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Abstract: NetLogo has become a standard platform for agent-based simulation, yet there appears to be wide-
spread belief that it is not suitable for large and complex models due to slow execution. Our experience does
not support that belief. NetLogo programs o�en do run very slowly when written to minimize code length and
maximize clarity, but relatively simple and easily tested changes can almost always produce major increases
in execution speed. We recommend a five-step process for quantifying execution speed, identifying slow parts
of code, and writing faster code. Avoiding or improving agent filtering statements can o�en produce dramatic
speed improvements. For models with extensive initialization methods, reorganizing the setup procedure can
reduce the initialization e�ort in simulation experiments. Programming the same behavior in a di�erent way
can sometimes provide order-of-magnitude speed increases. For models in which most agents do nothing on
most time steps, discrete event simulation – facilitated by the time extension to NetLogo – can dramatically in-
crease speed. NetLogo’s BehaviorSpace tool makes it very easy to conduct multiple-model-run experiments in
parallel on either desktop or high performance cluster computers, so even quite slowmodels can be executed
thousands of times. NetLogo also is supported by e�icient analysis tools, such as BehaviorSearch and RNetL-
ogo, that can reduce the number of model runs and the e�ort to set them up for (e.g.) parameterization and
sensitivity analysis.

Keywords: Agent-Based Modeling, Computational E�iciency, Execution Speed, Individual-Based Modeling,
NetLogo, Modeling Platforms

Corrigendum: Further investigation indicates that the speed advantage of using state
variables instead of links stated in Sects. 8.1 - 8.3 is very small. The speed costs of us-
ing the "in-radius" primitive (9.1) have changed dramatically due to improvements in
NetLogo versions 6.0.1 and later. Further updates and additions to this article are at:
http://www.railsback-grimm-abm-book.com/JASSS-models.html. [Added upon
authors’ request on 31 October 2017]

Introduction

1.1 Agent-based models (ABMs) have become essential tools in social (and other) sciences, and NetLogo (Wilen-
sky 1999) is probably now the most widely used so�ware platform for ABMs. The CoMSES Net Computational
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Model Library (http://www.openabm.org/models), to which this journal encourages submitting models, ap-
pears to be dominated by models implemented in NetLogo; and two recent textbooks on ABMs (Railsback &
Grimm 2012; Wilensky & Rand 2015) use NetLogo as the platform. The reasons for NetLogo’s popularity include
its professional design and packaging, comprehensive documentation, high-level programming language with
many built-in commands and data types specialized for ABMs, integrated graphical user interface, integrated
tool for performing simulation experiments, and active user community.

1.2 Despite its many advantages, NetLogo has a reputation as not suitable for large or complexmodels. It is widely
accepted that NetLogo can make model-based science e�icient by greatly reducing programming e�ort and
making it easier to test both the so�ware and model design. Therefore, NetLogo appears to have a reputation
as especially suited for relatively simple ABMs intendedmainly to communicate ideas. But for computationally
intensive "serious" ABMs, there is a belief that NetLogo’s execution speed is such a constraint that models will
need to be re-implemented in lower-level languages (e.g., Sklar 2007; Bouquet et al. 2015; Lammoglia et al.
2015).

1.3 This belief that NetLogo is inherently unsuited for large models is not well supported (Tisue & Wilensky 2004).
The belief likely originated in part with the understanding that NetLogo and the Java language it is based on
are interpreted instead of compiled. This understanding is no longer as meaningful as it once was: many parts
of NetLogo are in fact compiled (Sondahl et al. 2006); and modern versions of languages that run on the Java
virtual machine are no longer considered seriously slower than other languages (Wikipedia 2016). Railsback
et al. (2006) compared version 2.1 of NetLogo to other ABM platforms and found its execution slower, but not
dramatically slower, than the fastest (RePast and MASON). That comparison was made before NetLogo was
converted from an interpreted to mainly compiled language (Sondahl et al. 2006).

1.4 In fact, people decidingwhich platform to use for large ABMs need to be aware that NetLogo’s compiler now in-
cludes a number of optimizations and clever designs (Sondahl et al. 2006; CCL (Center for Connected Learning,
Northwestern University) 2016) that could o�en make NetLogo faster than platforms lacking such attention to
execution speed. Especially, NetLogo’s optimizations are likely to make it faster than simple code written in a
standard programming language by an inexpert or time-constrained programmer. As an illustration, Lytinen &
Railsback (2012) found version 5.0 of NetLogo about 20 times faster than the "ReLogo" element of RePast (Ozik
et al. 2013) for several example models of modest complexity.

1.5 Even though NetLogo does not appear inherently too slow for serious modeling, our experience using and
teaching agent-basedmodeling indicates thatmanyNetLogo programs can in fact be very slowuntil their time-
consuming "bottlenecks" are found and remedied. We encourage students to write the first versions of their
so�ware in NetLogo’s natural style, using its primitives and characteristic code structures to make program
statements as simple and understandable as possible. This approach allows models to be programmed and
tested rapidly, but it is not uncommon for the initial so�ware to be prohibitively slow. However, we have also
found that such prohibitively slow programs can almost always be sped up, o�en by orders of magnitude, with
a few simple changes. A few common NetLogo statements are o�en the bottleneck, not because the NetLogo
primitivesarepoorlydesignedbutbecause they requireextensive computations thatwouldbe time-consuming
in any programming language. Using the strategy and techniqueswe provide here, speeding up a NetLogo pro-
gram usually takes, in our experience, less than a day and the changes can easily be tested to find anymistakes
that were introduced. However, one technique for producing computationally e�icient models, discrete event
simulation, a�ects the entire model design and needs to be considered from the start.

1.6 Our first objective here is to describe a process for finding execution speed bottlenecks in NetLogo code and
techniques that o�en speed up execution. We present a five-step strategy that includes ways to quantify ex-
ecution speed and a set of o�en-e�ective techniques. We provide NetLogo programs illustrating some of the
techniques online.

1.7 As a second objective, we also present ways of making large simulation experiments on NetLogo models fea-
sible. Once a model has been developed, tested, and made computationally e�icient, it is then analyzed via
simulation experiments to understand both the model and the system it represents. We address two tools
for implementing simulation experiments: NetLogo’s "BehaviorSpace" experiment manager and the popular
"RNetLogo" package that can run NetLogomodels from the R statistical package (Thiele et al. 2012, 2014).

1.8 We assume that readers are familiar with the basics of NetLogo and thereforemake reference to standard parts
of NetLogo (e.g., "patches" as square grid cells; "turtles" as mobile agents; "primitives" as the programming
language’s built-in commands) without explaining them. We provide example code statements to illustrate the
issues and solutions we describe; text in Courier font is NetLogo commands (primitives) or code. The tests we
used to find and evaluate potential speed increases were all conducted in version 5.3 of NetLogo.
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1.9 ExampleNetLogomodels illustrating techniqueswedescribeareavailable fordownloadathttp://www.railsback-
grimm-abm-book.com/JASSS-models.html (archivedat: "http://www.webcitation.org/6nFYwsz7C).References
below to an "example model" refer to NetLogo files available at this site.

A Strategy for Producing E�icient NetLogo Code

2.1 We advocate the following five-step strategy for building an e�icient NetLogo model. Details on conducting
steps 2-5 are then provided in following sections. This strategy depends on consistent use of one or several test
scenarios, each being a carefully selected and documentedmodel version; set of inputs (input files, parameter
values); model settings such as which output files are written, the rule for when the model stops, and display
settings such as when the View is updated; and hardware – the computer the tests are executed on. These
scenarios might include a short test case, a typical simulation, or an especially demanding extreme case.

1. Write the initial so�ware in NetLogo’s natural style, making program statements as simple and under-
standable as possible. (However, one technique for making models e�icient, discrete event simulation,
should be considered from the start.) Test the so�ware thoroughly to find the inevitable mistakes before
proceeding further, e.g., by usingmethods described in Chapter 6 of Railsback&Grimm (2012). (Common
programmingmistakes can themselves slow down execution immensely, so code testing o�en produces
major speed increases. However, we do not address e�ects of programming errors, instead focussing on
improving code that has already been tested.)

2. Measure execution timeof the initial so�wareunder the test scenario(s) discussedabove, usingNetLogo’s
timer.

3. Try simple speed-up methods that do not require code changes and determine whether they result in
acceptable execution times. Even slow execution speeds may be acceptable if computer time is less im-
portant than the programming time needed for further speed-up steps.

4. If further improvement is needed, use NetLogo’s profiler extension to identify the slow procedures.

5. Attempt to speedup theslowproceduresusingseveral techniqueswhichdo require (usuallyminor) changes
to the program. As these methods are used, repeat the execution timemeasurements to determine how
much improvement has beenmade. A�er each technique is implemented, test the code to eliminate any
errors that were introduced by showing that it produces the same results as the initial version.

Measurement of Execution Speed and Detection of Bottlenecks

3.1 An essential step to speeding up a model is measuring execution speed so that particularly slow parts can be
identified and so that attempts to speed up execution can be evaluated quantitatively. NetLogo provides two
tools for doing so.

3.2 The first tool is the timer, used via the primitives reset-timer and timer. The timer primitive simply reports
the clock time, in seconds, since reset-timerwas last executed. It can be used, for example, to report the time
taken for a full model run (as needed for steps 2 and 3 of the above strategy) by modifying the go procedure:

to go
if (ticks < 1) [ reset -timer ]
tick
if (stopping -condition)
[

show (word "Execution finished in " timer " seconds ")
stop

]
...

(Our examplemodels use this timermethod.) Alternatively, the time for one execution of the go procedure can
be reported:
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to go
reset -timer
...
show timer

end

The timer primitive can also be included among the reporters used to produce output for a BehaviorSpace
experiment, so the execution time is amodel output. (The examplemodel "InRadius-vs-DistanceMyself.nlogo"
illustrates this method.)

Whenusing timer to investigate execution speed, be aware thatNetLogo code runs substantially slower the first
2-3 times it is executed a�er being edited (possibly due to the Java virtual machine re-compiling the revised
code and some hardware caching; Wikipedia (2016)). Therefore, measurements need to be repeated until they
produce consistent results.

The profiler extension packaged with NetLogo is also an essential tool for understanding and quantifying exe-
cution speed. It can be used as an alternative to timer for steps 2-3 of the above strategy for producing e�icient
code, and is required for step 4. The profiler (thoroughly documented in the NetLogo User Manual) reports the
time spent in each procedure. In the profiler’s output report, look for procedures with high values of "exclusive
time" (the time spent executing code within the procedure); these should be the targets of e�orts to speed up.
(If the "go" procedure has high exclusive time, it can be because much of the execution time is spent updating
the display. Re-run the profiler with "view updates" turned o�.) Figure 1 illustrates the profiler’s value.

When measuring execution time, it is important to avoid misleading results due to hardware issues. Measure-
ments used to compare versions of the code should, to be comparable to each other, be made on the same
machine and in the absence of competition for computer resources (CPU availability, memory) with other so�-
ware. Use tools like the Windows CPU meter or Task Manager to make sure at least one processor core and
ample RAM are available just for NetLogo.

Simple Steps to Increase Speed

4.1 There are several steps that NetLogo users can take as soon as amodel’s program has been written and tested.
While these steps do not always result in substantial speed increases, they are simple and safe to try.

4.2 First, make sure the NetLogo profiler is deactivated by commenting out the statements that use it. Profilers use
up computer resources and by themselves slow amodel down.

4.3 Second, check and possibly adjust settings for the NetLogo view (the two-dimensional graphical display). Al-
though these settings generally have no e�ect when amodel is run in BehaviorSpacewith view updates turned
o� (asmodels typically are for serious simulation experiments), they can dramatically slow down performance
of some models when the view is in use. Setting the view update to "on ticks" (once per time step) can speed
up some models. Models that execute each tick very quickly can have their speed limited solely by the "frame
rate" setting, which by default limits NetLogo to 30 ticks per second. It is essential to understand the complex
e�ects of this setting, explained in the "View updates" section of NetLogo’s programming guide.

4.4 Third, try a 64-bit version of NetLogo. Starting with version 5.3, NetLogo is distributed in both 32- and 64-bit
mode. Somemodels run substantially faster (e.g., 30-40% faster) in 64-bit mode (which can also allowmodels
with more agents and larger spaces to run without exceeding memory limits). However, 64-bit NetLogo does
not always help: the model of Ayllón et al. (2016), in which relatively few agents execute many calculations,
actually took 15% longer to execute in 64-bit compared to 32-bit versions of NetLogo 5.2.

4.5 Finally, when amodel is ready for simulation experiments executed without view updates, users can comment
out code statements that set agent colors and shapes that are strictly for display purposes. (Figure 1 illustrates a
case where such code is a significant use of execution time.) This technique of course cannot be used for colors
or shapes used as important model variables.

Techniques for Speeding Up Slow Code

5.1 For many models, the above simple steps will not provide substantial execution speed benefits, so users must
then revise their code to make the slow procedures more e�icient. In our experience, NetLogo programs that
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Figure 1: Profiler reports from three runs of the frog model of Railsback et al. (2016). In (A) NetLogo’s view was
updated each tick, while it was not in (B) ("view updates" was turned o�). As a consequence, the go procedure
used almost 13 seconds (12,889 milliseconds of exclusive time) in (A) and only 5.1 seconds in (B). In (C), file
output was turned on; generating over 13 megabytes of output increased the time used by the update-output
procedure by only 3 seconds (3297 milliseconds exclusive time, compared to 49 in A). The cost of file output is
small, presumably due to hardware caching. In all runs, shade-patches was among the most time-consuming
procedures; it is for displaypurposesonly andcouldbe turnedo� for simulationexperiments, saving 10 seconds
per model run.

run very slowly usually do so because of how key primitives – especially with – are used. In the following sub-
sections we discuss how to avoid these primitives or use them more e�iciently. We also identify some other
code revisions that can provide substantial benefits for some models. These techniques were identified from
our own experience and from the NetLogo Users Group.

5.2 We remind users that all of these techniques are likely to introduce errors, which can be foundby carefully com-
paring the modelâĂŹs results to those obtained before the revisions. Start by documenting one or several test
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scenarios (discussed above) and saving the output from them, including detailed output (e.g., file output gen-
erated every tick, perhaps via BehaviorSpace). Then make the code changes and, if they succeed in producing
worthwhile speed increases, test whether the code still produces the same results that the original test cases
did. (Whether the revised code should produce exactly the same results as the original can depend onwhether
random-seed is used to control the sequence of random numbers and whether the revisions result in subtle
changes such as a�ecting the order in which agents execute actions.) Debug the code changes by resolving the
di�erences between the new and test output.

Make Agent Filtering Statements E�icient – Or Eliminate Them

6.1 NetLogo’s primitives for filtering (subsetting) agentsets are extremely useful forwriting simple, clear code state-
ments such as ask turtles with [ not happy? ] [ find-new-spot ] (from theNetLogo library’s Segregation
model). The with primitive examines an agentset (in this example, all turtles) and creates a new agentset con-
taining those members of the first agentset that meet a criterion (here, their variable happy? has a value of
false). Other examples of primitives that examine an agentset and create a subset of it are in-radius, max-n-of,
max-one-of, and with-min. These primitives are o�en combined in particularly powerful, but computationally
demanding, statements such as min-n-of 10 (turtles with [size < 5]) [distance myself] (which reports
the 10 nearest turtles with size less than five). The ability to write such statements is a key feature of NetLogo,
making it easy to identify agents with particular characteristics even as those characteristics change during a
simulation.

6.2 These filtering primitives are both commonly used and o�en slow. When with or related primitives are used to
filter a large agentset – e.g., all the turtles or patches in a largemodel – theymust perform the calculations nec-
essary to evaluate the subsetting criterion for eachmember of the agentset. Whenwe look forways to speed up
a NetLogo code, we o�en start (a�er using the profiler to identify the slow procedures) by searching for state-
ments that use with. We have experienced numerous models in which just reprogramming such statements
has dramatically decreased execution time, o�en by several orders of magnitude.

6.3 The following subsections describe ways to make filtering statements faster or to avoid them.

By using global agentsets

6.4 When a subset of patches or turtles is used repeatedly in a model, it can be saved as a global variable instead
of being re-created many times via with or other filtering primitives. For example, the co�ee farm model of
Railsback & Johnson (2011, 2014) represents land uses via patch colors: forest is green, shade-grown co�ee is
grey, sun-grown co�ee is yellow, etc. The model o�en uses information for just one land use type, for example
the number of birds in shade-grown co�ee patches. Such information could be obtained via
count turtles-on patches with [pcolor = grey]. It is far faster, though, to create global variables that each
contain the agentset of patches of each land use type. These variables are initialized in the setup procedure via
statements such as:

set forest -patches patches with [pcolor = green]
set shade -coffee -patches patches with [pcolor = grey]
set sun -coffee -patches patches with [pcolor = yellow]

6.5 Then the statement to count birds on shade co�ee becomes count turtles-on shade-coffee-patches, which
does not require NetLogo to look at all patches and identify the oneswith grey color and, therefore, is far faster.

6.6 This global variable technique is especially e�icient in the co�ee farmmodel because the land use types (patch
colors) do not change during a simulation. However, it can still be very e�icient even if the agentsets contained
in the global variables do change, which requires updating the global-variable agentsets. If the model repre-
sented conversion of forest land to co�ee production (some patches have their color changed from green to
yellow), then the global variables would need to be updated. Usually this would be done by simply repeating
the statements used to create them in the first place. As discussedbelow, this kind of change canbe error-prone
and should be tested carefully.

6.7 Our example model "With-vs-global-vars.nlogo" illustrates the use of global variables to avoid filtering prim-
itives. With the NetLogo view updates set to "on ticks", the version using patches with [pcolor = yellow]
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executed 100 ticks in 25 seconds. The version using a global variable for yellow patches executed in 4.7 sec-
onds, a 5X decrease in execution time. With view updates turned o�, the di�erence was much more dramatic,
a decrease of almost 300X in execution time.

By using agentsets as patch or turtle variables

6.8 This technique is similar to the use of global variables to hold agentsets, but works when each patch (or turtle)
needs to use an agentset that di�ers among patches (or turtles) but does not change over time (or changes
rarely, compared to how o�en the agentset is used). In our example model "With-vs-agent-vars.nlogo", turtles
move each tick to a randomly chosen patch that is green and within a radius of 10 patches. The natural way for
a turtle to identify the potential movement destinations is via the statement
patches in-radius 10 with [pcolor = green]. This statement, however, requires NetLogo to examine many
patches to determine if the radius and color criteria are met. (in-radius is cleverly designed to examine only
the patcheswithin a square definedby the radius.) Instead, duringmodel setup, patches canbe given a variable
green-destinations that is initialized via:

ask patches
[set green -destinations patches in-radius 10 with [pcolor = green]]

6.9 Then turtles on blue patches would use green-destinations as their set of potential destinations. In the exam-
ple model, this change decreased execution time by 1.4X with the view updated on ticks and by 49X with view
updates o�.

6.10 Another example is the wild dog model described in Sect. 16.4.2 of Railsback & Grimm (2012). In this model,
"packs" are a NetLogo "breed"; each represents a group of dogs. A pack could refer to the dogs that belong to
it via
dogs with [my-pack = myself], where my-pack is a dog variable that identifies its pack; but it is faster for each
pack to have a variable pack-members that is an agentset of all the dogs belonging to it. This agentset is updated
when newdogs are born or older dogs leave the pack. (The alternative ofmodeling the dog-pack relation using
links is discussed below.)

By using local agentsets

6.11 When filtering primitives like with are used more than once within a procedure to obtain the same subset, it is
o�en much faster to create a local variable that holds the subset. A common example is when we ask a subset
of turtles or patches to do something, but that subset can sometimes have nomembers. In our examplemodel
"With-vs-local-vars.nlogo", red patches are rare. When we ask turtles to do this:

move -to one -of patches in-radius 20 with [pcolor = red]

6.12 we will get a run-time error whenever there are no red patches within a radius of 20. A solution is to tell the
turtles to do something else (move to one of the green patches, which are common) if there are no red patches:

ifelse any? patches in-radius 20 with [pcolor = red]
[

move -to one -of patches in-radius 20 with [pcolor = red]
]
[

move -to one -of patches in-radius 10 with [pcolor = green]
]

6.13 However, a (usually) faster solution avoids the second use of with by instead creating a local agentset:

let red -destinations patches in-radius 20 with [pcolor = red]
ifelse any? red -destinations
[

move -to one -of red -destinations
]
[

move -to one -of patches in-radius 10 with [pcolor = green]
]
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6.14 In the examplemodel, this technique reduced execution time from 36 seconds to 23 seconds for 100 ticks (view
updating had little e�ect).

6.15 To use this technique, search slow procedures for any filtering statements that are used more than once to
produce exactly the same subset of agents. (But be aware that the same statement may not produce the same
results later if the agents have changed.) If such statements are found, use let to introduce a new local variable
that holds the subset of agents, and then use that local variable instead of repeating the filtering statement.
(But also consider whether a global or turtle/patch variable might be more appropriate.)

By using the table extension

6.16 In some models, each agent has a unique value of some variable, and we want to find the agent that has a
specific valueof that variable. For example, the frogmodel of Railsback et al. (2016) uses auniquepatch variable
cell-number: each patch in the model space has its own value of cell-number. Input data for such patches are
referenced by cell number instead of by patch coordinates: e.g., the input data lists the cell number and ground
elevation of each patch. Therefore, when setting up the patches from the input data file, we need to find the
patch that has each cell number so we can set its elevation. The natural way to do this in NetLogo is:

ask patches with [cell -number = the -input -cell -number]
[set elevation the -input -elevation]

where the-input-cell-number and the-input-elevation are local variables with values read from the input
file.

6.17 In cases like this when it is necessary to find the patch (or turtle) with a specific value of some patch (or tur-
tle) variable, and that variable is unique (no two agents have the same value of it) and static, it can be much
faster to use NetLogo’s table extension instead of the with primitive. In our example with cell numbers, the
table extension can be used to make a table linking cell numbers with patches. If we create a table (called
cell-patch-table) with cell numbers as keys, finding the patch that has a cell number equal to the variable
the-input-cell-number thenbecomestable:get cell-patch-table the-input-cell-number. In the frogmodel,
reading habitat variables from a file into each of 42,121 patches took 98 seconds using patches with and only
2.3 seconds using the table extension.

Avoid Unnecessary Re-Initialization

7.1 Complex NetLogomodels that have especially slow setup procedures can sometimes be programmed in a way
that allows multiple model runs and BehaviorSpace experiments to be conducted without repeating the slow
parts of setup and, as an additional benefit, allows BehaviorSpace to control global variables that are not on
the Interface. The frog model of Railsback et al. (2016) is an example: setting up the model’s World requires
reading in over 60 variables and building two lookup tables for each of over 40,000 patches. However, these
habitat variables and lookup tables are static and do not change during or among simulations.

7.2 It is very important to realize, before implementing this technique, that it does not allow BehaviorSpace exper-
iments to run on multiple processors: each experiment must run on only one processor. Multiple processors
can be used simultaneously only by opening multiple copies of the model in separate instances of NetLogo.

7.3 The speedup technique is to separate model initialization into two stages that contain the procedures that do
and do not need to be repeated to re-run the model a�er the initial setup. Here, we refer to setup as the pro-
cedure that is used first to create the world and completely initialize the model, and reset as a procedure that
re-initializes only those parts of the model that need to be reset between model runs. The trick is for reset to
cleanup and re-initialize things like turtleswithout using the primitive clear-all, which erases everything. The
setup procedure can be organized like this:

to setup ; a global procedure to fully initialize the model , used once.
clear -all
set -parameters ; the procedure that sets all global variable values
build -world ; the procedure that reads in patch variables and sets up the World
reset ; the procedure that re-initializes the model between runs

end

7.4 The reset procedure can then be organized like this:
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to reset ; a global procedure to re-initialize the model between runs
; check to make sure setup has been executed
if some -global -parameter = 0

[ error "You ran reset before running setup !" ]
; manually clean up without clearing the World
ask turtles [ die ]
clear -output
clear -all -plots
reset -ticks

; now create turtles and do everything else needed to initialize the model
; including re-setting non -static global variables
...

end

7.5 With thisorganization, setupmustbeexecutedonceat theverybeginning, butnewmodel runscanbe initialized
by only running reset. BehaviorSpace experiments can use reset as the "setup commands", as long as setup is
manually executed before the experiment is started and only one processor is used.

7.6 Whenmodel initialization is organized this way (but not in the standard way, with all initialization in setup, Be-
haviorSpace experiments can safely vary parameters that are not on the Interface. BehaviorSpace changes pa-
rameter values before it executes its "setup commands", so with a standard setup organization the value given
to a parameter by BehaviorSpace would be overwritten if the same parameter was also set in setup. With the
reset organization shown here, global parameter values are initialized during setup, not in the reset procedure
that we tell BehaviorSpace to use as its setup command. Therefore, parameter values set by BehaviorSpace are
not overwritten.

Use State Variables Instead of Links

8.1 NetLogo’s "links" are objects that track a relationship between two turtles, o�en used to represent networks:
a turtle can use primitives such as my-links to identify and interact with other turtles it is linked to. However,
the same link relationship can bemodeled using turtle state variables instead of links: a turtle can have a state
variable that is simply an agentset of the other turtles it is linked to. Such state variables must be updated by
turtle procedures that are typically more complex and error-prone than simply creating or removing a link.

8.2 The wild dog model code in Sect. 16.4.2 of Railsback & Grimm (2012) uses this state variable approach. For
example, each dog has a state variable for the pack it belongs to, and each pack has a variable containing an
agentset of all the dogs that belong to it. As dogs leave their original pack and create new packs, the codemust
carefullyupdate thesevariables. Wehave re-implemented thismodelusing links insteadof state variables: each
pack creates a link between itself and each dog that belongs to it, and dogs that leave a pack destroy their link
to it. The code using links is simpler and less error-prone than the original. However, the version using NetLogo
links takes over six times longer to execute. (This model contains little other than managing links among dogs
and their packs, so the cost of creating and destroying links dominates its execution speed.)

8.3 This experience indicates thatmodels in whichmany links are created and destroyed could potentially be sped
up considerably by using state variables instead of links. The state-variable approach is more error-prone, so
we recommend such models first be built using the simpler link approach and then, if necessary, converted to
the state-variable approach and carefully tested against the original code.

Try Alternative Statements

9.1 There are o�en more than one way to code a particular function in NetLogo, and sometimes one way is sub-
stantially faster than another. One common example is an agent (turtle or patch) searching for other agents
within some distance of itself. The most natural way to program this search is using the in-radius primitive,
e.g., turtles in-radius search-radius. However, the same search can also be coded as
turtles with [distance myself <= search-radius]. Inourexamplemodel "InRadius-vs-DistanceMyself.nlogo",
we found in-radius to outperform distance myselfwhen the radiuswas small and thenumberof agents being
searched large, while distance myselfwasmuch faster when the search radius was larger. The trout model of
Ayllón et al. (2016), with approximately 1000 trout agents searching a few hundred patches, ran approximately
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four times faster using the distance myself approach, even though this search is only a small part of the trout
behavior each tick. (The speed di�erence between in-radius and distance myself has been discussed on the
NetLogo user forum, with some users finding extremely large di�erences in execution speed between the two
alternatives.)

9.2 Another example of speed di�ering among statements that produce exactly the same results is the order in
which boolean conditions appear in logical statements using and and or. For example, the statements
turtles with [(distance myself < 20) and (color = red)] and turtles with [(color = red) and
(distance myself < 20)]produceexactly the samesubset, butonemaybe faster than theother, dependingon
howmany turtles there are, where they are, and howmany are red. The di�erences between these statements
in execution time are because they changewhether NetLogo (a) first excludes turtles beyond a radius of 20 and
then checks the color of the remaining ones, or (b) first excludes all the non-red turtles and then checks the
distance of the red ones.

9.3 Di�erences in execution speed among alternative statements that perform the same function are di�icult to
predict. Our advice is that if profiling shows a procedure to be particularly slow, then simply experiment with
alternative code statements to see if they make a di�erence.

E�icient Model Design: Discrete Event Simulation as an Alternative to
Time Steps

10.1 TypicalNetLogomodelsuse timestep simulation, inwhichallmodel actionsare called fromthe "go"procedure,
which is executed once each tick. In somemodels, many agents do nothing onmany ticks, so the codemust in-
clude conditional statements that determinewhether or not each agent should execute someprocedure on the
current tick. For example, a model of vehicle tra�ic must use a very short time step (a few seconds or minutes)
to capture the movement of vehicles being driven. But at any time, most vehicles are parked and not moving
at all; hence, the NetLogo code must ask each vehicle whether it is currently moving and then decide whether
it should do anything. Over many agents andmany ticks, just checking which agents should do something can
become amajor computational burden.

10.2 Discrete event simulation (DES) is an alternative to the time step method of organizing how events are sched-
uled in a simulation. DES is widely used (there are many books and specialized so�ware platforms for DES),
but not supported well by NetLogo. With DES, there is a global schedule that keeps track of simulated time,
and events are added to the schedule with a specific time to be executed. Each event consists of a particular
agent or set of agents, the procedure they are to execute, and the simulated time at which they are to execute
it. The modeler can think in more natural terms about what procedures the agents should execute when (e.g.
"have agent X execute procedure Y at time Z", or "have agent X execute procedure Y at Z minutes from now").
The scheduler then executes the appropriate procedures on the appropriate agents at the appropriate time in
chronological order. There is no longer a tick-by-tick progression in the model; instead, actions are executed
according to the schedule and the "dead" time between successive actions is skipped. (If convenient, some ac-
tions canhappenat regular tickswhile others are scheduledat timesonorbetween ticks.) DES is thereforemost
useful for models where agents spend a lot of time idle despite it being knowable when they need to act next.
With DES, each action is performed only when needed, with no conditional testing and very little overhead.

10.3 A second benefit of DES is that it avoids complications associated with the assumption of time step simulation
that multiple events happen simultaneously once per tick. For example, if agents are competing for a resource
(e.g., parking places), the order in which they arrive at a location may matter very much. Typically, if multiple
agents attempt to take an action or access a resource at the same tick, careful attention must be paid to the
ordering to avoid artificial bias (which is why the ask primitive randomizes the order in which agents execute
an action). With DES, events can happen at any time, not just at time steps, making the order of events purely
chronological and more an outcome of the model than an artifact of the simulation style. In some cases, this
leads to more natural logical flow of the model and can avoid di�icult-to-diagnose bugs or biases in results.

10.4 The time extension for NetLogo (https://github.com/colinsheppard/time/); available via the "Extensions" link
from the NetLogo home page) was designed in part to facilitate DES in NetLogo programs. It includes primi-
tives to link NetLogo’s ticks to a specific time interval (i.e., so each tick represents one day, or one week, or 3.7
seconds), to schedule actions (as NetLogo "tasks") at specific simulation times or to be repeated whenever a
specific amount of time has passed, and to label output in time units.
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10.5 If a NetLogo model addresses a problem for which DES seems more natural and e�icient than conventional
time-step simulation, then it can be designed from the start to use the time extension to schedule actions in-
stead of (or in addition to) the standard "tick" approach. A model of automobile use in Delhi, India, was im-
plemented using DES in NetLogo with the time extension (Sheppard et al. 2016b,a), and was several orders of
magnitude faster than a pilot version using standard time steps.

E�icient Execution of Simulation Experiments

11.1 The goal ofmodel design, implementation, testing, and the previous speed-up steps is to reach the pointwhere
the model is ready to be analyzed and applied to a scientific question. Typical analyses include parameteriza-
tion (calibration), sensitivity and uncertainty analyses, and analysis of scenarios that address research ques-
tions (Railsback & Grimm 2012). These analyses typically require simulation experiments that use many – of-
ten, hundreds or thousands – of model runs. Without e�icient ways to implement such experiments, analysis
of large and complex models can be impractical.

11.2 One key to making standard kinds of model analysis practical is to use e�icient analysis designs, which are
widely discussed in the simulation literature. The "BehaviorSearch" tool (Stonedahl & Wilensky 2013) includes
several sophisticated algorithms (e.g., genetic algorithms and simulated annealing) for fitting parameter values
in NetLogo models; BehaviorSearch should be an easy and e�icient approach to parameterization for many
complex NetLogomodels. Thiele et al. (2014) make several other well-known techniques for reducing the com-
putational burden ofmodel analysis available via RNetLogo (discussed below). Those techniques include Latin
hypercube sampling for uncertainty analysis and the "Morris screening" approach to sensitivity analysis. We
strongly recommend that NetLogo users find and use such e�icient analysis methods but do not discuss them
further here.

11.3 Instead, we discuss two ways of executing simulation experiments and computational techniques for making
themmore e�icient.

Executing BehaviorSpace Experiments on a High-Performance Cluster

12.1 NetLogo’s BehaviorSpace tool is designed to automate the setup and execution of simulation experiments. Be-
haviorSpace canperformmultiplemodel runs in parallel, with the number of parallel runs up to or even exceed-
ing the number of processor cores in the computer. Therefore, the execution time for a large BehaviorSpace
experiment is usually limited by howmany cores are available.

12.2 The use of a High-Performance Computing (HPC) cluster, typically a largemassively-parallel computing system
with many processor cores and a shared storage system connected together via a fast network, allows Behav-
iorSpace to execute large numbers ofmodel runs simultaneously andmakes extensive simulation experiments
feasible even for very slowmodels. In one example, Ayllón et al. (2016) report parameterization and sensitivity
analysis experiments that each required thousands of runs of amodel that can takehours to days per run,made
possible via HPC and BehaviorSpace. In another example, Sheppard et al. (2016b,a) used HPC to run their ve-
hicle model millions of times to optimize electric vehicle charging station locations in Delhi. Many universities
and research laboratories have HPC clusters, and some commercial "cloud computing" services o�er free trial
access to clusters.

12.3 Using NetLogo on a HPC cluster is not necessarily di�icult, especially if administrative support is available. Do-
ing so requires installing NetLogo and Java Runtime Environment so they are accessible to all nodes; and a
batch file that specifies the path to the NetLogo and Java directories, the path to and name of the NetLogo file,
and the BehaviorSpace experiment to run and its options (e.g., output file name and format). (It is important
to use the "table" output format because the alternative "spreadsheet" format stores all results inmemory and
thus can consume all available memory.) In a HPC cluster, BehaviorSpace experiments are run in "headless"
mode, that is, without any graphical user interface. Documentation and tools for using NetLogo headless and
on an HPC cluster are available in the BehaviorSpace section of the NetLogo User Manual and by searching
on-line.
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E�icient Use of RNetLogo Model Analysis: Design of Experiments

13.1 RNetLogo is a package for running NetLogo models from the popular R statistical so�ware (Thiele et al. 2012,
2014). RNetLogo can, for example, send NetLogo a set of input values and then receive and analyze model re-
sults; this allows R programs to set up, execute, and analyzeNetLogo simulation experiments. Here, we provide
a few tips for making the link between R and NetLogo computationally e�icient.

13.2 First, set the Java options in R to values that configure the Java Runtime Environment most e�iciently for run-
ning NetLogo, e.g., by making adequate memory available. These options are set via a statement such as (the
exact statement may depend on the operating system):

options(java.parameters=c(" server"," Xmx1300m "))

13.3 Second, keep inmind that R is a vector-oriented language and handles vectors more e�iciently than individual
values. Therefore, using RNetLogo in away that uses vector operations to send data to and fromRwill bemuch
faster andmore stable thanmass calls with single values.

13.4 When using the RNetLogo commands NLGetAgentSet and NLGetAgentPatches, if possible use the list return op-
tion via as.data.frame=FALSE in combination with agents.by.row=TRUE or patches.by.row=TRUE, instead of re-
ceiving the data from NetLogo as a data frame.

13.5 Finally, keep inmind that R programs can be executed in parallel by using, for example, the "parallel" package.
This capability allows parallel execution of RNetLogo experiments similar to that discussed above for Behav-
iorSpace experiments.

Conclusions

14.1 NetLogo is widely recognized as an e�icient platform for agent-based simulation, in the sense that it allows
modelers, including both beginners and experienced ones, to move rapidly through the design, programming,
and testing stages and on to usingmodels for analysis and developing scientific understanding. However, Net-
Logo is not widely recognized as an e�icient platform in the sense of providing low (or at least reasonable)
execution times for working models. Potential users who hear NetLogo’s reputation as being too slow or lim-
ited for big models, or who perhaps look only at the very simple examples that (understandably) dominate
NetLogo’s built-in models library, may be discouraged from selecting NetLogo as a platform for large scientific
models. Choosing another platform, especially those requiring programming in a base language such as C++
or Java, comes at a high cost: programming will take much longer, mistakes will be harder to find and hence
more expensive, the tools necessary for testing and understanding models (graphical and interactive displays,
experimentmanagers like BehaviorSpace) must be developed, and – unless the code is designed as cleverly as
NetLogo’s primitives appear to be – the result may turn out to actually be slower than NetLogo.

14.2 There is now su�icient evidence that NetLogo is neither inherently slow nor incapable of handling large and
complexmodels. Our previous experience comparing ABMplatforms (Railsback et al. 2006; Lytinen&Railsback
2012), while confirming the general understanding in computer science that it is not simple or straightforward
to say which platform or programming languages are faster or slower, indicates that NetLogo is not dramati-
cally slower at executing models than other popular platforms are. Perhaps the best evidence that NetLogo
is suitable for large scientific models is that many such models have now been successfully implemented and
analyzed extensively in NetLogo (Table 1).
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Model and citation Computational chal-
lenges

Largest simulation
experiments (approxi-
mate number of model
runs per experiment)

Techniques used to
increase execution and
analysis speed

InSTREAM-GEN trout
model (Ayllón et al.
2016)

Up to 30,000 agents
make complex calcula-
tions for each of many
habitat patches, daily
for 100-year runs

Calibration (2000),
global sensitivity analy-
sis (14,000)

Using distance myself
instead of in-radius;
HPC; Latin hypercube
sampling in calibration;
Morris screening and
Sobol’s variance de-
composition method in
sensitivity analysis

Co�ee farm model
(Railsback & Johnson
2011, 2014)

∼ 1800 agents selecting
habitat among 40,000
patches, up to 720 times
per day

Parameter uncertainty
analyses (2500)

Global agentsets for
habitat patch types;
parallel execution via
BehaviorSpace

Frog breeding model
(Railsback et al. 2016)

>300,000 habitat
patches, >100,000
agents

Parameter sensitivity
analyses (2500)

Table extension to relate
cell numbers to patches;
resetprocedure tomini-
mize re-initialization; lo-
cal agentsets to reduce
use of with

Electric vehicle charging
station model (Shep-
pard et al. 2016b,a)

Simulatingmovementof
10,000 vehicles on 1000s
of km of road continu-
ously through a day

Optimization analyses
(3000)

Discrete event simula-
tion; HCP

Savanna model (unpub-
lished reimplementa-
tion of model by Jeltsch
et al. (1996)

Dispersal of ∼ 50, 000
seedswithina limited ra-
dius

Using patch variables
containing an agentset
of other patches within
the dispersal radius

Table 1: Examples of large models successfully implemented in NetLogo

14.3 There is actually at least one good reason to prefer NetLogo for large models: the set of tools for running sim-
ulation experiments e�iciently. The convenience of using BehaviorSpace or RNetLogo to run simulations in
parallel, on either a desktop computer or HPC cluster, means that large simulation experiments can be under-
way and finished in less time than they would be in many other platforms. E�icient model analysis packages
such as BehaviorSearch (Stonedahl & Wilensky 2013) and the RNetLogo recipes of Thiele et al. (2014) can let
parameterization and sensitivity analysis be completed with fewermodel runs and far less e�ort than required
for platforms lacking such tools.

14.4 Our overall advice to beginners in implementing ABMs in NetLogo is to not worry about execution speed while
writing and testing the program, but to then consider the strategy and techniques provided in this article before
running analyses that use possibly thousands of simulations. The initial focus in NetLogo programming should
be on writing code that is easy to understand and test. Then, with experience, NetLogo users can quickly learn
to avoid ine�icient programming. But even experienced NetLogo programmers continue to find new ways of
increasing execution speed, making it valuable to check the on-line resources for NetLogo programmers, in-
cluding NetLogo’s User Group, Stack Overflow, and Github sites, for solutions to specific speed issues. The rea-
son for this is that most speed issues are context-dependent: the solutions we describe here are o�en, but not
necessarily always, e�icient; some techniques help in some situations and hurt in others; and unique models
are likely to have execution limitations unlike those of other models. Therefore, the most important thing to
learn is to use the NetLogo timer and profiler extension to carefully checkwhere a program is slow andwhether
modifications, o�en trial and error, actually make it faster.
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