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Abstract: Both agent-based models and equation-based models can be used to model the spread of an infec-
tious disease. Equation-basedmodels have been shown to capture the overall dynamics of a disease outbreak
while agent-basedmodels are able to capture heterogeneous characteristics of agents that drive the spread of
an outbreak. However, agent-based models are computationally intensive. To capture the advantages of both
the equation-based and agent-based models, we create a hybrid model where the disease component of the
hybridmodel switches between agent-based and equation-based. The switch is determined using the number
of agents infected. We first test the model at the town level and then the county level investigating di�erent
switch values and geographic levels of switching. We find that a hybridmodel is able to save time compared to
a fully agent-basedmodel without losing a significant amount of fidelity.
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Introduction

1.1 Infectious disease outbreaks can be a serious threat to public health and it is important to prepare for an out-
break by learning asmuch as possible about howan infectious disease outbreak spreads through a population.
Knowing how an outbreak spreads can help one to design and implement prevention strategies such as vac-
cination campaigns or can provide information about how to mitigate an outbreak as it occurs, such as when
and if to close schools or workplaces or how best to distribute resources.

1.2 It is, however, hard to understand outbreaks and their patterns without one occurring in the real world and at
that point it might be too late to implement any strategies that come from studying the outbreak. Instead its
necessary to find another method to study outbreaks. A way to study an outbreak before it happens is through
modelling. Models allowus to create a simplified system that represents amore complicated realworld system.
A model for an infectious disease outbreak can be used to learn information that can be useful about future
outbreaks.

1.3 There are twomain types of models that are used in epidemiology research, agent-based and equation-based.
Both types of models have advantages and disadvantages. Agent-based models are a "bottom up" modelling
method (Marilleau et al. 2018). They model a system by representing each individual or agent in that system.
The agents are given a set of rules that govern their actions and can interact with each other and with their en-
vironment. Agent-based models allow for patterns to emerge within a system but because each agent is mod-
elled individually largermodels can become computationally intensive (Hamill &Gilbert 2016). Equation-based
models are a "top down"modellingmethod (Marilleau et al. 2018) and are significantly less computationally in-
tensive than agent-basedmodels. Theymodel a population as awhole or a subgroup of the population using a
set of equations to represent thedi�erent subgroupsof thepopulation (Hethcote 2000). Theyhavebeen shown
tocapture thepopulation level dynamicsof infectiousdiseaseoutbreaks. Because themodel is at ahigher level,
the individual decisions and interactions that drive agent-basedmodels and that allow for emergent results are
not part of the equation-basedmodel.
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1.4 We created a model that is a hybrid of agent-based and equation-based to utilize the advantages of both. The
following section discusses agent-based, equation-based and hybrid models in more detail. We then present
our hybridmodel that simulates anoutbreak in a single townand thenpresent a scaledupversionof thatmodel
that simulates an outbreak in a county.

Epidemiology Models

2.1 Although there are many kinds of epidemiology models, in this paper we focus on infectious disease models.
The following sections discuss in greater detail two of the main methods for modelling infectious disease out-
breaks: agent-based and equation-based models. Both methods have advantages and disadvantages but the
one of the most important advantages of agent-basedmodels are their ability to capture emerging results and
interactions that equation-based models do not (Hunter et al. 2018b). Thus the main focus of our work is on
agent-basedmodels. Although there areother typesofmodels that havebeenused to simulate the spreadof in-
fectiousdiseases throughapopulation, suchasmicrosimulationmodels (Fasthet al. 2010;Brouwers et al. 2010),
these models do not include interactions between agents and between agents and the environment (Hamill &
Gilbert 2016).

Agent-basedmodels

2.2 Agent-based models are a type of computer simulation that are made up of agents and an environment. Each
agent can be given its own set of unique attributes and can interact with other agents and their environment.
Agents’ actions are controlled by a set of coded rules that allow agents to make decisions that determine their
actions (Mac Namee & Cunningham 2003). The decisions that agents make over the course of the model allow
agent-basedmodels to capture aggregate phenomena that result from combined individual behaviours (Bruch
& Atwell 2015). The main advantages that agent-based models provide in infectious disease modelling are the
ability to simulate aggregate behaviours; the ability to create heterogeneous agents, social networks, andmix-
ing patterns; and the ability to capture accurate disease dynamics (Bobashev et al. 2007). To realisticallymodel
an outbreak, and to be useful in real world scenarios, an agent-based model needs to model characteristics of
a disease (such as infection rates), as well as characteristics of the agents and their environment (Hunter et al.
2017).

2.3 Agent-basedmodels canbeused to simulate anoutbreakof awide rangeof infectiousdiseases. Existingmodels
have simulated the spread of various strains of influenza, including H1N1 (Friás-Martínez et al. 2011) and H5N1
(Dibble et al. 2007), Ebola (Merler et al. 2015),measles (Perez&Dragicevic 2009), andHPV (Olsen&Jepsen2010).
While somemodels are used to better understand disease dynamics many are run with the idea of influencing
public policy. The EpiSimdemics model looked at responses to an outbreak in a military population and de-
termined that counter-intuitively sequestration of military populations during an outbreak may lead to more
infection (Barrett et al. 2008). Similarly, FRED (A Framework for Reconstructing Epidemiological Dynamics) is
an agent basedmodelling system that is used to support researchon thedynamics of infectious diseases partic-
ularly for US state and county public health o�icials to evaluate the e�ects of interventions (Grefenstette et al.
2013). FRED has been used by researchers to look into di�erent aspects of outbreaks such as shutting schools
down and self isolation (Brown et al. 2011). Other models focus on the spread of a pandemic through countries
and country-wide mitigation measures. Ferguson et al. (2006) created a model that simulated the spread of
pandemic influenza in the United Kingdom and in the United States, and more recently this model has been
adapted to simulate the spread of Covid-19. AceMod (Chang et al. 2020) was developed to simulate the spread
of pandemic influenza in Australia using census data to create their society, and, similar to the Fergusonmodel,
has since been adapted to simulate the spread of COVID-19.

2.4 While agent-basedmodels provide realistic results and are flexible in their modelling, there is no setmethodol-
ogy for agent-basedmodels. This results in a large variety of epidemiological agent-basedmodelswithdi�erent
levels of detail, results and uses making it di�icult not only to understand the simulations as a reader but for
researchers to knowwhere to start when first creating their own simulations and how to validate those simula-
tions.

2.5 Typically, in order for an agent-based model to be able to realistically model a real world system so that its
results can be applied to a population some level of data is needed (Hunter et al. 2017). In some cases the data
required to create a realistic model is not available and it becomes necessary to either use alternative data
sets or to use additional model burn-in steps to account for the missing data (Hunter et al. 2018c). However,
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the additional detail and fidelity gained from using real data comes with a cost, the more detailed an agent-
basedmodel becomes themore computing time and power is needed to run themodel. Ferguson et al. (2006)
mention thehigh computational requirements for theirmodelwith eachmodel run for theUS simulation taking
one to two hours using 55GB of RAM and 8 CPUs. Scalability is o�en an issue when creating a highly detailed
model.

2.6 Agent-based models also tend to be stochastic, which can lead to a level of uncertainty around the results of
the model. However, this stochasticity is also an advantage of agent-based models for infectious diseases as it
allows for themodel to simulate a rangeof possible scenarios fromthe same initial conditions. This is important
in understanding anoutbreak andhow there aremultiple courses that an outbreakmight take based on chance
and the individual decisions and interactions by agents.

2.7 Although there are somedisadvantages of agent-basedmodels-most importantly their computational cost but
also the possible uncertainty around the model results and di�iculties in interpreting and validating models-
their advantages make them an important tool in infectious disease modelling. We believe the ability to simu-
late heterogeneous agents and their interactions, and the ability to produce a range of scenarios for the same
outbreak are important inmodelling an infectious disease and it is essential to retain these in any hybrid archi-
tecture we create.

Equation-basedmodels

2.8 Equation-based models are another type of epidemiology model with the most common type used for infec-
tious diseasemodelling being the compartmental model. A compartmental model is made up of a set of di�er-
ential equations (Hethcote 2000). The population in a compartmental model is assumed to be homogeneous
andwellmixed. Each compartment is definedwith its owndi�erential equation (Duan et al. 2015). The simplest
compartmental model is the SIR model where the population is split into three compartments: susceptible in-
dividuals (S), infected individuals (I), and recovered individuals (R) (Hethcote 2000). Typical variations of the
SIR model include the SEIR model (susceptible, exposed, infected and recovered), the SIS model (susceptible,
infected and susceptible) and the SEIRSmodel (susceptible, exposed, infected, recovered and susceptible). The
models can bemademore complicated and realistic by adding additional compartments for various character-
istics of agents including age groups or vaccination status.

2.9 Similar to agent-based models, equation-based models can be used to both study disease dynamics and to
analyse a specific outbreak or epidemic. For example, to study disease dynamics Hogan et al. (2016) created
an age structured model where each age group has its own compartments for Respiratory Syncytial Virus, a
common childhood infection. The model can be useful when simulating age-dependent interventions such as
vaccination, for example, the e�ects that vaccination rates have on measles outbreaks are studied using the
Pang et al. (2014)model. There aremany examples of equation-basedmodels beings used to analyse a specific
outbreak or epidemic, for example, Vaidya et al. (2015) model the spread of H1N1 in a rural university town
and determine that a portion of the susceptible populationwas protected from infection through self-isolation,
social distancing or other preventativemeasures and this protected population played a substantial role in the
dynamics of the epidemic. Mamo & Rao (2015) show that since isolation is commonly used in the treatment
of Ebola cases, to best capture the dynamics of Ebola spreading in West Africa an additional compartment,
isolated, is needed. Equation-based models have also been used to help shape policy during an outbreak: a
series ofmodelswereused tohelp informpolicydecisions to control the2001 foot-and-mouthdiseaseepidemic
in the UK (Kao 2002). Other models have been created to investigate the seasonality of measles (Keeling &
Grenfell 2002).

2.10 Another type of equation-based compartmentalmodels that are not used as frequently as di�erential equation
are di�erence equations or discrete time models. They are a type of mathematical model that is similar to
a di�erential equation but are over a discrete time space instead of a continuous time space as is the case
with di�erential equations. Di�erence equations can exhibit behaviour that a di�erential equation cannot, with
even a simple non-linear di�erence equation being able to show chaotic behaviour (Allen 1994). While most
epidemic models in the literature are di�erential equations, there are some that use di�erence equations to
better capture the dynamics of an outbreak. Keeling & Grenfell (2002) refer to discrete time models as being
some of the most accurate models of measles.

2.11 The main advantages of equation-based models are their ability to capture the macro level dynamics of an
infectious disease outbreak and their ability to do so at little computational cost. However, there are some dis-
advantages to using an equation-based model. Equation-based models cannot provide detailed information
on the spread of the disease. In addition, the small set of variables that are used in an equation-based model
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may not be enough to define an outbreak. Assuming that the population is homogeneous within a compart-
ment can also be a problem in not capturing the individual variations and actions that can have amajor impact
on the course of an outbreak (Duan et al. 2015). Equation-based homogeneousmixingmodels for fatal diseases
such as AIDS have been known to fail because individuals adapt their behaviour to the epidemic (Duan et al.
2013). As equation-basedmodels are at the population level they o�enmiss individual-level dynamics that can
play an important part in an outbreak, especially when there are a smaller number of cases.

Hybrid Models

3.1 Hybrid agent-basedmodels are away to combine the advantages of the "topdown" equation-basedmodel and
the "bottom up" agent-based modelling method while reducing the limitations of both (Marilleau et al. 2018).
The hybrid allows for further scaling and modelling of a larger population while still keeping a heterogeneous
population.

3.2 Although not abundant in the literature there are some examples of hybrid agent-based models for infectious
disease epidemiology. These hybrid models tend to fall into two major categories, a system where some parts
are modelled using agents and other parts are modelled using an equation-based model and a system that
uses both an equation-based and an agent-based model and switches between the two (Binder et al. 2012).
The model by Bobashev et al. (2007) is an example of the latter. They use a hybrid model to study pandemic
influenza. The model is made up of cities in a network with transportation in between the cities. When a
city reached a certain number of infected agents it switches to an entirely equation-based model. Kasereka
et al. (2014) create a model that falls into the former category where agents move between cities based on an
agent-basedmodel but the diseasemodel is an equation-basedmodel. Similarly Yoneyama et al. (2012) use an
equation-based disease component in their hybrid agent-based model. Hybrid models are also used in infec-
tious disease epidemiology for non-human based diseases. Bradhurst et al. (2013) and Bradhurst et al. (2015)
create amodel for the spread of foot andmouth disease in livestock. In themodel with-in herd disease dynam-
ics is modelled using an equation-basedmodel and between herd dynamics is modelled using an agent-based
model. This is because the authors feel that with a herd of cattle their interactions and contact patterns are rel-
atively homogeneous within the herd. Thus it is not necessary to model those dynamics with an agent-based
model but in the between herd dynamics it is more important to model the heterogeneity that occurs in these
interactions.

3.3 Agent based models are a way to capture the heterogeneity in a system that helps to drive the dynamics of
that system. However, the heterogeneity can result in larger models that take more computational power and
time. Hybridmodels are a way to still capture that heterogeneity while reducing the computational power nec-
essary to run the model. It is important though to decide which parts of the model the fidelity can be reduced
in andmade equation-based or else the model will lose performance. While making the disease portion of the
model equation-based can save time and computing power it misses capturing individual agents actions and
the importance of contacts and di�erent contact patterns between agents in the spread of a disease. Switching
between agent-based and equation-basedmodels allows for the contact patterns in the early stages of the out-
break to help drive the infectious disease spread but saves time when the outbreak gets large enough for a few
individual movements and interactions to no longer have as large of an impact on the outbreak because there
are enough other agents infected. However, switching the entire model over or an entire city ignores the fact
that transportation between cities and the movement of agents is not homogeneous.

3.4 Wepropose amodel that takes advantage of both versions of the hybrid architecture. Themodel uses a switch-
ing point to change from agent-based to an equation-basedmodels and back. However, the entiremodel does
not switch instead only the diseasemodel switches to an agent-basedmodel and the rest of themodel remains
agent-based.

Town Hybrid Model

4.1 A town hybrid model is created based on the Hunter et al. (2018a) model, that was designed to simulate the
spread of measles through an Irish town, with a few changes. There are two main motivations behind the
changes. The first is to improve e�iciency of the model: both the environment component and the transporta-
tion component are altered to improve e�iciency. The second change is to create a hybrid architecture: the
disease component is altered to implement a hybrid model. The model is a hybrid agent-based and equation-
based model where the disease component of the model switches between agent-based and equation-based

JASSS, 23(4) 14, 2020 http://jasss.soc.surrey.ac.uk/23/4/14.html Doi: 10.18564/jasss.4421



when a certain percentage of agents are infected. Themodel is tested using the townof Schull in Ireland. Schull
is a small town thathasapopulationofapproximately 1,000 individuals andwasselectedas therewasameasles
outbreak in the town in 2012. As the model was created to simulate the spread of measles, which is mainly a
childhood disease, we assume the main source of infection will be within schools and the networks between
children. Thuswedonot include largeeventsor locations suchasconcerts, sportingevents, retail stores, restau-
rants or gyms that may lead to super spreading events in other diseases but would not be largely attended by
children. However, super spreading events can happen in the school setting.

Model components

4.2 The following sections give a brief overview of the model describing the four main components of an agent-
basedmodel taxonomy outlined in Hunter et al. (2017).

Environment component

4.3 In an agent-basedmodel the environment can be createdwith a high level of detail. For example, in the Hunter
et al. (2018a) model a town is made up of multiple small areas, from Irish Census data small areas are the
smallest geographic region over which the census is aggregated. Each small area contains between 50 to 200
dwellings (CSO 2014). Within the small areas the model uses real zoning data to assign agents’ homes to resi-
dential areas and workplaces to industrial or commercial areas. In addition, schools are placed in the correct
location. This version of themodel, however, reduces environmental fidelity so that a small area is represented
by one grid cell or Netlogo patch as is done in the Hunter et al. (2020)model. When in a small area an agent has
access to certain information such as the number of schools or workplaces in the small area and the real world
distance to each other small area in the model. All agents in the same small area are physically in the same lo-
cation, however, the agents keep track of where they are in that small area: home, work, school or community
and restrict their interactions with other agents accordingly.

Society component

4.4 The society component is basedon realworld census data from the Irish Central StatisticsO�ice (CSO2014). For
each small area we create a population that reflects the population statistics of that small area including age,
sex, household size and economic status. To be able to fully test the hybridmodel any previous immunity to the
disease is not included in themodel. This allows for larger outbreaks andmore switching in the hybridmodel. If
immunity fromvaccination andpreviously having hadmeasleswas included in themodel for the townof Schull
only 11% of agents would be susceptible. Thus the threshold for switching, discussed in later sections, would
have to be well below 11%. As we are aiming to investigate the hybrid dynamics in this paper we do not include
immunity. Social networks are included in the model. There are three possible network types an agent could
have: family network made up of any agents living in their household, work or school social network made up
of other agents in theirworkplace or their school anda class network for students that ismadeupof agentswho
are in their school and of the same age. If an agent is at home they will only come into contact with members
of their family network who are also at home, if they are at work or school they will only come into contact with
agents who are in their work or school networks who are also at work or school. If an agent is in the community
they will have the highest chance of coming into contact with other agents in their family network who are also
in the community, followed by agents who are in their work or school network, and finally, agents who are not
in any of their networks.

Transportation component

4.5 Transportation in the model di�ers from the Hunter et al. (2018a) model. Instead of moving in steps between
a location and desired destination agents move in one step. Agents movements are determined in one of two
ways. Movements are either predetermined with the agents moving between home and school or home and
work at certain times in themodel or are determined randomly when an agentmoves through the community.
Agents moving through the community will pick a destination randomly from the small areas in the model.
Although randommovement is not completely realistic, at a small scale we feel that it is an acceptable approx-
imation of how agents will move through a town.
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Disease component

4.6 The disease component of the model is made up of two di�erent types of models: an agent-based disease
component and an equation-based disease component. It is set up so that the model can be run with a com-
pletely agent-based disease model, a completely equation-based disease model or switch between the two
based on certain criteria. The following sections discuss the agent-based model, the equation-based model
and the method of switching between the two.

Disease component: Agent-basedmodel

4.7 The agent-based disease component remains unchanged from the Hunter et al. (2018a) model. Agents will
move between susceptible, exposed, infected and recovered states based on the disease dynamics and their
interactions with other agents. If a susceptible agent comes into contact with an infectious agent, there is a
percent chance the susceptible agent will be infected. If they are infected, the susceptible agent moves to the
exposed state for a given period of time, where they are not infectious, before moving to the infectious state,
where they can infect other agents. Then they will move to a recovered state and once recovered they can not
be reinfected.

4.8 Themodel was originally created to simulate the spread of measles thus the disease dynamicsmimicmeasles.
An agent will remain in the exposed state for an average of 10 days (Nelson & Williams 2007). While in the ex-
posed state the agent will not be infectious. The agent will then move to an infectious state where they will
remain infectious for an average of 8 days (Nelson & Williams 2007). The time an agent remains infectious in
the model is determined for each agent from a normal distribution with a mean of 8 and a standard deviation
of 0.5. To determine the probability of transmission per contactwe use themethod used inHunter et al. (2018a)
that utilizes the components of the basic reproductive number,R0 to find this probability.

Disease component: SEIRmodel

4.9 The equation-based part of the disease component uses a SEIR di�erence equation model. Although di�eren-
tial equations are more common in infectious disease modelling, we chose di�erence equations because they
are modelled using discrete time space which is more analogous to the agent-based model and will allow for
a more seamless transition between the two models. In the simulation, each geographic area selected runs
its own SEIR di�erence equation model. The model can be run at the small area level or the town level. The
equations are as follows:

Si+1 = Si −
βIiSi

N
(1)

Ei+1 = Ei +
βIiSi

N
− σEi (2)

Ii+1 = Ii + σEi − γIi (3)

Ri+1 = Ri + γIi (4)

4.10 Where Si is the number of susceptible agents in the geographic area in the previous time step and Si+1 is the
number of susceptible agents in the geographic area in the current time step. Ei and Ei+1 are the number of
exposed agents in the geographic area in the previous and current time steps, Ii and Ii+ 1 are the number of
infected agents in the geographic area in the previous and current time steps, andRi andRi+1 are the number
of recovered agents in the geographic area in the previous and current time steps. β is the infection rate or the
probability of infection per contact between agents, σ is the rate of moving from exposed to infected and γ is
the recovery rate.

4.11 In a fully equation-based disease component, each geographic area starts its di�erence equation model when
an infected or exposed individual enters the area. In a hybrid model the di�erence equation model will start
when the number of infected or exposed individuals is over a certain threshold. The threshold is discussed
further in the next section. This could happen in twoways, either an agent fromoutside the areawho is already
exposed or infectedmoves into the area or an agentwho is from the area becomes infected outside and returns
home. Once the di�erence equation model has started it continues until the number of exposed or infected
agents in the model goes below the threshold.

4.12 At each time step, each geographic area will calculate the values for the di�erence equations and adjust the
number of agents in the area in each category. If the rounded di�erence between Ei+1 and the number of
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exposed agents in the area is greater than 0, that number of susceptible agents in the small area will randomly
be selected tomove from the susceptible category to the exposed category. Similarly if the rounded di�erence
between Ii+1 and the count of infected agents in the area is greater than 0, then that number of exposed agents
will be randomly selected to move from exposed to infected. If the rounded di�erence betweenRi+1 and the
count of recovered agents in the area is greater than 0, then that number of infected agents in the area will
recover.

4.13 As movement between areas is possible in the model, there are times when the total number of agents in the
area in one of the four compartments is di�erent than the value predicted in themodel. Adjustments aremade
to account for this. If the value for Ei, Ii, or Ri is less than one and the count of agents exposed, infected or
recovered in the area is greater than one then the value for Ei, Ii, or Ri is changed to the count of agents in
that area who are exposed, infected or recovered. If the values for the di�erence betweenEi, Ii, orRi and the
number of agents exposed, infectedor recovered respectively in the geographic area is greater than thenumber
of agents who could potentially move into the compartment (if the di�erence between Ei and the count of
agents exposed is greater than the number of susceptible agents) the value forEi, Ii, orRi are adjusted down
to reflect the actual counts of agents in the geographic area.

Switching

4.14 The model allows for geographic areas to switch between the equation-based model and the agent-based
model. The idea behind using a switch is that the agent-based models are especially important when a few
agents are sick because at this stage the individual movements are what drive the spread of the disease so the
heterogeneousmovements of agents aremore important. For example, if theone infectedagent decides to stay
home the outbreak might not take o� versus if they decide to go to school or work every day. However, once
the number of infected individuals reaches a certain number the individual movements should not matter as
much because there are so many agents infected.

4.15 To capture this in the model the geographic areas are allowed to switch between the agent-based model and
the equation-based model. The decision of which model is used in a geographic area in a given time step is
determined by the number of agents infected in that area. The user can set the switch threshold to be any per-
centage of agents infected or exposed and the area will automatically switch between the agent-based model
and the equation-based model when this threshold is passed. Note, that if the number of infected or exposed
agents in an area drops back below this threshold the model reverts back to an agent-basedmodel.

4.16 In the town model we consider two levels of the switch, the small area level and the town level. If the switch
occurs at the small area level then each small area will keep track of the number of agents who are infected
and exposed in that small area. When the percentage of agents who are exposed or infected in the small area is
equal to or greater than the selected switch value themodel switches from an agent-based disease component
toanequation-baseddisease component. Each small areawill run its ownsetofdi�erenceequationsandso the
model can have some small areas running an agent-based disease component and some running an equation-
based component. When the percent of agents in the small area who are exposed or infected goes below the
switch value then the small area returns to an agent-based disease component. If the switch is at the town
level when the total percent of agents exposed or infected is greater than the switch value the whole model
switches to an equation-based disease component. When the percent of agents in themodel who are exposed
or infected is below the switch value the model returns to an agent-based disease component.

4.17 It is important to note that if the switch is set to 100% themodel will be completely agent-based. If the switch is
at 0% the disease component will always be equation-based. If the switch is at the town level then a switch at
0% results in an entirely equation-basedmodel as the location of a given agent does not influence if that agent
becomes infected. This is becausewhen themodel is switched at the town level all agents are considered in the
same equation-basedmodel andwill thusmix homogeneously. Thus the results of the town hybridmodel with
a switch at 0% are only influenced by the initial conditions of themodel such as the total number of agents, the
number of initially infected agents or the number of immune agents at the start of the model.

Experiments and results

4.18 In this sectionwe report a number of experiments onour hybrid townmodel thatwere designed to testwhether
our hybrid model successfully blends the fidelity of agent-based models with the computational e�iciency of
equation-based models. In these experiments we treat the behaviour of a completely agent-based model (i.e.,
a model with a switch threshold of 100%) as the ground truth because agent-based models are considered
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to have the higher fidelity of the two modelling approaches. Comparing the results of a hybrid model to an
agent-based model is used in the literature with Bobashev et al. (2007) using their agent-based model as the
standard to compare their hybrid to as it has the most micro level detail. Consequently, if the hybrid model
produces similar results to a completely agent-based model, while using less computational resources, then
we can consider our hybrid modelling approach to be successful.

4.19 Note, that there are twohyper-parameters thatmaya�ect theperformanceof thehybridmodel. The first hyper-
parameter is the geographical scale that the switch is applied at: small area or town level. The second is thresh-
old within the relevant geographic area that is used to switch between the agent-based and equation-based
models. To test the interactions between these hyper-parameters and the hybrid model performance, in each
of the following experiments we run the following hybridmodels: town switch with 0% threshold, town switch
with 10% threshold, town switch with 20% threshold, small area switch with 0% threshold, small area switch
with 10% threshold, small area switch with 20% threshold, small area switch with 30% threshold, and small
area switch with 35% threshold. We limit the threshold at the town level to 20% because at higher thresh-
olds there are not enough agents infected or exposed at the same time for switching to occur in the majority
of runs. Experiments with higher thresholds determined that a threshold higher than 20% does not result in
sustained use of the equation-based disease component. Similarly, through investigating di�erent switch val-
ues for the small area level we determined that a�er 35% there are not enough agents infected or exposed to
sustain switching. The small area level model has a higher switch threshold because the small areas have a
smaller number of agents in them than the town, and thus need fewer agents infected and exposed to reach
the threshold. For example, for Schull, which has a population of 1,000, a threshold of 20% at the town level
would require 200 agents in the town to be infected or exposed at the same time to switch. A threshold of 20%
at the small area level would only require about 30 agents to be exposed or infected at the same time in the
small area to switch (Schull is made up of seven small areas and the average population across the small areas
is 151). Also, because of the stochastic nature of agent-based models we run each model 300 times and use
statistics calculated across these runs to compare with other models.

4.20 Within theaboveexperimental framework, the first experimentwe report is a sense-checkanalysis that counted
the number of switches a hybrid model makes between the agent-based and equation-based component. The
motivation for this experiment was that if we found that a hybrid model rarely switches, and remains agent-
based for the majority of the runs, then the hybrid model is not useful. The second experiment we report anal-
yses the time-saved by a hybridmodel when it switches to an equation-based disease component. To examine
the time saved we compare the average number of seconds needed per time step of the hybrid model with a
fully agent-based model. The final two experiments we report in this section are designed to compare the fi-
delity of the hybrid models with the fully agent-based model. The first of these fidelity experiments analyses
the divergence between the number of infected agents in the hybrid models and the fully agent-based model.
The second fidelity experiment analyses the divergence between the length of outbreaks in the hybrid models
and the fully agent-basedmodel.

4.21 Finally, switching to the equation-based disease component in the hybrid architecture will result in a loss of
fidelity in the model results as the advantages of the agent-based disease component are lost. However, some
of the advantages of using the equation-based componentmight out weigh the cost of losing the fidelity of the
model. Consequently, we conclude these experiments by identifying a set of hyper-parameters (geographic
switch area, and switch threshold) for our hybridmodel that usefully balances betweenmodel fidelity and time
savings.

Number of runs that switch

4.22 We first look at the number of the 300 runs that results in the diseasemodel switching to equation-based. There
are some cases where the model does not switch over to the equation-based because the required number of
agents is never infected. Table 1 shows the percentage of runs that themodel switches for the small area switch
and the town switch along with the 95% confidence intervals for each value.

4.23 For both the town switch and the small area switchmodels for the switch values we look at themodel switches
to an equation-based model in a majority of the runs. This, however, only measures if a model switches over
for at least one time step. While it is a good starting point to look at if the disease model is actually switching
between agent-based and equation-based, the length of time a model switches for should also be studied. To
do thiswe find thenumber of time steps themodel is using an equation-baseddiseasemodel. Thedistributions
for the number of time steps the model switches for the small area switch model and the town switch model
can be seen in Figures 1 and 2 respectively.

4.24 For both models it can be seen that as the switching percentage increases, the number of time steps that use
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Percentages of Runs that Switch

Switch Small Area Town

10% 93.0 92.7
(90.1, 95.9) (89.7, 95.6)

20% 93.7 83.0
(90.9, 96.4) (78.7, 87.3 )

30% 92.0 -
(88.9, 95.1) -

35% 85.0 -
(81.0, 89.0) -

Table 1: Percentage of runs that lead to the model switching from agent-based to equation-based for di�erent
versions of the hybrid model switching at the small area level

Figure 1: Distribution of the total number of time steps the disease model is equation-based for the small area
switch model.

an equation-based model decreases. This is expected as a higher percentage equates to a larger number of
agents required to be exposed or infected before themodel switches to equation-based from agent-based and
infecting a larger number of agents will take more time steps.

Run time

4.25 Before looking into the results, it is important to determine if using the hybrid will actually result in real savings
when running the model. To test for this we find the average number of seconds per time step in each of our
versions of themodel. Table 2 shows the times for themodel with four di�erent switching scenarios: where the
diseasemodel is always equation-based, where themodel switches to equation-basedwhen 10% of agents are
infected or exposed, where themodel switches to equation-basedwhen 20% of agents are infected or exposed,
where the disease model is always agent-based. The table also provides a 95% confidence interval for the av-
erage times. At 30% the townmodel no longer switches from agent-based to equation-based so the values are
not shown in the table. At 40% the small area switch model switches in less than half of the runs and does not
result in any time savings so the results for any switches a�er 35% are not included in the table for either version
of the model.

4.26 Fromthe table it canbeseen that for the twoswitchingversions, the small areamodel results inmore timesaved
per time step when compared to the fully agent-based model. In both cases switching over at 10% provides
greater savings than switching at 20%. This makes sense as it takes significantly less time per step when the
diseasemodel is completelyequation-basedversusagent-based, therefore, the longer themodel staysatagent-
based before switching to equation-based the longer the average step lengthwill be. This can be further seen in
that the time per step increases in the small areamodel when the switch is at 30% and 35%. However, the time
per step for these two switch points are not significantly di�erent from each other as their values fall within the
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Figure 2: Distribution of the total number of time steps the diseasemodel is equation-based for the town switch
model.

time (ms) per time step

Switch Small Area Town

Only equation-based Model 1.79 1.90
(1.59, 1.99) (1.68, 2.11)

10% 2.42 3.55
(2.14, 2.69) (3.15, 3.95)

20% 4.05 4.61
(3.59, 4.50) (4.08, 5.13)

30% 5.23 -
(4.68, 5.87) -

35% 5.77 -
(5.12, 6.43) -

Only Agent Based Model 6.77 6.77
(6.01, 7.54) (6.01, 7.54)

Table 2: Average number of milliseconds for a time step for di�erent versions of the hybrid model switching at
the small area level

others confidence intervals. These results are taken as evidence that the hybridmodel is successfully providing
time savings in running the agent-basedmodel as compared with the pure agent-basedmodel.

Distribution of number infected

4.27 A�er looking at the time saved and the switching behaviours of themodel the results are analysed. For each of
the di�erent versions of the hybrid model the results are compared to the completely agent-based version of
the model. Figure 3 shows the distribution of the number of infected agents across the 300 runs for the small
area model at di�erent switch values.

4.28 It can be seen in the figure that as the switch gets higher, a higher percent of agents need to be exposed or
infected before themodel switches to an equation-basedmodel, the distributionmoves away from the version
of the model where the disease model is strictly equation-based and moves towards the strictly agent-based
version. A similar pattern is seen in the townmodel. The distributions for themodel switching at the town level
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Figure 3: Distribution of the total number of agents infected by run for the small area switch model.

Figure 4: Distribution of the total number of agents infected by run for the town switch model.

can be seen in Figure 4.

4.29 Although it is useful to visualize the change in distribution, it is possible to actually compare the distributions
and get a value for the probability that the sample distributions come from the same population. TheWilcoxon
rank sum test is a non parametric alternative to a two-sample t-test that does not assume the population dis-
tribution is normal. The null hypothesis of the test is that the two populations have the same distribution. A
Wilcoxon rank sum test is done for each of our distributions from the switching models compared to the distri-
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P-value

Switch Small Area Town

10% 0.000 0.000
20% 0.000 0.015
30% 5.9e−6 -
35% 0.5791 -

Table 3: P-values for the Wilcoxon rank sum test comparing the outbreak size distributions for the switching
models to the completely agent-basedmodel.

bution from the completely agent-basedmodel. The p-values for those tests can be found in Table 3.

4.30 The values show that as the switch is larger, the distribution gets closer to the agent-based model. This can
easily be explained, the larger the switch the longer the model remains agent-based so the more similar the
two distributions will be. Our aim was to find a range of switch points that still result in the model switching
between an agent-based and equation-based disease model but results in a distribution that is similar to the
complete agent-basedmodel. From the table we can see that a switch of 35% at the small area level results in a
distribution that is not significantly di�erent from the purely agent-basedmodel and that a switch of 20% at the
town level results in a distribution that is not significantly di�erent from the agent-basedmodel distribution at
a 1% significance level.

Length of outbreak

4.31 Finally the total time it takes for an outbreak to finish is investigated. An outbreak is considered finished if there
are no agents exposed or infected within the model. The outbreak length is studied because it is another im-
portant characteristic of model output. If the hybrid model has a similar outbreak size but a di�erent outbreak
length than its not possible to say that the outbreaks are similar. The distributions of the number of time steps
it takes for the outbreak to finish for the small area switchingmodel and the town switchingmodel can be seen
in Figure 5 and Figure 6 respectively.

Figure 5: Distribution of the total number of time steps for the small area switch model to finish.

4.32 Similar to the total outbreak size distributions, the outbreak length distributions converge to the completely
agent-based model distribution. Again the Wilcoxon rank sum test is used to compare the time distributions.
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Figure 6: Distribution of the total number of time steps for the town switch model to finish.

The values can be found in Table 4. From the table it can be seen that as switch increases the distribution gets
closer to that of the agent-basedmodel. For the switch at the small area levelwe can see thatwhen the switch is
35% the distributions are not significantly di�erent at the 10% significance level and for the switch at the town
level when the switch is at 20% the distributions are not significantly di�erent at the 5% level.

P-value

Switch Small Area Town

10% 0.000 0.000
20% 0.000 0.0707
30% 1.6e−7 -
35% 0.1036 -

Table 4: P-values for the Wilcoxon rank sum test comparing the outbreak time distributions for the switching
models to the completely agent-basedmodel.

Discussion

4.33 Basedon theabove resultswecansee that thehybridmodel is able to switchbetweenagent-basedandequation-
based for a majority of runs when the switch is 35% or below and switching at the small area level and 20% or
below and switching at the town level. In addition, at all values of the switch considered we see that there are
significant time savings when running the hybrid model over the purely agent-based model. The experiments
to analyse the fidelity of the hybrid model show that at lower switch values, the hybrid model distributions
for both the total number of agents infected and the length of the outbreak are significantly di�erent from the
agent-based model distributions. However, at a switch of 35% for the small area switch and 20% for the town
switch statistical tests show that there is not a significant di�erence between the hybrid and agent-based dis-
tributions. Although both the small area and town level models result in time savings and produce significant
results, the time savings are greater at the town level as the town level switch converges faster to the agent-
basedmodel results. A hybridmodel switching at the small area level with a threshold switch of 35% is statisti-
cally similar to a fully agent-basedmodel and has a time savings of an average of onemillisecond per time step
while a hybrid model switching at the town level with a threshold of 20% is also statistically similar to a fully
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agent-based model but has a time savings of an average of 2.16 milliseconds per time step. Because of this we
feel that switching at a town level over a small area level provides a greater advantage.

County Hybrid Model

5.1 The hybrid model for a single town is a start in an analysis to show that a hybrid model can succeed in both
saving time and computing power when running a large agent-based model. The results show that not only
does a hybrid model save computing time compared to a fully agent-based model but the results also start
to converge to the results for the agent-based model as the switch point changes. However, even though in
most cases the models appear to be converging the results are still shown to be from di�erent distributions
based on the Wilcoxon rank sum test and any larger switch values will not save time or result in the model
actually switching. One factor causing this could be that the model is run on a small town. With only about
1,000 agents in the entire model switching can only happen on a small scale. In addition, at such a small scale
the fully agent-based model does not take too much time to run leading to advantages in time saved for the
hybridmodel being negligible inmany cases. To show the true advantage of a hybridmodel it will be necessary
to start with a model that is much larger where saving time can be done on a larger scale. To do this a county
model is used. The county model is an adapted version of the Hunter et al. (2020) model.

Model components

5.2 The following sections give a brief overview of the county model describing the four main components of an
agent-based model outlined in Hunter et al. (2017). The process to create and setup the environment and the
society component do not change from themodel in Section 4. However, changes are made to the transporta-
tion component in order to scale up the model1 and switching between the agent-based disease component
and the equation-based disease component changes. The changes to the transportation component and the
switching behaviour are described in the following sections.

Transportation component

5.3 Parts of the transportation model di�ers between the town model and the county model. Agents will still
move in one step from their location to their desired destination and some movements are predetermined by
the model with the agents moving between home and school or home and work at certain times. However,
commuting patterns within the model are determined using CSO Place of Work, School or College - Census of
Anonymity Records (POWSCAR) data (CSO 2017). This dataset provides information on the commuting patterns
of people in Ireland.

5.4 The random movements throughout the community when agents are not at home, school or work are also
changed in the transportation model. While we think randommovements is an acceptable modelling simplifi-
cation whenmodelling a small town with a closed population, whenmodelling a county it is no longer accept-
able to assume random movements throughout the county: it is much more likely that an agent will remain
in their own town or go to a town next door in the next hour than that they will be on the other side of the
county. To account for this we use a gravity type model for transportation. A gravity model determines those
interactions between two location pairs based on the characteristics of a location and the distance between
locations (Rodrigue et al. 2006). The probability of an agent moving to another small area is proportional to
the population density of the small area, an area that has a lot of other agents is more attractive, and inversely
proportional to the distance to the small area from the agent’s current location, areas that are farther away are
less attractive. Admittedly the attractiveness of a location is not always correlated with population density (for
example, special attractions, such asmonuments, may be located away from population centres), however we
believe that using a population density based gravity model to drive movement at the a county level provides
a reasonable trade-o� between model simplicity and realism at this geographic scale, and so provides a more
accurate simplification of movement within a larger area than that in the original townmodel.

Disease component

5.5 Both the agent-based and equation-based disease components of the model are the same as that of the town
model. Switching is also similar, however, the county model switches at either the town level or the whole
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county level. The model being used in a given time step by the town is determined by the number of agents
infected in either the town or the whole county. Similar to in the town model, it is important to note that if
the switch is 0%, the model will switch from agent-based to equation-based when 0% of agents are exposed
or infected, this means the disease component of the model will always by equation-based and if the switch is
at 100% the model will always be completely agent-based. However, when the disease model switches at the
county level, there is one set of di�erence equations for the whole county, the model is essentially completely
equation-based. Even though agents are allowed tomove, because agents are infected at the county level their
location does not have an influence on if the agent will be infected or not. The model with a switch of 0% has
no stochasticity in it and the only thing that would have an impact on the results is the initial conditions: if the
model starts with more or less agents, more than one agent infected, or there are a number of agents who are
already immune.

Experiments and results

5.6 To test the countyhybridmodelwe runsimilar experiments to thosepresented inSection4 to lookat the switch-
ing behaviour of the model, the time savings and the fidelity of the results when compared to the fully agent-
based model. We do one additional fidelity test for the hybrid model to compare how the outbreak spreads
through the network of towns in the county.

5.7 Forboth the townswitchand the county switchwe lookat the switch valuesof 0%, 5%and 10%andwealso look
at switches of 20% and 30% at the town level. Similar to the town model, the smaller geographic area, town,
continues to switch between the agent-based and equation-based disease component at a higher threshold
compared to the larger geographic area, county, because the actual number of agents needed to be exposed
and infected at the same time is smaller for the town than the county with the same switching threshold. For
each switch value except for 0%we run themodel 300 times. As mentioned in the previous section, there is no
stochasticity in the model with a switch of 0% at the county level, so the model only needs to be run once to
get the results.

Number of runs that switch

5.8 Inorder tomakesure themodel isutilizing thehybridarchitecturewe lookatanumberofmeasures: thenumber
of time steps that the model has switched to hybrid and the maximum number of towns that have switched to
hybrid during the model.

5.9 Table5 shows thepercentof runs foreachof theswitchvalues that results in themodel switching toanequation-
based disease component for at least one time step.

Percentage of Runs that Switch

Switch Town County

5% 76.3 89.7
(71.5, 81.1) (86.2,93.1)

10% 73.3 88.0
(68.3, 78.3) (84.3, 91.7)

20% 75.3 -
(70.5, 80.2) -

30% 69.3 -
(64.1, 74.6) -

Table 5: Percentage of runs that lead to the model switching from agent-based to equation-based

5.10 The table shows that for all versions of the switch the model becomes equation-based for a large portion of
runs. It can also be seen from the model that it is more likely for a switch to occur if the model is switching at
the county level versus the town level. However, as noted in the previous section if the switch value is 20% the
model switching at the county level will not switch to equation-based.

5.11 A run is counted in the percentages in Table 5 if it has switched to equation-based for at least one time step,
but models switching for only one or two time steps are not taking full advantage of the hybrid architecture of
themodel. Thus we look at the distributions of the number of time steps that have switched from agent-based
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Figure 7: Distribution of the total number of time steps the disease model is equation-based when the model
switches at the town level.

Figure 8: Distribution of the total number of time steps the disease model is equation-based when the model
switches at the county level.

to equation-based. Figure 7 shows the distribution when switching at the town level and Figure 8 shows the
distribution when switching at the county level.

5.12 Looking at the distributions of the count of time steps where the model has switched to an equation-based
disease model it can be seen that when the switch value is lower, the number of time steps where at least one
townhas switched toequation-based increases. This is as expectedandmakes senseas themodel should reach
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the point where 5% of agents are infected or exposed before 30% of agents are infected or exposed and thus
will remain equation-based for longer.

5.13 Themaximumnumber of small areas that havehad their town switch to anequation-basedmodel canbe found
in Figure 9. This is only done for the town switchmodel becausewhen themodel switches at the county level all
towns switch together at the same time. Asexpected themodelwitha lower switchvaluehasahighermaximum
number of small areas that have switched to equation-based. The town switchmodel does not result in a larger
portion of the model switching at any one time. With a switch of 5% the maximum number of small areas
switched is 16 out of a total of 173 small areas in the county. This number reduces even more as the switch
increases to 30%with only a maximum of 4 small areas in the equation-basedmodel at any given time step.

Figure 9: Distribution of themaximumnumber of small areas that have an equation-based disease component
at a given time.

Run time

5.14 Similar to the run time experiment in Section 4 we look at the run time of the model to determine if the hybrid
model produces savings over the fully agent-based model. Table 6 shows the results for the average time in
seconds for each time step in the model.

5.15 From the table it can be seen that there is almost half a second time savings per step going from a full agent-
based model to a model where the disease component switches to equation-based when 5% of the agents
are infected or exposed. Additionally we can see that when the model switches when there are 20% or 30%
of agents infected or exposed, there are not significant time savings when compared to the completely agent-
basedmodel.

5.16 A similar time saving of over a half second per time step can be seen in the model that switches at the county
level going from the agent-based model to the hybrid model that switches at 5% infected and exposed. How-
ever, even though the average number of seconds per time step is 0.2 seconds less than the agent-basedmodel
when the switch is 10%, the average value falls within the confidence interval of the agent-based model and
vice versa showing no significant di�erence.

Distribution of number infected

5.17 Determining the time savings and the switching behaviour of the themodel allows us to determine if the hybrid
architecture is both working by saving time and resulting in the model switching between agent-based and
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time (s) per step

Switch Town County

equation-based Model 0.82 0.64
(0.66, 0.98) (0.52, 0.77)

5% 1.00 0.87
(0.80, 1.20) (0.70, 1.04)

10% 1.04 1.21
(0.84, 1.25) (0.97, 1.44)

20% 1.28 -
(1.03, 1.53) -

30% 1.36 -
(1.09, 1.63) -

Only Agent Based Model 1.40 1.40
(1.12, 1.67) (1.12, 1.67)

Table 6: Average number of seconds for a time step for di�erent versions of the hybrid model

equation-based for an extended period of time. Once it is determined that themodel is working, it is necessary
to look at how the results of the hybrid model compare to the complete agent-based model. The distribution
of the total number of infected agents across the runs for the di�erent switching points can be found in Figure
10.

Figure 10: Distribution of the total number of infected agentswhen the countymodel switches at the town level.

5.18 From the figure it can be seen that the distributions for switching at 20 or 30% infected or exposed are similar
to the fully agent-basedmodel. Switching at 10% infected or exposed results in a similar distribution, however,
there appear to be somemore obvious di�erences, such as a small cluster of outliers to the right of the distribu-
tion representing anumber of runswith amuchhigher number of total infected agents. It can alsobenoted that
comparing the 10% switching model to the fully agent-based model that there is a higher number of runs with
a smaller number of infectious agents when the model switches. The distribution for the 5% switching model
looks distinctly di�erent from the rest of the models. The 5% switching model results in a distribution with a
much larger number of agents infected then any of the othermodels. All of the switching hybridmodels are dif-
ferent from the model where the disease component is fully equation-based, however it can be seen how the
model results move farther from the equation-based disease component model as the switch increases. The
di�erences in the equation-based model, 5%, 10%, and full agent-based model help to show why agent-based
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models are important. When homogeneousmixing is present in themodel, the equation-based diseasemodel,
a higher number of agents can become infected. This is because all agents have equal probabilities of coming
into contact with each other if they are in the same town. However, when heterogeneous mixing is used in the
model (the agent-based disease model) there are fewer infected agents because agents are less likely to infect
someone outside of their social networks.

5.19 A similar analysis is donewhen the switch is at the county level. The distribution of the total number of infected
agents can be found in Figure 11. From the figure it can be seen that the models that switch from an agent-
based to an equation-based disease component appearmore similar to themodel with an equation-based dis-
ease component then an agent-based disease component. They do, however, appear to be slowly converging
towards the agent-based results.

Figure 11: Distribution of the total number of infected agents when the county model switches at the county
level.

5.20 To further compare the similarities of the distributions, the Wilcoxon signed-rank test is run comparing the hy-
brid models to the completely agent-basedmodel. The tests are used to determine if two sample distributions
come from the same population. Table 7 shows the p-values for the tests comparing each hybridmodels to the
fully agent-basedmodel.

P-value

Switch Town County

5% 4.861e−12 2.2e−16

10% 0.1625 2.2e−16

20% 0.2942 -
30% 0.9566 -

Table 7: P-values for the Wilcoxon rank sum test comparing the outbreak size distributions for the switching
models to the completely agent-basedmodel.

5.21 Thep-values further showwhatwas seenFigure 10. For themodel that switches at the county level, thep-values
are close to 0meaning that the null hypothesis of the distributions coming from the samepopulation should be
rejected. Thus switching at the county level does not result in distributions of infected agents that are similar
to the agent-based model. When the switch is at the town level, the distribution with a 5% switch value has a
p-value very close to 0 so the null should be rejected aswell. However, the distributions for 10%, 20%, and 30%
are not significantly di�erent from the agent-basedmodel.
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Length of outbreak

5.22 To compare our outbreaks we also look at the time it takes for the outbreak to finish. An outbreak is complete
when there are no longer any exposed or infected agents in the model. If the run times of the models are dras-
tically di�erent it will be hard to compare the results as the outbreak length is a key descriptive feature of an
outbreak. To compare the lengths of outbreaks acrossmodels the distributions of the the number of time steps
taken for themodel to finish is looked at for both versions of themodel and each switch value. The distribution
for the model that switches at the town level can be seen in Figure 12.

Figure 12: Distribution of the length of time taken for the model to finish.

5.23 A similar analysis is done for the model that switches at the county level. The distribution of the number of
time steps that it takes for the model to finish for each of the four di�erent versions of the model is found in
Figure 13. Similar to the distribution of number of agents infected it can be seen that the number of time steps
it takes for themodel with a completely equation-based disease component is distinctly di�erent then the fully
hybridmodel. The two versions of themodel that switch between the agent-based and equation-baseddisease
components have a distribution of time steps in between the equation and agent-based versions.

5.24 The p-values for the Wilcoxon tests to compare the hybrid models to the agent-based model can be seen in
Table 8, the p-values for themodels that switch at 5%, 10% and 20% are all small meaning there is only a small
probability that the distributions are from the same population. The distributions for the number infected that
are from the model that switch at the county level show clear di�erences between the complete agent-based
and the hybridmodels. This can be further seen in the p-values from theWilcoxon tests that are very near zero.

P-value

Switch Town County

5% 0.0021 2.2e−16

10% 0.0143 2.2e−16

20% 0.0160 -
30% 0.2283 -

Table 8: P-values for the Wilcoxon rank sum test comparing the outbreak length distributions for the switching
models to the completely agent-basedmodel.
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Figure 13: Distribution of the length of time taken for the model to finish.

Spread of the outbreak

5.25 Another aspect of the outbreak that can be considered is what towns the outbreak spreads to. As the model is
run in a scenario with a highly infectious disease and the population has no previous immunity, there is a large
number of infected agents in the model.

5.26 Table 9 shows the percent of runs that lead to an outbreak in the switch model for twelve di�erent towns in
LeitrimCounty alongwith the population of the town and aweighted degree centrality. The degree centrality is
ameasure of the number of agents that commute in and out of the town. Six of the towns are larger towns that
are made up of multiple small areas, Ballinamore, Dromahair, Leitrim, Lurganboy, Manorhamilton, and Mohill.
The other six towns are smaller towns that are only made up of one small area, Aghacashel, Corrala, Glenfarn,
Newtowngore, Munakill and Rinn. The results are given for each version of the model based on the switch and
the fully agent-based model. The version of the model with the fully equation-based disease component is
not included as the model results in nearly all the agents becoming infected every run, thus every town would
have an outbreak in it each run. From the results it can be seen that for the larger towns, the majority of the
runs result in outbreaks and for the completely agent-basedmodel all of the larger towns have 71% of runs that
lead to an outbreak. This is the same percent as the percent of runs that leads to an outbreak in the overall
model, with 71% of runs having at least two agents in the county infected. This is likely because the model is
run without immunity to be able to fully test out the hybrid model and therefore for a larger town that is likely
more central withmore agents commuting in and out when there is an outbreak in the county where no agents
are immune it will spread to the larger towns. As the smaller towns have fewer agents they are not as likely to
have the outbreak spread to them.

5.27 It can also be seen from Table 9 that as the model gets closer to the fully agent-based model, the switch in-
creases in size, the results are more similar to the fully agent-based model, further showing how the hybrid
model converges to the hybrid as the switch increases. The percent of runs that lead to an outbreak is also cal-
culated for themodel with the county level switch. However, when themodel that switches at the county level
switches to an equation-based disease component from an agent-based disease component the location of an
agent does not have an influence on if they become infected and there is homogeneous mixing for all agents
in the model. Thus the percentage of runs that lead to an outbreak for the model switching at the county level
when 5% of agents are infected or exposed and when 10% of the agents are infected or exposed is equal to the
number of runs that spread outside of a single town inmodel. This shows a clear di�erence between themodel
that switches at the town level and the model that switches at the county level. The town switch still allows
for agents movement patterns, such as their commutes to influence the spread of the outbreak. Even though
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Town Centrality Population 5% 10% 20% 30% Agent-Based

Aghacashel 0.05 73 33.3 16.3 15.7 12.3 10.0
(28.0, 38.7) (12.2, 20.5) (11.6, 19.8) (8.6,16.0) (6.6, 13.4)

Ballinamore 0.44 1096 76.3 74.0 75.3 72.0 71.0
(71.5, 81.1) (6.09.0, 79.0) (70.5, 80.2) (66.9, 77.1) (65.9, 76.1)

Corrala 0.14 248 64.0 56.3 56.3 58 51.3
(56.3, 69.4) (50.7, 61.9) (50.7, 61.9) (52.4, 63.6) (45.7, 57.0)

Dromahair 0.15 1506 76.3 74.3 75.3 72.3 71.0
(71.4, 81.1) (69.4,79.3) (70.5, 80.2) (67.3, 77.4) (65.9, 76.1)

Glenfarn 0.03 147 52.7 35.0 32.3 28.7 27.7
(47.0, 58.3) (29.6, 40.4) (27.0, 37.6) (23.4, 33.8) (22.6, 32.7)

Leitrim 0.21 1123 76.3 74.3 75.3 72 71.0
(71.5, 81.1) (69.4, 79.3) (70.5, 80.2) (66.9, 77.1) (65.9,76.1)

Lurganboy 0.00 388 76.3 74.3 75.3 72 71.0
(71.5, 81.1) (69.4, 79.3) (70.5, 80.2) (66.9, 77.1) (65.9, 76.1)

Manorhamilton 1.00 1782 76.3 74.3 75.3 72.3 71.0
(71.5, 81.1) (69.4, 79.3) (70.5, 80.2) (67.3, 77.4) (65.9, 76.1)

Mohill 0.86 1378 76.3 74.0 75.3 72.0 71.0
(71.5, 81.1) (69.0, 79.0) (70.4, 80.2) (66.9, 77.1) (65.9, 76.1)

Munakill 0.12 196 62.3 55.0 57.3 56.0 45.7
(56.9, 67.8) (49.4, 60.6) (51.7, 62.9) (50.4, 61.6) (40.0, 51.3)

Newtowngore 0.14 230 62.0 45.3 42.7 38.3 39.3
(56.5, 67.5) (39.7, 51.0) (37.1, 48.3) (32.8, 43.8) (33.8, 44.9)

Rinn 0.36 293 66.7 61.3 68.7 64.7 58.7
(61.3, 72.0) (55.8, 66.8) ( 63.4, 73.9) (59.3, 70.1) (53.1, 65.2)

Table 9: Percent of runs that the outbreak spreads to the given town

the larger more central towns in the model have similar percent of runs that lead to an outbreak, the smaller
less central towns havemore variable results. This is not the case in themodel that switches at the county level
where the outbreak is equally likely to spread to all towns regardless of the size and centrality.

Conclusion

6.1 Hybridmodels allowus to utilize the advantages of twodi�erentmodelling techniques. Thepaper shows that it
is possible to create a hybridmodel for infectious disease epidemiologywhere the disease component switches
between agent-based and equation-based determined by the number of agents infected. We looked at a num-
ber of levels for switching, both at the actual value of the switch (5%, 10% etc.) and at the size of the areawhere
the switch occurs (small area, townor county). For each version of the hybridmodelwe compared the results to
the fully agent-based model and found that a number of factors influence the results of the hybrid model. The
value of the switch, if the model turns to equation-based at 5% or 30% infected is important as it determines
the initial conditions. The higher the switch the less likely it will be that the model switches and switches for
an extended period of time. The higher switch values do not result in as much savings of time and computing
power as the lower switch values. In addition, thesemodelswere run on a scenariowhere the entire population
was susceptible to the disease. While this may be the case for new and emerging diseases, for a disease such
as or influenza a portion of the population will be already immune to the disease. This will create even less
opportunity for switching at a higher percentage of agents infected or exposed.

6.2 Another factor influencing the results of the model is the area over which the switch occurs. From our test we
have looked at a number of levels from small area to town to county. The results of our model show that the
smaller the area of the switch the less time saved, this is because at the lower levels the equation-based and
agent-based disease components will be running simultaneously based on the number infected at each town
somore of themodel will be agent-based even when themodel has switched. However, at the county level the
entire model will be equation-based at once so there is more time savings. In addition, the size of the area that
is switched has an impact on how similar the results will get to the agent-based model and the largest switch
value that can best used. The smaller the area that is switching the larger the switch can be. For example, when
we switched at the small area level the model still switches at values up to 35% but the county model only
switches to about 10%. We can also see that when the switch is at the town level the hybrid model converges
to the agent-basedmodel faster than if the the switch is at the small area level or the county level.
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6.3 Our analysis leads us to the conclusion that at both levels of the model, town and county, the switch for our
hybridmodel is best done at the town level. We think that the town level switch provides su�icient time savings
compared to a fully agent-based model while still being able to produce results that are similar to the fully
agent-based model. Not only we do capture a similar distribution of the number of infected agents but the
countymodel is also able to capture a similar spread of the outbreak through the county. Further based on the
analysis a switch value between 5% and 20% is likely going to produce the best results. A switch closer to 20%
will better match the agent-based model but a switch closer to 5%will result in greater time savings andmore
time steps with an equation-based disease component.

6.4 Generally, in creating a hybrid model there is a large amount of flexibility. We chose to use a switch between
agent-based and equation-basemodels and to only switch the disease component. Othersmight choose di�er-
ent structures and thus the aggregation and switch that we suggest here would not be applicable to their mod-
els. However, we feel that themethod of testing, by comparing the hybridmodel results at di�erent thresholds
of switching and di�erent levels of aggregation to the fully agent-based model is a valid method for testing a
hybrid model that involves a switching behaviour.

6.5 Further work can be done to improve the model, to make the model more realistic it should be tested where
there is already some level of immunity in the population. This should require lower levels of switching and
may produce di�erent comparative results than what we have presented here. The di�erence equation model
that we use for the equation-based portion of the model is simple. There are ways to create a more realistic
equation-based model, for example, adding additional equations for age groups. However, every additional
equation makes the model more complicated and will cause additional run time. The idea of creating a hybrid
agent-based and equation-basedmodel is to simplify themodel and save time and computing. Therefore, any
work to further complicate the equation-based model should keep that in mind. Additionally, as the model
was created for the spread ofmeasles, schools are considered themain sources of transmission. Going forward
additional work should be done to focus on other areas of transmission thatmight bemore relevant to other in-
fectious diseases. For example, including public transportation, shopping centers, gyms and large events such
as concerts. Further the simplified gravity model can be made more realistic by adding in special attractions
such as monuments and national parks that might draw agents to a particular location.

Model Documentation

The code anddocumentation for themodel is available on the CoMSESNetwork - ComputationalModel Library
as: Hybrid Agent-Based andEquationBasedModel for InfectiousDisease Spread (version 1.0.0): https://www.
comses.net/codebases/e30e36f0-5471-46b5-9c78-27b3f2185ff9/releases/1.0.0/

All experiments in this paper were run on Netlogo version 6.0.1 on a Dell Laptop Latitude E5470 with 16GB of
RAM and an Intel®CoreTM i7-6600U processor.

Notes

1The transportation component for the county model is the same as that described in (Hunter et al. 2020)
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