Appendix C: Learning algorithms compared in terms of efficiency, equity and sustainability, and proportion of agents using each of the three strategies (i.e. HM=Hydraulic Mission;

	Efficiency	Equity (Variance)	Sustainability	Proportion of
				agents using
				strategy
Learning1 ^a	Total value: High;	Allocation: Med-high	Wta ^h : High	HM: 0.30
	Rand/m3: Medium;	Unmet demand: Low	PEMC ⁱ : High	EF: 0.33
	Sectoral value: High		%Transformed: High	PR: 0.36
Learning2 ^b	Total value: Low;	Allocation: Low	Wta: Low	HM: 0.34
	Rand/m3: Medium	Unmet demand: Low	PEMC: Low	EF: 0.26
	Sectoral value: Low		%Transformed: Low	PR: 0.40
Learning3 ^c	Total value: High;	Allocation: High	Wta: High	HM: 0.30
	Rand/m3: Medium;	Unmet demand: Low	PEMC: High	EF: 0.40
	Sectoral value: High		%Transformed: High	PR: 0.30
Learning4 ^d	Total value: Medium;	Allocation: Low	Wta: Low	HM: 0.46
	Rand/m3: Med-high;	Unmet demand: Low	PEMC: Low	EF: 0.30
	Sectoral value: Med-		%Transformed: Low	PR: 0.24
	low			
Learning5 ^e	Total value: High;	Allocation: High	Wta: High	HM: 0.29
	Rand/m3: Med;	Unmet demand: Low	PEMC: High	EF: 0.32
	Sectoral value: High		%Transformed: High	PR: 0.39
Learning6 ^f	Total value: High;	Allocation: High	Wta: High	HM: 0.33
	Rand/m3: Med;	Unmet demand: Low	PEMC: High	EF: 0.34
	Sectoral value: Med-		%Transformed: High	PR: 0.33
	high			
Learning8 ^g	Total value: Med;	Allocation: Low	Wta: Low	HM: 0.47
	Rand/m3: High;	Unmet demand: Low	PEMC: Low	EF: 0.27
	Sectoral value: Low		%Transformed: Low	PR: 0.27

EF=Efficiency First: PR=Policy Reform) by the end of the simulation.

^a Learning algorithm: allocateCollectiveLearningMeanUnmetDemand (threshold = 1.0). Finds mean unmet demand for each strategy and uses strategy that achieved minimum.

^bLearning algorithm: allocateCollectiveLearningMaxAllocation (threshold = 1.0). Finds water unit that achieved maximum allocation in last timestep and uses that strategy.

- ^cLearning algorithm: allocateCollectiveLearningMinUnmetDemand (threshold = 0.5). Finds water unit that achieved minimum unmet demand in last timestep and uses that strategy.
- ^d Learning algorithm: allocateCollectiveLearningMaxAllocation (threshold = 0.5).

Finds water unit that achieved maximum allocation in last timestep and uses that strategy. ^eLearning algorithm: allocateCollectiveLearningMeanUnmetDemand (threshold = 0.5).

Finds mean unmet demand for each strategy and uses strategy that achieved minimum.

^f Learning algorithm: allocateCollectiveLearningProportionSatisfied; successThreshold:= 0.25 based on surveying proportion of agents who satisfied all demand (i.e. unmet demand = 0) for each strategy for all water units in CMA.

^g Learning algorithm: allocateCollectiveLearningMaxAllocation (threshold = 0.75). Finds water unit that achieved maximum allocation in last timestep and uses that strategy. Also restricted export and transfer to water units with same strategy (note that transfer was not used in all other simulations)

^h Withdrawal-to-availability ratio

ⁱPresent Ecological Management Class