the dis-
ease incubation time has a long tradition in deterministic and stochastic models in epidemiology (Holme &
Saramäki 2012). Among these, the standard SEIR dubbed it Exposed (Brauer 2008), which became Latent in
other SLIARmodels, specifically refers to incubatingbutnot infectiouspersons (Arinoet al. 2006; Li et al. 2020c).
Others, such as Gumel et al. (2004), studying the 2002-2003 SARS epidemic, did not consider a specific state
for those incubating the disease not being infectious. Rather, they defined an Asymptomatic state as the first
stage for all susceptible cases turned infected. In that state, persons are infectious and could possibly be quar-
antined or develop a fully symptomatic state. These approaches were not suitable for our goals. Regarding the
current COVID-epidemic, di�erent epidemiological studies analyzing samples from China and Singapore out-
breaks reached the conclusion that individuals could develop infectivity in the incubation period (Ganyani et al.
2020; Li et al. 2020b). As this possibility is relevant for our study, we have included the Incubating Infectious (II)
state with the specific meaning of modelling the time period of infectivity during the disease incubation. The
probability distribution of the time spent in this state has been obtained from Li et al. (2020c).

2.6 The distinction between symptomatic and asymptomatic infected individuals was originally introduced by
Longini et al. (2004) as an extension of the standard SEIR model. They postulated the fundamental assump-
tion that only symptomatic cases self-isolate (e.g., home confined, hospitalized). Most recent conveniently cus-
tomized epidemic models are based on this distinction (Brauer 2008). Following the introduction of the two
classes for the symptomatic and the asymptomatic cases, models have attempted to manage di�erent social
impacts. In Brauer (2008), two new classes are added to represent di�erent forms of social distancing: Generic
quarantine for the asymptomatic and specific isolation for the symptomatic. The quarantine state is useful for
modelling the dynamic of the contagionwhen a social distancing policy is enforcedby the public health author-
ity (e.g., national/federal state, regional/local authority) in order to limit contacts between casual susceptible
individuals and undiagnosed infected individuals, untested and o�en asymptomatic (Di Domenico et al. 2020).
On the other hand, symptomatic infected are supposed to be diagnosed and strictly isolated, for example in a
medical facility or hospital, within a certain time frame from the outset of symptoms or a�er a positive test.

2.7 With respect to our goal, we have considered the quarantine state as not strictly necessary. What ismost impor-
tant is to account for the ability to spread the contagionof all undiagnosed infected individuals. Thus,wedonot
distinguish whether the final attack rate was produced by reducing contacts (as for isolation measures such as
generalized quarantine) or because of reduced infectivity; in both cases the final attack rate is the same. Conse-
quently, in our model, we have included only two states called Mild Infected (MI) and Acute Infected (AI). Next,
we added a single Contained (C) state for all individuals infected, diagnosed, and restricted. For our research
goal, the Contained state serves the purpose of modelling those whose ability to spread is greatly reduced by
means of personal containment measures, with respect to others without limitations (or only subject to a gen-
eral social distancing policy).

2.8 With regard to the infectious states, we make the assumption that in the final phase of the epidemic wave,
information networks such as the press and generic public opinion makers, will be primarily influenced by the
dynamics of the Acute Infected and the Contained classes, as recorded by o�icial statistics, with risks brought
by the mostly unknown Mild Infected class not well acknowledged. The emphasis over observable AI and C
states and the uncertainty regarding themostly speculative MI state would put public health authorities under
pressure for immediate li of isolation measures based on the dynamics of the former two states, and instead
would assess with great di�iculty the behaviour of the third one.

2.9 The last state of our model is the traditional Recovered/Removed (R), which accounts for all individuals that
end the epidemic process. In this work, we do not consider the case of re-infection and temporary immuniza-
tion. One reason is that we explicitly focus on the last period of the first epidemic wave and the potential risks
from undiagnosed infected. As such, we assume that even in cases of temporary immunization, the rate of
re-infections would not be particularly relevant in that time frame. Another reason is that at present, to the
best of our knowledge, the possible temporary immunization for COVID-19 patients is still a hypothesis being
investigated by medical researchers.

Final Epidemic Phase and Model Initialization

3.1 The model is run through multi-agent simulations (Bruch & Atwell 2015; Jiang & Jiang 2014) and represents
contacts between agents through a static network, whose characteristics have been described in Appendix A.
The basic execution of themodel is described in Algorithm 1. Each iteration represents a time step in simulation
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time. At every time step, each node is selected in randomorder and, if in state S its state is checkedwith respect
to peers, or if in other states, according to time periods specific of states II, MI, AI, and C. The probability of a
node S to become infected depends on infected peers II, MI and AI, independently (µ is the reduction factor to
account for possibly reduced viral load of II and MI).

Definition of final epidemic phase

3.2 Up to this point, we have always referred to the "final epidemic phase" implicitly, with the intuitivemeaning of
the time period starting when public health authorities decide to li� the lockdown and other social restriction
measures, and ending with the epidemic expiration. The rationale for focusing on this specific phase of an
epidemic is because public health authorities should base such a critical decision on a reliable estimate of the
epidemic size at that time. Only with a su�iciently precise knowledge of the epidemic size is it possible to
evaluate the benefits of li�ing the restrictions with respect to the risks of spreading new contagions. However,
as in the case for COVID-19, understanding the actual epidemic size is imprecise due tomany contextual factors
(e.g., errors in reporting cases, di�erent classification criteria of cases). But evenmore relevant than contextual
factors could be the mass of infectious individuals that remain undetected and uncontained, because of the
lack of generalized testing and the ambiguity of their symptoms, possibly so mild as to be misdiagnosed for
a harmless condition like seasonal cold or sore throat, or absence of any visually recognizable symptom of
infection (Ioannidis 2020; Kimball et al. 2020). In our model, the Mild Infectious (MI) state serves the purpose
to represent those undetected cases and we focused on it as the critical factor to evaluate the risk level of the
final epidemic phase. To proceed with the analysis and to compare the e�ects of di�erent configurations, we
introduce an operational definition of final epidemic phase as a time periodmeasured in simulation timesteps.
To specify it, we focus on the Contained (C) state, which is supposed to be known and to serve to public health
authorities as the primary evidence to estimate the epidemic size. We proceeded in three steps:

• The first thingwe didwas to look for examples of public data of active cases of COVID-19 for the daywhen
public authorities li�ed the lockdown and to derive an approximate threshold of active cases over the
population size for that day.

• We then turned to ourmodel and assumed that the number of active cases in COVID-19 statistics logically
corresponds to our C state, because both are knownmeasurements and relate to infected cases, o�icially
recognized and treated, at a specific time (day, timestep).

• Finally, we chose as the initial timestep of the final epidemic phase the one corresponding to a rate |C|
(number of agents in C state at a given timestep) over N (population size) in our simulations equals to the
threshold of active cases over the population the day a lockdown had been li�ed (i.e., active cases/po-
pulation size (day)⇒ |C/N | (timestep))s.

3.3 This simplified assumption could prove acceptable for some real cases while being unacceptable formany oth-
ers, since the variety of criteria and factors that influencing government a lockdown li�ing decisions is huge
and di�icult to describe in a single metric. However, we found that in examples used to estimate threshold
active cases/population, at least the coherence between a clearly decreasing epidemic phase and the decision
to li� the restrictions was always granted. In particular, we found data about active cases related to the Lom-
bardy region in Italy (Italian Ministry of Heath 2020), the Madrid region in Spain (Euronews 2020) and New York
state (The COVID Tracking Project 2020), three cases with similar characteristics (epidemic intensity, popula-
tion density, demographics). The Lombardy and the Madrid regions started li�ing the lockdown on May 18,
2020; New York City started on June 13, 2020. For Lombardy and New York, we found in o�icial statistics the
number of active cases at re-opening, while for Madrid, we only found the total number of cases. However,
knowing that the epidemic dynamic was similar between the Madrid region and Lombardy, we assumed the
same proportion of active cases with respect to the total number of cases at re-opening. Population size was
taken from o�icial demographic statistics. The threshold given by the number of active cases over the popu-
lation, calculated the day of the re-opening, was approximately included between 2.5 and 5 (x1000) cases (i.e.,
Lombardy (active cases/population): 27073/10M=0.0027 (May 18, 2020); Madrid region: ≈32.000/6.7M=0.0047
(May 20, 2020); New York state: 89995/20M=0.0045 (June 13, 2020)). For our analysis, we conventionally took
the threshold of 3 (x1000) cases as a reference, and accordingly we defined the final epidemic phase as starting
at the timestep corresponding to the number of agents in Contained state |C|=3, given that N=1000.

3.4 With respect to the last timestep of the final phase, ideally it would have been set when the epidemic finished.
However, for practical reasons due to the presence of few outliers in the trials that lasted longer than others,
whichmayhavedistorted theepidemicduration,wepreferred toadopta conventional thresholdof 1 active case
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Algorithm 1 Time-discrete multi-agent model execution
Require: Adjacencymatrix (Ai,j), selecting randomseeds, attributing theTII ,TMI ,TAI ,TC|MI andTC|AI to eachnodes
according to defined distributions
for t in Timesteps do
for i inAi,j do
At each time step t, for all nodes inAi,j , run the model according to the current node’s state
Case S:
ifNodei in state S then
for j inAi,j = 1 do
ifNodej in state AI then
Change state to II with probability P(S,II)

end if
ifNodej in state (II,MI) then
Change state to II with probability µP(S,II)

end if
end for

end if
Case II:
ifNodei in state II then
Remain in II for TII(i) = gamma(α1,mean1/α1) steps
if rand[0, 1)] < MI/(MI +AI) then
Change state to MI

else
Change state to AI

end if
end if
Case MI:
ifNodei in state MI then
Remain in MI for TMI(i) = norm(TMI) steps
When TMI(i) expires:
if rand[0, 1)] < P (MI,C) then
Change state to C

else
Change state to R

end if
end if
Case AI:
ifNodei in state AI then
Remain in AI for TAI(i) = gamma(α2,mean2/α2) steps
When TMI(i) expires, change state to C

end if
Case C:
ifNodei in state C then
ifNodei(t− 1) changed state fromMI then
Remain in C for TC|MI(i) = norm(TC|MI) steps

else ifNodei(t− 1) changed state from AI then
Remain in C for TC|AI(i) = norm(TC|AI) steps

end if
end if
Case R:
ifNodei in state R then
Remain in R

end if
end for

end for
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(x1000), as the lower limit of the final phase. The same threshold of 1 case (x1000) also appears in the literature
as a reasonable threshold for considering an epidemic as under control (Brauer 2006), although it seems that a
real agreement does not exist among epidemiologists about what to consider a safe proportion of active cases
over the population. At any rate, it seems that the concept of final epidemic phase is worth more research in
order to define better criteria for the critical decisions. However, we also recognize that it probably has to be
fuzzygiven that thedecisionof li�ing social restrictions cannotbeexclusivelydrivenby scientific considerations
and has tomanage a trade-o� between several factors. Following these considerations, we are nowable to give
the following definition:

Definition 1 The final epidemic phase is the interval, in simulation timesteps, during the decreasing slope of the
epidemic, which corresponds to a number of agents in the Contained state |C| included in [3, 1], given N=1000 the
population size.

Definition of epidemic size andmodel initialization

3.5 Our goal was to focus on the final phase of an epidemic and analyze the conditions that led to an at risk situ-
ation for public health authorities. We focused on the mostly unknown class of undetected and uncontained
infectious cases (the Mild Infected state, in the model). These risky conditions arise when, from the perspec-
tive of a public health authority, known and available measures of the epidemic incidence (i.e., in our model
state Contained) represent a poor estimator of the actual number of active cases. This scenario may happen
when the epidemic dynamic is dominated by Mild Infected cases. Unlike the usual approach of compartmen-
tal models that start estimating a transmission probability, evaluate the theoretical reproduction number and
epidemic size, then proceed downplaying themby considering the network structure andmitigation strategies,
we proceeded backward. First, we estimated the hypothetical epidemic size resulting from a certain network
structure (which is static, in this work, and whose details are presented in Appendix A) and possible mitigation
measures (that we do not explicitly model, with the exception of one case tightly connected with our research
goal), thenby trial and error, we tuned the transmissionprobability andestimated the reproductionnumber. As
the reference epidemic size, we made the educated guess of considering an epidemic that at expiration would
have infected 30%of the total population, and the corresponding transmission probability has been calculated
as equal to 0.02. The results presented in this work are all based on this working assumption. We also did tests
with other epidemic sizes, namely 10% and 50% of infected at epidemic expiration. Qualitatively, they did not
change the analysis and the conclusions, so in this paper we have omitted the details.

3.6 For states Incubating Infected (II) and Acute Infected (AI), we adopted a time-to-event observation model with
a gamma distribution of the time TII and TAI an individual remains in each of those states. For states Mild
Infected (MI) and Contained (C), instead, we assumed a normal distribution of time TMI and TC . Parameters
for gamma and normal distributions, as well as of the lengths of these periods have been derived from Li et al.
(2020c) (in a di�erent study Mizumoto et al. 2020, both the probability distribution and the incubation period
have received a di�erent estimation, we took Li et al. (2020c) as our reference study being based on a larger
sample). Regarding trials, a trial was considered invalid, thus discarded, if it produced less than 1/5 of infected
nodes with respect to the average epidemic size. In all figures, each data point was averaged over at least 150
valid trials (di�erences due to the variable number of invalid trials don’t exceed 10 trials). Five seed nodes were
used in simulations, a choice that represented a good trade-o� in order to reduce the number of invalid trials
without relevant e�ects to the average number of infected nodes. Figure 2 describes the model initialization
with actual transitions and probabilities.

3.7 Table 2 presents a description of transition probabilities and of their values. The list of base settings for simu-
lations is in Table 3.

Model Execution

4.1 Themodel has been executed to test various configurations and parameter settings. The results are presented
here by starting from the basic epidemic dynamic, which has parameters values listed in Table 3.

Basic epidemic dynamics

4.2 First, we ran ourmodel to obtain the basic epidemic dynamics related to agent states. Figure 3 shows the basic
state dynamics (on the le�: Susceptible, Infected (as II+AI+MI+C), and Recovered; on the right: AI, MI, and C),
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Text boxes represent the settings of the corresponding transition
probabilities. For simplicity, for state S, and edges AI-C and C-R,
the value has been omitted, because only two outgoing edges are
present.

Figure 2: Model initialization.

with the additional detail of the 95% confidence intervals, with respect to the trials, of MI, AI, and C states,
again for the two proportions AI:MI equals to 20:80 and 40:60. A particular aspect to note is the di�erence in
the behaviour between Mild Infected and Contained states during the decreasing epidemic phase: for AI:MI
equals to 20:80, MI dynamic dominates that of C’s, while for AI:MI equals to 40:60, the two dynamics largely
overlap. This is a relevant di�erence that, in following sections, we will analyze through the results of several
experiments aimed at testing the rate |MI| over |C| (with |x| indicating the number of agents in state x at a given
timestep). We will discuss the meaning of that rate as a risk metric for the final epidemic phase.

4.3 The descriptive statistics are reported in Table 4, which is divided in three sections. Two present statistics of
agents states, respectively for AI:MI proportion equals to 20:80 and to 40:60 (i.e., this means that in the first
case the probability that an agent in Incubation Infected (II) state has to become Acute Infected (AI) is 0.2 and
to become Mild Infected (MI) is 0.8, similarly for the second case with probability of 0.4 and 0.6 respectively).
All the statistics of Table 3 are calculated on the time series produced by averaging the results of valid trials for
each timestep, which in Figure 3 are represented with the dashed lines.

4.4 First, we have reported states corresponding to the classical SIR classification, with the aggregated state In-
fected summing up all infectious states: II (Incubating Infected), AI (Acute Infected), MI (Mild Infected) and C
(Contained). Then, we reported a detailed view of all specific states, with the R (Recovered) decoupled in the
two factors, the nodes recovering fromAI (RAI) and those recovering fromMI (RMI). It is worth note that themax-
imumvalue for Susceptible (S) nodes equals to 995 (given that 1000 is the population size), because five are the
seed nodes, starting in state Incubation Infected (II).

4.5 The bottom part of Table 4 shows the results of Welch’s t-test, run to check whether the di�erent means of the
samples should be interpreted as the results of the models with the two configurations of AI:MI have di�erent
means for the number of agents.

4.6 In our case, we tested two pairs of independent samples: i) the time series of the Mild Infected (MI) state for the
configuration AI:MI=20:80 and the MI time series corresponding to AI:MI=40:60; and ii) the same two configura-
tions of AI:MI, but testing the time series of the Contained (C) state. The choice of these two states is motivated
by the fact that they are key for the risk metric regarding the final epidemic phase, as we will describe in the
following sections. In both cases, the Welch’s t-test does not support the validity of the null hypothesis, sug-
gesting that the two pairs of samples have di�erent means. The use of the Welch’s t-test, instead of the more
common Student t-test, is suggested by the di�erent variances of the samples tested, while a limitation of the
results derives from the assumption of normal distribution of the Welch’s test, which is not verified in the MI
and C time series, as the descriptive statistics demonstrate.

4.7 With Figure 4, we give an estimation of the reproduction number R related to our model’s epidemic dynam-
ics. Various statistical methods have been proposed for compartmental models described through di�erential
equations, less so for agent-based models (Dietz 1993; van den Driessche 2017; Jones 2007). However, Cori
et al. (2013) presented a tool that produces statistically robust analytical estimates of R based on the incidence
time series and quantifies temporal changes in the transmission intensity of epidemics. The tool is called Epi-
Estim (Estimate Time Varying Reproduction Numbers from Epidemic Curves) 1 and by using it, we employed
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Probability Description Values

P(S) p. to remain susceptible. It is fitted empirically
according to the epidemic size at epidemic ex-
piration that has been assumed. P (S) = 1 −
P (S, II).

0.98

P(S,II) p. to get infected (transmission rate). Empirically
evaluated. P (S, II) = 1− P (S).

0.02

P(II) p. to remain in incubation state. The probability
is defined as the probability distribution over the
time range TII .

For eachnode gamma(TII), withTII in [2,14], as
estimated in (19), with k = 3 andmean = 8.

P(II,MI) p. to move from the incubation state II to the MI
state. This is the main unknown of the study.

Simulations have been run with di�erent values
for the pair AI:MI= (10:90, 20:80, 40:60, 60:40).

P(II,AI) p. to move from the incubation state II to the AI
state.

See P(II,MI) values.

P(MI) p. to remain in state MI. The probability is de-
fined as the probability distribution over the time
range TMI .

For each node,norm(TMI), withTMI in [2,7], as
estimated in (19).

P(MI,C) p. to move from MI to C. It measures the odds
of an MI individual to be diagnosed and thus iso-
lated.

The worst case scenario is to consider P(MI,C)=0,
meaning no MI is detected and isolated. We also
considered other values, i.e., 0.2 and 0.5, to ac-
count for increasing proportions of MI being de-
tected and contained.

P(MI,R) p. to recover for a MI individual. The probability
depends to P(MI) and P(MI,C).

When TMI steps expire, the node in MI move to
R (unless previously moved to C). P (MI,R) =
1− (P (MI) + P (MI,C)).

P(AI) p. to remain in state AI before being moving to C.
The probability is defined as the probability dis-
tribution over the time range TAI .

For each node, norm(TAI), with TMI in [2,7], as
estimated in (19).

P(AI,C) p. to move from AI state to C. It depends only on
the value of P(AI).

When TAI steps expire, the node in AI move to C.
P (AI,C) = 1− P (AI)

P(AI,R) p. to recover for an MI individual without being
diagnosed and contained. We assume this case
as non-existent.

P (AI,R) = 0.

P(C|MI), P(C|AI) p. to remain in C state. The evaluation of this
probability is di�erent for nodes arrived in state C
from MI or from AI, being the time intervals com-
pletely distinct for the two cases. The probabil-
ity then is defined as the probability distribution
over two time ranges TC|MI and TC|AI .

For each node, norm(TC|MI), with TC|MI in
[2,5] if the node was previously in state MI, or
norm(TC|AI), with TC|AI in [14,30] if the node
waspreviously in state AI. The time ranges are de-
fined frommedical reports and (19).

P(C,R) p. to recover from C. It depends on the value
of P(C|MI) evaluated with respect to TC|MI , for
agents previously in MI state. It depends on the
value of P(C|AI) evaluated with respect to TC|AI ,
for agents previously in AI state.

For each node, when TC|MI or TC|AI steps ex-
pire, the state changes from C to R.

P(R) p. to stay in R state, our final state. P (R) = 1.0.

Table 2: State transition probabilities and values used in simulations.

the parametric_simethod by using parameters for the serial interval distribution as retrieved in Nishiura et al.
(2020). In assuming the accurateness of the reproduction number when a specific network structure is consid-
ered, however, a word of caution is appropriate, because it is a complex task with many subtleties that current
available so�ware libraries, like the EpiEstem, do not typically account for. First, when simulations over net-
works with heterogeneous degree are performed, a correction for degree heterogeneity should be applied in
R0 evaluation, as described by Olinky & Stone (2004). A second correction to R0 estimation should be applied
to account for network clustering, as explained by Molina & Stone (2012). The network adopted in this work
exhibits both features. However, to achieve high accurateness in R0 calculations, other network characteris-
tics are important, such as degree (dis)assortativity and degree-clustering correlation. Again, these features
are probably present in scale-free networks. The standard procedure to compute R0 numerically, for epidemic
models on heterogeneous clustered networks has been presented in (Danon et al. 2012; Machens et al. 2013;
Molina & Stone 2012). Therefore, summarizing this short discussion of R0 evaluation, the results produced by
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Parameter Values

Population size (Network size) 1000
Seed nodes 5
Time steps 150
Epidemic size at the extinction 30% of the population (assumption)
Probability of transmission (full viral load) 0.02 (calculated from epidemic size at the extinction)
Reduction factor (reduced viral load) µ = 0.5 (approximated from literature)
Latency time time steps=[2,14], mean=8 (approximated from literature)
Infectious time - Acute Infected time steps=[2,7], mean=3 (approximated from literature)
Infectious time - Mild Infected time steps=[2,7], mean=4.5 (approximated from literature)
Isolation period - Acute Infected time steps=[14,30], mean=22 (approximated from literature)
Isolation period - Mild Infected time steps=[2,5], mean=3.5 (approximated from literature)
Proportions of Acute Infected and Mild Infected AI:MI=(10:90, 20:80, 40:60, 60:40 ) (configurations tested)
Prob. of Mild Infected becoming Contained P(MI,C)=(0.0, 0.2, 0.5) (configurations tested)

Table 3: Base simulation settings.

Figure 3: Basic state dynamics. Le� panels: Susceptible (S), Infected (as II+AI+MI+C), and Recovered (R) states;
Right panels: Acute Infected (AI), Mild Infected (MI), and Contained (C) states, with 95% confidence intervals.

simplified algorithms that, not taking into account all important network features, do not apply corresponding
corrections and procedures, should be regarded as broad approximations of the actual epidemic reproduction
number, possibly useful to show the general trend of the epidemic, but not as accurate as required to assess
the epidemic dynamic for prediction purposes.

4.8 In Figure 4, wepresent the results for the twoAI:MI configurations 20:80 and40:60. The incidence is the number
of infected agents at each timestep, calculated as the sum of infectious states (i.e., II, AI, MI, and C). Comparing
the two estimates, it could be observed that the series for AI:MI=40:60 starts from higher values than the series
for AI:MI=20:80 due to the higher incidence (a larger proportion of Acute Infected agents produces a higher inci-
dence due to the assumption of reduced viral load of Mild Infected agents). However, values of Rt smaller than
1 decreases faster, due to the larger number of Contained agents that reduces the spreading of the contagion.

Epidemic dynamics and final phase

4.9 A�er the presentation of our model’s basic descriptive statistics and behaviour, we analyze in more details the
e�ects, on the final epidemic phase, of di�erent configurations and parameter fitting. In particular, we start
with considering how the di�erent, hypothetical, proportions of Acute Infected (AI) agents and Mild Infected
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configuration: AI:MI=20:80
state mean sd median max skewness kurtosis

Susceptible 805.80 98.14 757.47 995.00 0.77 -0.96
Infected

(II+AI+MI+C)
21.35 19.81 14.11 56.36 0.54 -1.27

Recovered
(RAI+RMI)

172.86 109.01 218.03 284.49 -0.47 -1.44

II 12.59 11.71 8.43 33.85 0.57 -1.22
MI 6.12 5.82 3.91 16.55 0.54 -1.26
AI 0.94 0.95 0.58 2.73 0.48 -1.34
C 1.70 1.62 1.19 4.63 0.48 -1.28
RAI 21.18 17.73 23.76 43.20 -0.04 -1.73
RMI 151.67 92.09 194.27 241.29 -0.57 -1.34

configuration: AI:MI=40:60
state mean sd median max skewness kurtosis

Susceptible 839.04 73.35 796.94 995.00 1.04 -0.48
Infected

(II+AI+MI+C)
20.22 19.89 12.07 58.16 0.66 -1.07

Recovered
(RAI+RMI)

140.73 83.38 183.30 218.51 -0.63 -1.27

II 11.12 11.24 6.57 32.97 0.71 -0.99
MI 4.08 4.21 2.29 12.23 0.70 -1.01
AI 1.76 1.83 0.99 5.54 0.63 -1.09
C 3.27 3.06 2.27 9.15 0.56 -1.16
RAI 20.7 18.1 18.9 46.3 0.12 -1.68
RMI 138.66 81.74 181.41 213.88 -0.65 -1.26

Welch’s unequal variances t-test
MI data (AI:MI=20:80 and 40:60) C data (AI:MI=20:80 and 40:60)

t = 3.3699, df = 254.93, p-value = 0.0008685 t = -5.3708, df = 213.06, p-value = 2.045e-07
[0.847180, 3.229558] 95% CI [-2.1434043 -0.9924822] 95% CI

Table 4: Descriptive statistics of basic epidemic dynamics.

Tables present a sample of reproduction number R’s values. Time is indicated as (tstart, tend) over windows of 7 timesteps, as
per the method adopted by the EpiEstim package.

Figure 4: Estimates of the reproduction number for the AI:MI configurations 20:80 and 40:60. The incidence is
the number of infected agents at each timestep, calculated as the sum of infectious states (i.e., II, AI, MI, and C).
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(MI) change the epidemic dynamic, including its duration, measured with respect to the final phase. Table 5
presents, for four configurations of AI:MI, the values of the peaks of the three main states (i.e., AI, MI, and C),
and information about the corresponding final phases. Figure 5 gives a visual representation of the same data.
Together these results confirm what we already commented before, that above a certain proportion of AI:MI,
with the number of Mild Infected (MI) exceeding the Acute Infected (AI), the epidemic dynamic becomes clearly
dominated by the MI class, which represents the unrecognized, uncertain mass of infected individuals. In our
simulations, configurations with AI:MI equals 10:90 and 20:80 represent this case, while the dominance disap-
pears and ultimately reverses with AI:MI equals 40:60 and 60:40. This is an unsurprising system behaviour, but
we believe it is worth highlighting for its potential consequences on the ability of forecasters and public health
authorities to predict the epidemic evolution and safely manage the risk of the re-opening. What our model
shows is that if one infectious class could become dominant and if this class mostly escapes from o�icial mea-
surement (e.g., asymptomatic, misdiagnosed, untested because of insu�icient testing e�orts, unwilling to be
tested, and so forth), then it is possible that the overall epidemic dynamic results out of control when social
restrictionmeasures are li�ed. In this context, "out of control" should be interpreted restrictively, meaning that
the overall systemdynamic is dominated by a factor that is unknown to controllers and that operating on those
factors directly accessible to controllers does not permit to obtain a proportional e�ect on the unknown ones.
We do not make any inference about practical consequences, like the odds of new outbreaks or the increased
pressure on medical facilities. In addition, it should be stressed that ours is a mechanistic model aiming at de-
scribing system properties, not to be misinterpreted as a forecasting model. This comment to clarify that the
apparent threshold of AI:MI equals 40:60 for a largely overlapping dynamics between Acute Infected (AI) and
Mild Infected (MI) has ameaning only relative to ourmodel and settings, it should not be taken as an indication
of a threshold for real cases. In real epidemic scenarios, a threshold above which the class of undetected cases
becomes the dominant factor of the epidemic is, to the best of our knowledge, still unknown for COVID-19 as
well as for other epidemics that could present the problem of a large proportion of undetected cases. To con-
clude this discussion, in our work, an epidemic is said to be out of control if public health authorities evaluate
the progressionwith respect to o�icial statistics (the Contained (C) class and part of the Recovered (R)), but the
knowledge of those classes does not provide a reliable estimate of the larger and dominant class of undetected
infectious MI.

4.10 Other observations could be made about the final epidemic phase resulting from the di�erent configurations.
Again from Table 5 and visually from Figure 5, it emerges a relationship between the AI:MI proportion and the
perceived duration of the whole epidemic and of the final phase. Clearly, here we did not considered the case
of re-infection or epidemic relapse, which will be the subject of a future work, and our aim is limited to analyze
the possibility to have unmanaged risks. Considering risks, it is paramount to focus on the perception of risk by
decision makers. In our cases, the beginning of the final phase represents a milestone in risk perception, be-
cause it signals the passage from a phase of pure containment of the havoc caused by the epidemic, to a phase
where the benefits of removing limitations are weighted against the perceived residual risks. The end of the
final phase is the second milestone of risk perception, because it signals the end of the danger and the return
to normal conditions. Our simulations shouldmakemore evident a second unsurprising, but again worth to be
highlighted, e�ect of the dominance by the class of undetected MI cases: the risk perception based on observ-
able cases could be dangerously misleading with respect to the reality of an epidemic dynamic. The most evi-
dent example reflecting thismismatch between perceived and real risk could be observed in the consequences
of insu�icient testing for COVID-19 that plagued most countries so far. Thornton (2020) reported how "lack of
tests and inadequate testing was not helping the authorities prepare for the crisis or give its people the right
message about the need for caution and social distancing", an op-ed in Nature (Nat 2020) commented that "as
economies reopen, insu�icient testing relinquishes control of COVID-19 because newvirus clusters elude detec-
tion and spark new outbreaks", while Italy had to introduce mandatory COVID-19 testing for tourists returning
from summer holidays a�er a surge of cases, mostly due to the common wrong belief, produced by previous
lack of testing, that young people were at low risk of infection (Stefanello 2020). All these cases, and the count-
less others of the same kind, are mostly due to the fact that the class of mild infectious individuals is largely
underestimated and unknown in its characteristics. As consequence, risk is evaluatedmostly based on the only
class of individuals knownat the time of reopening, which is of those that have been recognized as infected and
then subject of containment measures. Our main contribution is then of a model and some simulation results
representingmitigation strategies based on identification and containment ofmild infectious cases, an activity
that has been now wildly recognized as necessary, but still relatively untested and not fully analyzed. To this
end, we will introduce a simple metric based on the rate between mild infectious (MI) and contained (C) cases
in the final phase, to assess the alignment between the perceived and actual risks.

4.11 Our simulations suggest that the larger the dominance of the Mild Infected (MI) class is (see panels AI:MI equals
10:90 and 20:80 in Figure 5), the earlier the final phase starts and, while less than proportionally, also the earlier
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it ends. This produces a large misalignment between the risk perceived (approximated through the Contained
agents, representing known active cases) and the actual risk (given by the actual size of the Mild Infected). The
misalignment between perceived and actual risk is absent for cases without the dominant MI (see panels AI:MI
equals 40:60 and 60:40 in Figure 5). In the following section, we propose a quantification of the misalignment
between perceived and actual risk by means of a simple metric and introduce the possible dependence from
other factors.

AI:MI AI peak
timestep
(cases)
±CI95%

MI peak C peak Final Phase
start
timestep

Final Phase
end

Final Phase
duration

No.
timesteps

10:90 41
(1.71±0.26)

36 (21.±2.91) 47
(2.93±0.25)

48 77 29

20:80 37±3.19
(2.73±0.45)

38±3.02
(16.55±2.21)

45±3.16
(4.63±0.38)

67 93 26

40:60 38±2.63
(5.54±0.71)

40±2.64
(12.23±1.46)

43±2.88
(9.15±1.18)

83 106 23

60:40 47
(7.14±1.27)

48
(7.40±0.88)

59
(13.58±1.74)

105 121 16

Table 5: Final epidemic phase for di�erent proportions of AI:MI.
Values for states AI, MI, and C are reported as the timestep corresponding to the peak and the number of agents in the state
with 95% confidence interval. The final phase is reported as the initial and final timestep, and the corresponding duration.

For each panel, the proportion AI:MI is reported, and the final epidemic phase is indicated, corresponding to values of |C|=3
and |C|=1 in the descending part of the epidemic dynamic.

Figure 5: Epidemic dynamics of AI, MI, and C states for di�erent proportions of AI:MI, with final phase.

E�ects of containment of Mild Infected (MI) in the final epidemic phase

4.12 In this subsection, we introduce the variant representing the outcome of possible epidemic mitigation strate-
gies. We assumed that a fraction of the Mild Infected (MI) cases is detected and thus moves to the Contained
(C) state, rather than remaining in the MI state until the final transition to the Recovered (R) class. With respect
to the model, this means setting the probability P(MI,C) greater than zero (i.e., values 0.2 and 0.5 have been
tested), which means that at each timestep, each agent in the MI state could move to C with that probability.
With respect to real cases, we may think to this variant as the result of increased testing e�orts and screening
campaigns. On the other hand, with respect to the system dynamics, the direct e�ect should be to reduce the
epidemic incidence due to the time spent by former MI cases as contained, thus not spreading any longer the
contagion (with a consequential reduction of the reproduction number Rt). But of particular interest for our
analysis, there is also a secondary e�ect on the rate between the number |MI| of undetected infectious and the
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number |C| of contained cases at each timestep, because asmentioned, this represents a critical rate in the final
epidemic phase for evaluating the risk caused by a possible dominant class of undetected infectious MI.

4.13 In simulations, we tested for each of the two proportions AI:MI equals to 20:80 and to 40:60, two values of the
probability P(MI,C), equals to 0.2 and to 0.5. The two proportions AI:MI have been selected because, as seen
before, they produce two clearly di�erent system dynamics, one dominated by the class MI, the other with
a substantial overlap between the MI and the C curves. The goal is to compare the e�ects of the two cases
with P(MI,C)>0 the case of P(MI,C)=0. In particular, we measured the di�erent peaks of MI and C curves, and
changes in the corresponding final phases. Table 6 compares the results between the di�erent configurations.
The e�ects of the probability of Mild Infected agents to move to Contained state are observable in the peak
variations, with the MI peak that tends to decrease and the peak of C that tends to increase. The e�ect on the
peak of the dynamics is not proportional to the probability of removal of MI agents, as expected from the non-
linear relationship between the dynamics. Interesting is the temporal e�ect. Final phases tend to start later and
to last longer by increasing the P(MI,C), thus reducing the number of Mild Infected (MI). The same relationship
betweenbeginningof the final phaseand its durationwasalreadyobserved for thedi�erent configurationswith
P(MI,C)=0 of Figure 5: the larger the proportion of MI agents, the earlier the final phase begins, and the longer
is the duration.

4.14 A comment on these results is that it should be considered that epidemic classes (e.g., undetected infectious
MI and contained cases C) are co-evolving when amitigation strategy like increasing testing frequency is put in
place. Therefore, on the one hand, we should expect a net e�ect of reducing the incidence of the epidemic, be-
cause a number of previously uncontrolled infectious cases (the Mild Infected (MI) in ourmodel), free to spread
the contagion, becomes subject to restrictions and isolated (our class Contained (C)). The reproduction num-
ber Rtwould decrease, too. However, the epidemicwould not necessarily have a shorter duration. In summary,
while it could be stated that mitigating e�orts aimed at reducing the number of undetected asymptomatic or
mildly symptomatic cases are beneficial for reducing the epidemic incidence and the reproduction number, it
should also be observed that the problemof evaluating the expected benefit of a certain detection e�ort (e.g., a
testing campaign having the goal of detecting 30%of undetected infectious cases in a population) is of di�icult
resolution. First, there is the uncertainty regarding the real size of the undetected infectious population (our
AI:MI proportions) that could change considerably the results and the costs for the mitigation strategy. Then,
there is the non-linear relationship between the extent of a mitigation e�ort (our probability P(MI,C)) and its
outcome. As a consequence, it would be di�icult to produce a reliable cost/benefit analysis between mitiga-
tion e�ortswith di�erent target goals (e.g., in our case betweenmitigation campaigns having di�erent P(MI,C)).

E�ects of di�erent durations of Mild Infected (MI) and Contained (C) States

4.15 In this last part of the sectiondedicated to themainexperimental results,we focusedon twocritical parameters:

• The average duration of the Mild Infected (MI) state (TMI).

• The average total duration of the Acute Infectious (AI) and the Contained (C) state (TC).

4.16 The rationale to focus on these two factors is because their combined e�ect could influence, to a remarkable
extent, the level of risk associated to the final epidemic phase. Conversely, the sensitivity of the level of risk
with respect to these two factors seems o�en overlooked in epidemiological literature, where it never occurred
to analyze the combined e�ect of the two. In addition, there are solid reasons to consider these two parame-
ters as still largely uncertain, which make them particularly relevant for our analysis. On the one hand, several
clinical COVID-19 studies have presented estimates on samples of asymptomatic cases regarding the duration
of their condition (Park et al. 2020; Yan et al. 2020), but they are still early results on few cases and, in addition,
empirical evidences presenting seemingly abnormal durations have been reported (Li et al. 2020a; Tan et al.
2020). In general, it looks like a solid understanding of the duration and temporal distribution of the asymp-
tomatic and mild infectious state is still lacking. On the other hand, uncertainty a�ects the average duration
of the time period from the onset of full symptoms to the final recovery/removal too. This time period is com-
posed by the period an individual with full symptoms remains untested and uncontained (i.e., Acute Infected
(AI), in our model), and the period under containment measures (i.e., our Contained (C) state). With respect
to the onset of full symptoms, o�icial data record the day an individual has been tested positive and thus rec-
ognized as a patient in need of containment, whereas for the time it took from the onset of full symptoms to
the testing, the evidences are sketched and o�icial statistics are heavily influenced by the actual organization
and e�iciency of testing procedures, availability or shortage of testing equipment, possible clogging of hospital
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configuration: AI:MI=20:80

P(MI,C) MI peak
timestep
(cases)
±CI95%

C peak Final Phase
start
timestep

Final Phase
end

Final Phase
duration

No. timesteps

0.0 38±3.02
(16.55±2.21)

39±3.16
(4.63±0.38)

67 93 26

0.2 39±3.03
(14.48±1.61)

46±2.84
(8.90±1.22)

69 94 25

0.5 46±3.92
(10.23±1.91)

50±4.15
(12.36±2.26)

86 105 29

configuration: AI:MI=40:60

P(MI,C) MI peak
timestep
(cases)
±CI95%

C peak Final Phase
start
timestep

Final Phase
end

Final Phase
duration

No. timesteps

0.0 41±2.64
(12.23±1.46)

47±2.88
(9.15±1.18)

83 106 23

0.2 36±3.09
(11.16±1.59)

38±3.23
(13.20±2.41)

76 102 24

0.5 51±4.09
(10.48±2.23)

50±4.32
(17.28±3.43)

92 119 27

Table 6: E�ects of MI containment on epidemic dynamics and final phase.
Values for states MI, and C are reported as the timestep corresponding to the peak and the number of agents in the state
with 95% confidence interval. The final phase is reported as the initial and final timestep, and the corresponding duration.

facilities, and behavioural responses of individuals at the onset of symptoms (Nat 2020). With respect to the
period in containment state, o�icial statistics in this case are reliable (e.g., hospitalization duration, mandatory
at-home quarantine duration), but evidences have been o�en reported about cases with anomalous long per-
sistence of the infection (D’Ardes et al. 2020). Overall, to us it seemed worth to investigate more closely what
the combined e�ect of di�erent values of these two factors could be, both considering the contingent situation
of COVID-19 and in general, as a system-level analysis of epidemic dynamics.

4.17 To ease understanding, Table 7 serves as a reminder showing the parameters and state transitions considered
in the tests, together with settings tested for parameters TMI and TC. Values of mean time periods for the two
parameters are: (3, 5, 7, 9) timesteps for mean TMI, and (10, 14, 18, 22, 26) timesteps for mean TC. The choice
of values wish to reflect the degree of uncertainty surrounding the evaluation of these two time periods. For
TMI, the usual average duration of a common flu (e.g. 5-7 days) is o�en used as a reference, but both shorter
and larger durations have been proposed as better estimators of COVID-19 asymptomatic cases (Kimball et al.
2020). With regard to TC, o�icial statistics usually vary between 14 and 21 days for hospitalized patients (Cen-
ter for Disease Control and Prevention 2020; World Health Organization 2020), while the typical mandatory
at-home quarantine period is 14 days. Also for this factor, shorter and longer mean time periods have been
discussed (D’Ardes et al. 2020).

4.18 Results of tests are reportedas annotatedheatmaps in Figure6. Themetric used is the ratebetween thenumber
of cases in state MI and those in state C (i.e., |MI|/|C|) at two timesteps: the first timestep of the final epidemic
phase (indicated as timestep 1) and the 20th timestep of the final phase (indicated as timestep 20). The choice
of the 20th timestep is conventional, as one of the last final phase timestep in all the tested configurations. The
color scheme adopted should give a clear visual indication of changes in the risk metric:

• Red gradient for values of |MI|/|C| �1 meaning that MI dominates C, thus the risks brought by the MI
are possibly out of control;

• White gradient for values of |MI|/|C| ≈1 meaning that C and MI classes have similar dynamics, thus the
observable C class could serve as a good proxy to manage risks fromMI;

• Blue gradient for values of |MI|/|C| �1 meaning that class C is the dominating dynamic, thus no sys-
temic risks are introduced by the MI class.
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Diagram Probability Tests

P(MI): p. to remain in state MI. The
probability is defined as the proba-
bility distribution over the time range
TMI.

Values (timestep):
TMI, mean=(3,5,7,9)
TC, mean=(10,14,18,22,26)
Tests: TC x TMI

P(C): p. to remain inC state. Theprob-
ability then is defined as the probabil-
ity distribution over the time ranges
TC.

Metric: |MI|/|C| =

� 1: MI dynamic dominates C
→ MI risks possibly uncon-
trolled

≈ 1: C approximates MI→ MI risks
manageable through C

� 1: MI dynamic dominated by C
→ No risk fromMI

Table 7: Testing for di�erent duration of MI and C states
Column Diagram should help recalling the corresponding state transitions. Column Probability recalls the meaning of
probabilities considered and of their definition as normal distributions of the time agents remain in state MI and C. Column
Tests summarizes the details of the tests executed, showing the di�erent settings for parameters TMI and TC, and themetric
used for evaluation.

4.19 As it clearly results from Figure 6, the presence of a threshold at AI:MI=40:60 is confirmed by these tests too: For
AI:MI=40:60 the potential risk brought by the Mild Infected (MI) cases is low and limited to few combinations of
parameter values, (TMI, TC)=(9,10; 7,10), representing the extreme scenario of longpermanence in asymptomatic
state and short containment period for symptomatic cases. Di�erent is for AI:MI=20:80 and 10:90. For these
configurations and for both parameters, the risk metric crosses all three levels (red, white, and blue) and for
values not only associated to extreme scenarios. A conclusion that could be draw from these results is that
for large rates of undetected mild infectious cases, it is the combination of the two parameters TMI and TC to
determine the level of risk. Therefore, it does not su�ice to have good accuracy on the evaluation of just one of
the two, it is needed on both, because underneath there is a co-evolving system dynamic. Other comments are
that the severity of risk exposuremight growmore than proportionally by increasing the fraction of undetected
infectious, and that, conversely, there is no evidence of a sensible reduction in risk exposure during the final
epidemic phase.

4.20 As the final result thatwe present, wemade an additional step and replicated the same tests discussedwith the
heatmaps of Figure 6, but this time considering that MI agents could be detected and contained with a certain
probability (i.e., P(MI,C)=(0.2, 0.5)). We have already studied the e�ects of this variant on the basic epidemic
dynamics, here we want to see the e�ect on the risk metric. Table 8 shows the results. They are separated for
AI:MI=10:90 and 20:80, and comparemean and standard deviation of |MI|/|C| values at timestep 1 and timestep
20of final phase for configurationswithP(MI,C) equals 0.0, 0.2, and0.5. As expected, the result is that there is an
improvement (i.e., a reduction ofmean value and standarddeviation)whenP(MI,C) is greater than zero, shi�ing
the risk profile towards a low risk scenario, as also showed with more details in the heatmap of Figure 7. We
run a Tukey HSD test, which compares at 95% confidence interval the di�erence inmeans and adjusted p value
of two independent time series, to evaluate if improvements provided by the configurations with P(MI,C)>0
significantly change the mean of the distribution. The indication provided by the Tukey test is contrasted. For
AI:MI=10:90, both the di�erence between configuration with P(MI,C)=0 and P(MI,C)=(0.2,0.5) turned out to be
significantly di�erent, but not so the di�erence between P(MI,C)=0.2 and P(MI,C)=0.5. For AI:MI=20:80, instead,
the di�erencebetweenP(MI,C)=0.0 andP(MI,C)=0.2 is not significantly di�erent (wedid not reported the results
with P(MI,C)=0.5 because in that case all values of |MI|/|C| become less than one, meaning a low risk scenario).
These results seem to suggest that in a scenario strongly dominated by one epidemic class (AI:MI=10:90 in our
case), testing e�orts aimed at reducing the prevalence of the dominant class could be very e�ective, although
it is di�icult to calibrate them because the gains are not linear, so it is possible that considerably increasing the
e�orts produce a less-than-expected gain (i.e., as for the non significantly di�erent mean of P(MI,C)=0.2 and
P(MI,C)=0.5 series). On the the other hand, in a slightly di�erent scenario, with a less strongly dominant class
(theAI:MI=20:80 inour case), thee�ectivenessof a limited testinge�ort couldbepoor, because the re-balancing
e�ect between the undetected infectious cases and the contained could be non enough to make a di�erence
(i.e., the non significantly di�erent mean of P(MI,C)=0.0 and P(MI,C)=0.2 series). To summarize, the scenario
seems to put public health authorities in a complex situation, facing di�icult choices: Depending on how large
the mostly unknown class of undetected infectious individuals is, a certain testing e�ort could be e�ective but
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Heatmaps representing the values ofmetric |MI|/|C| for all testsTC xTMI, for threeproportions
of AI:MI. The color scheme means: Red gradient: |MI|/|C|� 1:→MI risks high and possibly
uncontrolled; White gradient: |MI|/|C| ≈ 1: → MI risks manageable through C as a proxy;
Blue gradient: |MI|/|C|� 1:→ Risk fromMI low and bounded by C.

Figure 6: Values of metric |MI|/|C| in the final epidemic phase for TC x TMI tests in three configurations.
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increasing it not worth the gain, or it could be largely ine�ective and an increase is needed to obtain tangible
results.

configuration: AI:MI=10:90 - |MI|/|C| basic statistics
Control Timestep

relative to Final Phase

Mean SD

P(MI,C)=0 t_1 2.19 1.81
t_20 1.81 1.59

P(MI,C)=0.2 t_1 0.846 0.321
t_20 0.825 0.328

P(MI,C)=0.5 t_1 0.680 0.266
t_20 0.639 0.279

Tukey test Di� Lower Upper p Adjusted

P(MI,C)=0.5 -
P(MI,C)=0.2

0.45032 0.07939718 0.8212428 0.0129606*

P(MI,C)=0 - P(MI,C)=0.2 -0.47714 -0.84806282 -0.1062172 0.0078252**
P(MI,C)=0 - P(MI,C)=0.5 -0.92746 -1.29838282 -0.5565372 0.0000001***

configuration: AI:MI=20:80 - |MI|/|C| basic statistics
Control Timestep

relative to Final Phase

Mean SD

P(MI,C)=0 t_1 0.840 0.692
t_20 0.823 0.713

P(MI,C)=0.2 t_1 0.458 0.241
t_20 0.424 0.211

Tukey test Di� Lower Upper p Adjusted

P(MI,C)=0 - P(MI,C)=0.2 -0.90705 -1.616868 -0.1972316 0.0129342*

Table 8: Comparison between controls with regard to |MI|/|C| in final epidemic phase

Discussion

5.1 In this work, we have considered several uncertain factors that play an important role in evaluating the risk of
the re-opening decision. The first is that there is apparently no agreement on the appropriate time for moving
from a initial phase of pure containment of the damage, to a phase when it is the trade-o� between preventing
the infections and restoring social activities themost challenging issue. Theevidence fromCOVID-19 experience
is that re-opening decisions depend on many contingent factors, that case-by-case may assume more or less
relevance. Epidemiological and medical considerations, economic context, cultural and political motivations,
anddemographyareall playingan important role. Moreover, consideringapandemic, not an isolatedoutbreak,
interdependencies between regions and states are also important, so that a re-opening decision could also be
influenced by the relative time a certain region/state has experienced the contagion with respect to others.
Despite this heterogeneity, for all there is a time when the decision to li� the restrictions is considered and we
have defined it final epidemic phase, giving a simple empirical definition that, with the many limitations that
it has, was needed to define a metric of risk and confronting scenarios. In future COVID-19 studies, it would be
perhaps interesting to develop a detailed analysis of re-opening time of a large set of regions/states and of the
epidemiological and social conditions, as well as of the knowledge of epidemic dynamics, that were present at
that time. Those studieswill possibly sheda lightonwhich factorsplayedamajor role in thedecisions,whatwas
known through o�icial statistics, at the time, to public health authorities, and which aspects of the epidemic
were instead unknown or poorly evaluated, how the decision was implemented, for example if many small
adjustments were decided based on frequent observations and so forth. Comparing di�erent situations and
based onmodels describing the dynamics and the relations in amore abstract form, it will be perhaps possible
to obtain a better picture of the overall dynamics of the pandemic, not only in termsof epidemic characteristics,
but also in terms of behavioural responses and decisions taken by local authorities mutually influencing and
co-evolving with the epidemic di�usion.
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Top and Center: Heatmaps for proportion AI:MI=10:90 with, respectively, P(MI,C)=(0.2) and
P(MI,C)=(0.5). Bottom: Heatmap for proportion AI:MI=20:80 with P(MI,C)=(0.2). The color
schememeans: Redgradient: |MI|/|C|� 1:→MI riskshighandpossiblyuncontrolled;White
gradient: |MI|/|C|≈ 1:→ MI risks manageable through C as a proxy; Blue gradient: |MI|/|C|
� 1:→ Risk fromMI low and bounded by C.

Figure 7: Values of metric |MI|/|C| in the final epidemic phase for TC x TMI tests for Table 8 configurations.
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5.2 Next, we considered more specifically the main factor of this work: the proportion between known infectious
cases and those unknown, namely the Acute Infected (AI) agents, plus the Contained (C) agents, and the Mild
Infected (MI) ones, in our model. We focus on cases with a majority of MI, because that is a critical situation
and represents one of themain unknown aspects of the COVID-19 pandemic. Again, our approach is not aimed
at producing an epidemiological analysis, but mostly focused on a system-level analysis. Indeed, our main
point in considering di�erent proportions of AI and MI agents is that it gives, indirectly, a measure of the un-
certainty of the situation. The larger the fraction of undetected MI cases, the more uncertainty is a�ecting the
decision of public health authorities. We compared di�erent scenarios, and found that the dynamics that we
observed change completely between configurations where theMI class is clearly dominating the AI, and cases
with similar dynamics. Those results, while devoid of any predictive value for real contexts, should be read as
a warning to decisionmakers. Countless discussions have beenmade regarding COVID-19 asymptomatic cases
and to what extent they have driven the di�usion of the contagion. Remarkable e�orts have been devoted to
ascertain the actual viral load and the infectivity of the incubating phase. Apparently, not equal attention has
been dedicated by modelers to evaluate the e�ects of uncertainty, for example the e�ects on re-opening de-
cisions of the error in estimating the number or the infectivity of undetected cases. This sort of system-level,
risk-oriented way of reasoning did not enter in themainstream COVID-19 discussion, so far (Ioannidis 2020; Nat
2020). Tightly connected with these observations are our experiments with an increasing proportion of Mild
Infected (MI) agents that become Contained (C). Stripped to its most simplified form, it represents the e�ects
of a possible containment strategy implemented by public health authorities. In our schematic model, direct
e�ects are straightforward (i.e., MI agents decrease and C agents increase), in reality it will not be such simple,
of course. However, some results that we have presented show that one critical issue might regard the e�ec-
tiveness of suchmitigating strategies. As we have experienced with COVID-19, testing initiatives addressed to a
largeportionof thepopulationare extremely di�icult to realize, becauseof their economic costs, organizational
burden, and possible shortage of testing equipment. Therefore, the question is not whether or not testing, but
what fraction of the population of asymptomatic individuals gives the better trade-o� between costs and bene-
fits. What our work is suggesting is that answering to this question is di�icult and depends on di�erent factors.
First, thee�ectivenessof a testing campaignmaydependon theactual proportionof unknown infectious cases,
whose evaluation is ridden with di�iculties, as we discussed.

5.3 However, this is not enough, because there could be other factors playing an important role inmaking a testing
campaign more or less e�ective and economically sustainable. We have considered two parameters, which in
currentCOVID-19 studieshave receivedevaluations ina relatively large rangeof values. Theyare time-dependent
parameters, representing the average duration of the asymptomatic infectious phase and the average duration
of the full symptomatic and o�icially contained phase. Again, it is a trade-o� between several dimensions of
uncertainty, this time regarding the number of cases and the duration of infectious states. We have showed
that both the time-dependent parameters are able to strongly modify the risk level. This adds another layer of
complexity, because it shows how, at system-level, the co-evolutionary dynamic of di�erent infectious states is
rich.

Conclusions

6.1 We have focused on the critical decision of li�ing social restrictions, that public health authorities face to at
the beginning of what we have called final epidemic phase. Our interest was mostly related to the possibility
to measure and manage the risk associated to such decision. More specifically, we aimed at considering the
factors possibly a�ected by large uncertainty at the time of the decision and influencing the risk evaluation
and management in a sensible way. To this end, the current COVID-19 pandemic provides plenty of evidences
of uncertainty a�ecting the epidemic dynamics, its defining factors, and the decision process regarding social
restrictions, their enforcement and li�ing.

6.2 Therefore, the study of an epidemic with severe social implications, like the case of COVID-19, is a multifaceted
and interdisciplinary research goal that goes behind the typical epidemiological analyses and models, espe-
cially, in our opinion, when the focus is on the dynamics following the initial exponential growth (or past the
incidence peak). Therefore, while there is certainly the need of even more accurate and precise predictive epi-
demiologicalmodels, for planning the emergencymeasures and anticipating, asmuch as possible, critical situ-
ations, like the shortage of required resources, other approaches are also useful. This is the case of descriptive
models, aiming at producing a better knowledge of the dynamics of co-evolving processes, epidemic and be-
havioural, possible emergent behaviours of complex systems, and potential outcomes in di�erent scenarios.
Risk-based approaches are typical in contexts where decisions have to be taken under uncertainty.
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6.3 We hope this work could be useful in particular, for suggesting future studies on epidemics aimed at com-
plementing the traditional epidemiological approaches and predictive models. Behavioural, risk-based, eco-
nomic, and sociological analyses, as well as focused studies on opinions and media, traditional and social, in
the event of a pandemic like the COVID-19, are needed for a better comprehension of the mechanisms and dy-
namics of such a complex phenomenon. On the other hand, we also hope that our work could inspire works
that openly recognize the unknown and uncertain factors of a pandemic, and the need to explicitly account
for them in models and in public discussions. Evidence that is emerged from the COVID-19 experience is the
unpreparedness in dealing with uncertainty in modelling and in public discourses. This is not surprising and is
largely justifiable, but it has also caused problems of distorted public expectations, di�icult organization, and
in decision making.

Model Documentation

The code of the multi-agent model and simulation configurations are available on CoMSES Network - Com-
putational Model Library as: Final Phase Epidemic Risk Model (version 1.0.0), https://www.comses.net/
codebases/7a89e85b-7355-47b9-b8f5-b9b94a4a178c/releases/1.0.0/.
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Appendix A: Network characteristics

Thenetworkused for experimentshasN=1000andscale-free characteristics. It is anabstractnetworkgenerated
through the powerlaw_cluster_graph function of NetworkX package 2, which is based on Holme and Kim
algorithm for graphs with powerlaw degree distribution (Holme & Kim 2002).
With respect to the network choice, it should be highlighted that choosing an abstract network model repre-
sents an assumption aimed at simplifying the analysis of epidemic dynamics, at best matching only some gen-
eral features of real networks. Di�erent network configurations (e.g., di�ering for skewness, clustering, commu-
nity structure, etc.) might considerably change the epidemic dynamics, therefore there is no general network
structure really representative of real cases, which should be considered individually for an accurate analysis.
Studying empirical networks or the e�ect of di�erent configurations of artificial networks on the final phase
and the epidemic dynamics is an interesting research subject and possibly the goal of future works.
The following Table 9 presents some networkmetrics, while Figure 8 gives amore detailed information regard-
ing the node degree distribution.

Degree Betweenness Eigenvector Clustering Coe�.

Min. 3.000 Min. 0.00 Min. 0.002431 Min. 0.0000
1st Qu. 3.000 1st Qu. 0.00 1st Qu. 0.013399 1st Qu. 0.1667
Median 4.000 Median 12.04 Median 0.025859 Median 0.3333
Mean 5.982 Mean 56.15 Mean 0.043427 Mean 0.3380
3rd Qu. 6.000 3rd Qu. 50.18 3rd Qu. 0.061411 3rd Qu. 0.4000
Max. 127.000 Max. 1461.16 Max. 1.000000 Max. 1.0000

Table 9: Network metrics

Appendix B: Pre-infectious incubation testing

Here, we describe the results of tests on a variant of the II state definition, meant to include a pre-infectious
period in the incubating state. This incubating pre-infectious state is typically indicated as the Exposed com-
partment in classical SEIR compartmental models (Li & Muldowney 1995) and usually refers to the initial latent
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Figure 8: Node degree distribution for the network used in simulations.

phase of a contagion, before an individual develops infectivity. To the best of our knowledge, still few evidences
emerged about a possibly latent state in COVID-19 cases (Lauer et al. 2020; Linton et al. 2020). The still limited
number of scientific references useful for modelling that case and fitting related parameters is themain reason
for our choice of not including this case in the main text. Nevertheless, we recognize the potential relevance of
the case andwhenmore epidemiological resultswill be available, thatwouldbea state tomodelmoreprecisely
also in exploratory analyses like ours. For this work, we have limited the analysis to test some hypothetical set-
tings, to produce an initial evaluation of possible e�ects of a pre-infectious period, like the known e�ect of
prolonging the epidemic duration.
For our tests, wedid notmodify the transitiondiagramby introducing anExposed state, butmodified themech-
anisms associated to the Incubating Infectious (II) state. In the original version, we assumed that the whole
period, calculated for each agent from a gamma probability distribution, is infectious. In this special case, in-
stead, we defined a fixed number of timesteps (five) at the end of the II period as infectious, while the initial
timesteps, variable according to the gamma probability distribution, were not infectious. The choice of five in-
fectious timesteps find some confirmation in Li et al. (2020b), but in the light of the scant evidence retrieved so
far for COVID-19 cases, it should be consideredpurely as an educated guess. Similarly for the incubationperiods
tested: The interval between 2 and 10 days has been estimated by the World Health Organization (WHO), while
between 2 and 14 days is the estimate of the United States’ CDC (Worldometers 2020). Table 10 presents the
results of epidemic dynamics with selected configurations (except for the II state, we used the same settings of
basic epidemics dynamics with AI:MI=20:80, presented in Table 5). The results present an obvious reduction
of incident cases, due to the reduced number of infectious timesteps. With respect to the epidemic duration,
it is generally confirmed the expected prolongation by a clear increase of the final phase terminating timestep
(column ’Final Phase end’ in Table 5)). It is particularly evident for Configurations C1 and C2, with C1 having the
same settings of TII used in the original version and C2 having a reduced length of the II state duration. Config-
uration C3 and C4 tested di�erent means, and still the longer duration is confirmed. With configuration C5 and
C6, instead, we tried with a transmission probability much higher (0.2 instead of 0.02) and although the inci-
dence values change considerably, the higher transmission probability seems not to have a particular e�ect on
the duration. As said, these should be considered as very initial experiments, waiting for more solid evidence
from epidemiological studies.

Appendix C: No viral load reduction for incubating andmild infected

In this second special case, we considered the hypothesis that there is no reduction of the viral load for Incubat-
ing (II) and Mild Infected (MI) cases with respect to individuals developing full symptoms (AI), as suggested by
some epidemiological studies, such as Zou et al. (2020). This represents another important parameter formod-
elling the epidemic dynamics. Here, we present a simple evaluation of the di�erent outcomes by confronting
in the two cases (reduction factor µ=1.0 or =0.5) the basic epidemic dynamics and the reproduction number
Rt, being the incidence directly a�ected by the di�erent assumption regarding the reduction factor, for the two
cases. Table 11 reports the results for configurations AI:MI=20:80 and =40:60 with, on top the basic epidemic
dynamics and, at the bottom values of the reproduction number Rt.
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Cfg Param MI peak
timestep
(density)

C peak ∆MI,∆C Final
Phase
start,
∆start
timestep,
∆time.

Final
Phase
end,

∆end
timestep,
∆time.

Final
Phase
durat,
∆d.

No. timesteps

C1 1-P(S)= 0.02
TII=[2,14]; mean=5

47 (4.24) 52 (13.31) +13, +14 109 (+42) 130 (+37) 21 (-5)

C2 1-P(S)= 0.02
TII=[2,10]; mean=5

46 (4.89) 54 (13.32) +12, +16 104 (+37) 129 (+36) 25 (-1)

C3 1-P(S)= 0.02
TII=[2,14];mean=3

31 (3.04) 42 (7.96) -3, +4 77 (+10) 92 (-1) 15 (-9)

C4 1-P(S)= 0.02
TII=[2,14];mean=8

72 (2.71) 79 (7.00) +38, +41 115 (+48) 130 (+37) 15 (-9)

C5 1-P(S)= 0.2
TII=[2,14]; mean=5

32
(132.23)

44
(301.96)

-2, +6 79 (+12) 84 (-9) 5 (-21)

C6 1-P(S)= 0.2
TII=[2,14]; mean=8

43
(102.92)

54
(262.99)

+9, 14 96 (+29) 103 (+10) 7 (+19)

Table 10: Tests with di�erent pre-infectious settings.
We assume that only the last five timesteps of the Incubating Infected (II) state are infectious. Values indicated as∆x refers
to di�erences between the value produced by the corresponding configuration of this special case (i.e., [C1,C6]) and the
value of basic epidemics dynamics with AI:MI=20:80, presented in Table 5.

The result that emerges in a consistent manner, between the two AI:MI configurations tested, between values
of the epidemic dynamics, and with respect to the reproduction number Rt is that, on the one hand there is
the obvious e�ect of the increased incidence produced by the higher transmission probability of state II andMI,
with remarkably larger values at the peak forMI and C states and a reproduction number Rtmuch higher during
the initial growth (approximately during the first two timewindows of Rt evaluation). On the other hand, in this
special case, without the reduction factor, the epidemic appears to have a shorter duration, with an anticipated
beginning and shorter final phase, and a faster reduction of Rt below 1.0 (approximately starting from the forth
timewindow). This is in linewithwhatwehaveobserved for theFigure4, between the twoconfigurations,when
the higher incidence due to a larger transmission probability also induced a faster reduction of Rt for values less
than one.

AI:MI MI peak
timestep
(density)

C peak ∆MI
∆C

Final
Phase
start,

∆start
timestep,
∆time.

Final
Phase
end,

∆end
timestep,
∆time.

Final
Phase
durat,
∆d.

No. timesteps

20:80 31 (93.10) 36 (23.36) -7 (+76.55)
-8 (+18.73)

60 (-7) 69 (-24) 9 (-17)

40:60 30 (58.53) 36 (42.61) -10
(+46.30)
-7 (+33.46)

69 (-14) 77 (-29) 8 (-15)

configuration: AI:MI=20:80
tstart, tend 5,11 15,21 20,26 25,31 29,35 36,42 50,56

Rt (∆Rt) 3.1 (+1.4) 1.9 (+0.3) 1.4 (0.0) 1.1 (-0.2) 1.0 (-0.1) 0.8 (-0.2) 0.6 (-0.3)
configuration: AI:MI=40:60

tstart, tend 5,11 15,21 20,26 25,31 29,35 37,43 46,52

Rt (∆Rt) 3.1 (+1.3) 1.9 (+0.4) 1.4 (0.0) 1.3 (0.0) 1.0 (-0.1) 0.8 (-0.2) 0.7 (-0.2)

Table 11: Equal probability of transmission for all infectious state.
We assume there is no di�erence in viral load between infectious states II, AI, and MI (reduction factor µ=1.0). Top: Basic
epidemic dynamics and di�erences (∆x) with respect to original valueswithµ=0.5. Bottom: Values of reproduction number
Rt and di�erences (∆Rt) with respect to original values with µ=0.5.
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Notes

1https://cran.r-project.org/web/packages/EpiEstim/EpiEstim.pdf
2https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.

generators.random_graphs.powerlaw_cluster_graph.html
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