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Abstract

We	introduce	a	model	for	agent	specialization	in	small-scale	human	societies	that	incorporates	planning	based	on	social	influence	and	economic	state.	Agents
allocate	their	time	among	available	tasks	based	on	exchange,	demand,	competition	from	other	agents,	family	needs,	and	previous	experiences.	Agents
exchange	and	request	goods	using	barter,	balanced	reciprocal	exchange,	and	generalized	reciprocal	exchange.	We	use	a	weight-based	reinforcement	model	for
the	allocation	of	resources	among	tasks.	The	Village	Ecodynamics	Project	(VEP)	area	acts	as	our	case	study,	and	the	work	reported	here	extends	previous
versions	of	the	VEP	agent-based	model	("Village").	This	model	simulates	settlement	and	subsistence	practices	in	Pueblo	societies	of	the	central	Mesa	Verde
region	between	A.D.	600	and	1300.	In	the	base	model	on	which	we	build	here,	agents	represent	households	seeking	to	minimize	their	caloric	costs	for	obtaining
enough	calories,	protein,	fuel,	and	water	from	a	landscape	which	is	always	changing	due	to	both	exogenous	factors	(climate)	and	human	resource	use.
Compared	to	the	baseline	condition	of	no	specialization,	specialization	in	conjunction	with	barter	increases	population	wealth,	global	population	size,	and	degree
of	aggregation.	Differences	between	scenarios	for	specialization	in	which	agents	use	only	a	weight-based	model	for	time	allocation	among	tasks,	and	one	in
which	they	also	consider	social	influence,	are	more	subtle.	The	networks	generated	by	barter	in	the	latter	scenario	exhibit	higher	clustering	coefficients,
suggesting	that	social	influence	allows	a	few	agents	to	assume	particularly	influential	roles	in	the	global	exchange	network.
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	Introduction

1.1 Specialization	is	one	way	in	which	agents	can	increase	their	productivity	(Murciano	and	Zamora	1997)	by	cooperating	with	other	individuals	(Spencer,	Couzin	and
Franks	1998)	to	generate	increasing	returns	to	scale	(population	size	of	social	group).	The	origins	of	specialization,	especially	craft	specialization,	have	been	linked
with	increasing	sociopolitical	complexity	since	at	least	the	eighteenth	century.	Adam	Smith	(1776/1937)	chose	to	begin	his	Inquiry	into	the	Nature	and	Causes	of
the	Wealth	of	Nations	by	suggesting	that	"the	greatest	improvement	in	the	productive	powers	of	labour,	and	the	greater	part	of	the	skill,	dexterity,	and	judgment
with	which	it	is	any	where	directed,	or	applied,	seem	to	have	been	the	effects	of	the	division	of	labour."	He	connected	the	origin	of	specialization	with	a	human
propensity	to	exchange,	emphasizing	that	the	interdependence	produced	by	the	joint	action	of	specialization	and	exchange	tends	to	increase	overall	productivity.
Such	increased	production	quite	possibly	initiated	a	positive	feedback,	since,	for	Childe	(1936/1983),	surplus	production	from	an	effective	agriculture	underwrote
both	technical	and	social	divisions	of	labour,	leading	eventually	in	Mesopotamia	to	the	emergence	of	elites	who	were	able	to	support	full-time	craft	specialists.
Although	specialization	and	production	for	exchange	are	often	linked	to	the	rise	of	the	state,	it	is	clear	that	they	exist	in	smaller-scale	societies	alongside
subsistence	production	(Patterson	2005).

1.2 In	this	article	we	develop	an	agent-based	simulation	of	specialization	in	resource	production,	and	a	system	of	barter	allowing	exchange	of	specialized	products,	in
Pueblo	societies	existing	between	AD	600	and	1300	in	southwestern	Colorado	with	the	ultimate	goal	of	examining	their	effects	in	these	middle-range	Neolithic
societies.	Since	barter	can	mean	rather	different	things,	we	specify	that	by	barter	we	mean	"moneyless	market	exchange"	and	not	the	sorts	of	reciprocal
transactions	that	appear	to	be	universally	important	in	small-scale,	non-market	societies	(Dalton	1982).	Our	goal	here	is	to	present	the	computational	machinery
making	specialization	and	barter	possible	within	our	existing	agent-based	model.	We	are	therefore	less	concerned	with	the	realism	of	some	of	the	assumptions
below,	including	the	amount	of	storage	we	allow,	and	the	goods	in	which	agents	specialize.	For	example,	specialization	in	production	of	ceramics	is	probably	more
likely	in	these	societies	(Harry	2005)	than	is	specialization	in	making	water	available	to	other	households;	nor	do	we	really	believe	that	households	in	these
societies	were	able	to	store	the	large	quantities	of	goods	we	allow	below.	However,	using	these	sometimes	unrealistic	assumptions,	we	hope	to,	as	Epstein	(2008:
3-4)	says,	"illuminate	core	dynamics"	of	the	systems	of	barter	and	exchange	and	capture	"behaviors	of	overarching	interest"	within	the	American	Southwest.

1.3 Here	we	define	specialization	as	the	agents'	choice	to	produce	quantities	of	some	goods	in	excess	of	a	level	needed	for	subsistence,	while	simultaneously
underproducing	other	goods.	When	agents	specialize,	if	they	don't	produce	all	their	subsistence	requirements,	they	must	acquire	these	through	exchange	with
other	agents	(Evans	1978).	Specialization	as	we	model	it	can	occur	along	a	spectrum.	Agents	can	be	fully	specialized,	performing	one	task	(here,	producing	one
good)	to	the	exclusion	of	all	others,	or	they	can	be	partially	specialized,	performing	all	tasks	to	varying	degrees.	In	our	system,	our	agents	are	expected	to	be
partially	specialized,	but	it	is	also	possible	for	some	agents	to	become	fully	specialized.

1.4 As	Smith	realized,	so	long	as	exchange	is	relatively	frictionless,	specialization	increases	the	productivity	in	a	market	system	( Murciano	and	Zamora	1997).
Productive	individuals	increase	the	supply	for	goods	in	which	they	specialize,	and	they	specialize	in	producing	goods	in	which	they	have	a	comparative	advantage;
at	the	same	time	they	increase	demand	for	other	goods	that	they	need,	thereby	providing	indirect	network	effects	(Young	1928).	The	level	of	specialization	and
output	are	dependent	on	several	factors,	including	competition,	the	characteristics	of	the	exchange	networks,	and	initial	conditions	(Lavezzi	2003).	Cockburn,	Kobti
and	Kohler	(2010)	created	an	economic	agent	specialization	model	that	added	features	not	found	in	the	simpler	model	produced	by	Lavezzi	(2003),	including
consumption,	production	limits,	changing	populations,	and	changing	trading	relationships.	The	agents	in	that	model	were	also	sensitive	to	varying	supplies	of
resources.	If	many	agents	are	already	outputting	the	same	resource,	the	supply	for	that	resource	is	likely	to	surpass	the	demand,	thus	discouraging	additional
production	of	that	resource.

1.5 It	has	been	shown	that	the	level	of	specialization	in	complex	systems,	including	human	societies	(Bonner	1993),	is	affected	by	the	size	of	the	system	(Bonner
2004).	Research	in	insect	societies	by	Jeanson,	Fewell,	Gorelick,	and	Bertram	(2007)	indicates	that	when	demand	is	low	and	there	are	many	tasks,	increased
division	of	labour	is	an	emergent	property,	suggesting	that	the	level	of	specialization	within	insect	societies	is	positively	related	to	the	size	of	colonies.	The

http://jasss.soc.surrey.ac.uk/16/4/4.html 1 15/10/2015

/admin/copyright.html
../../JASSS.html
http://jasss.soc.surrey.ac.uk/16/4/4/cockburn.html


behaviour	of	cognitive	agents	can	be	modeled	using	motivation	networks	(Krink,	Mayoh	and	Michalewicz	1999)	in	which	agents	choose	between	moving,	eating
and	breeding	based	on	conditions	within	the	environment.	Our	agents	are	not	this	sophisticated,	and	only	use	specialization	to	determine	what	jobs	to	perform	and
how	to	divide	their	time	among	those	tasks.

1.6 Cockburn	and	Kobti	(2009b)	and	Cockburn	et	al.	(2010)	claim	that	introducing	social	influence	into	a	system	would	increase	the	level	of	specialization.	Building	on
these	assertions,	here	we	create	a	model	that	incorporates	both	economic	state	and	social	influence.	Agents	are	influenced	by	competition	from	other	agents	in
their	topographically	based	social	network.	It	is	expected	that	there	should	be	more	task	specialization	in	this	socially	influenced	system	than	in	the	models	without
social	influence.	We	also	expect	that	the	level	of	wealth	will	increase	in	the	population	(Murciano	and	Zamora	1997).	Further,	specialization	and	social	influence
may	have	effects	on	populations	of	agents,	and	as	social	influence	interacts	with	exchange	networks,	we	may	expect	specialization	to	change	the	structure	of
global	populations.	To	assess	the	presence	and	size	of	these	effects	we	compare	systems	in	which	(1)	agents	only	try	to	procure	enough	resources	to	meet	their
needs;	(2)	where	they	plan	based	upon	the	economic	state	of	their	family,	possibly	producing	more	of	some	resources	for	which	they	have	extractive	advantage
due	to	their	location;	and	finally,	(3)	where	they	plan	based	upon	their	economic	state	while	also	considering	competition	from	agents	within	their	social	network.

1.7 There	are	several	approaches	to	modeling	socially	influenced	specialization,	including	social	inhibition,	whereby	agents	discourage	others	from	competing
(Beshers	and	Fewell	2001).	Temporal	polyethism	is	another,	where	agents'	specialization	is	related	to	their	age	(Ravary	et	al.	2007).	Agents	might	also	learn	from
experience	(Murciano	and	Zamora	1997;	Spencer	et	al.	1998;	Theraulaz,	Bonabeau	and	Deneubourg	1998),	for	example	by	randomly	selecting	a	specialization	at
the	outset,	and	if	successful,	selecting	that	action	in	the	next	round	with	higher	probability.

1.8 	For	reinforcement-based	systems	to	succeed	in	dynamic	environments,	agents	must	be	able	to	overcome	previously	learned	behaviour,	especially	when	failure	to
do	so	results	in	death	(Beaudreau	2003).	Agents	must	be	willing	to	engage	in	behaviour	that	previously	had	poor	results	and	also	must	be	able	to	respond	to
emergency	situations,	where	change	may	be	dramatic	yet	necessary.	Moreover,	the	level	of	social	influence	within	a	society	also	affects	the	level	of	specialization.
The	more	agents	are	affected	by	the	actions	of	their	neighbours,	the	more	specialized	the	society	becomes	(see,	for	example,	Cockburn	and	Kobti	2009a;	2009b).

Centralized	Multi-agent	systems

1.9 In	Multi-Agent	Systems	(MAS),	the	study	of	specialization	is	often	motivated	by	an	interest	in	how	specialization	can	increase	the	efficiency	of	the	system	in
reaching	its	goals.	A	Markov-chain	model	to	describe	the	evolutionary	dynamics	of	the	emergence	of	specialization	in	MAS	is	presented	in	Chai,	Chen,	Han,	Di	and
Fan	(2007).	In	that	environment,	agents	search	for	and	exploit	resources	with	incomplete	information	and	a	goal	of	maximizing	the	efficiency	of	the	entire	system.
The	MAS	uses	a	centralized	model	for	determining	task	specialization,	with	task	allocations	emerging	as	a	result	of	long-term	system	evolution.	Thus,	agents'
specialization	is	determined	by	the	overall	needs	of	the	system	and	not	by	individual	considerations	alone.	As	a	result,	an	agent	can	sometimes	be	caused	to
specialize	in	tasks	that	are	dangerous	to	its	personal	interests	without	sufficient	reward	(i.e.,	the	job	of	cleaning	up	a	toxic	spill).	Agent	specialization	in	these
systems	will	result	in	higher	system	productivity	than	in	non-specialized	systems	(Chai	et	al.	2007).

1.10 Using	a	centralized	specialization	system	also	addresses	another	problem:	agents	generally	do	not	possess	complete	information,	thus	any	specialization
decisions	they	make	are	likely	to	be	suboptimal.	Centralized	MAS	are	better	able	to	handle	specialization	in	complex	and	changing	environments	(Chai	et	al.
2007),	partly	because	they	suppress	complications	arising	from	the	self-adaptive	striving	of	individual	agents.	Centralized	systems	also	benefit	from	the	fact	that
resources	discovered	by	individuals	can	be	more	quickly	exploited	due	to	the	global	knowledge	in	the	system	and	centralized	direction.

1.11 Centralized	MAS,	however,	put	the	burden	on	"the	system"	to	be	fully	aware	of	all	relevant	factors	in	the	decision-making	process	for	all	agents.	There	is	no
competition	between	agents	in	these	systems.	Such	systems	beg	the	question	as	to	how	societies	of	cooperating	agents	can	emerge	from	societies	of
autonomous	agents,	since	they	assume	that	any	conflict-of-interest	problems	in	which	cognitive	agents	might	be	tempted	to	override	centralized	decisions	have
been	successfully	solved.	Finally,	centralized	direction	is	simply	unrealistic	for	the	case	of	the	societies	we	model	here,	in	which	decision-making	must	have	been
more	consensual	and	bottom-up	than	centralized	(Van	Vugt	&	Ahuja	2011).

	Case	Study:	Village	Ecodynamics	Project

2.1 The	Village	Ecodynamics	Project	(VEP)	is	a	multi-disciplinary,	multi-institution	project	(Kohler	et	al.	2007).	It	has	involved	individuals	from	Washington	State
University,	Crow	Canyon	Archaeological	Center,	Wayne	State	University,	University	of	Windsor,	Santa	Fe	Institute,	Colorado	School	of	Mines,	University	of	Notre
Dame,	and	BBL,	Inc.	Researchers	include	computer	scientists,	archaeologists,	ecologists,	anthropologists,	geologists	and	economists.	The	VEP	began	by

describing	and	modeling	1800	km2	of	the	central	Mesa	Verde	region	of	Southwest	Colorado,	occupied	between	A.D.	600	and	1300	by	farmers	ancestral	to
contemporary	Pueblo	peoples,	which	is	the	setting	for	this	model.	Thousands	of	habitation	sites	are	known	from	this	area,	which	we	can	assign	to	one	or	more	of
14	periods	based	either	on	excavation	or,	in	most	cases,	the	ceramics	on	their	surfaces	(Varien,	Ortman,	Kohler,	Glowacki	and	Johnson	2007).	The	entire
northern	Southwest	was	depopulated	towards	the	end	of	the	thirteenth	century	and	one	of	the	primary	goals	of	the	VEP	research	is	to	understand	the	reasons	that
led	to	this	depopulation	(Kohler,	Varien,	Wright	and	Kuckelman	2008).	Another	goal	is	to	understand	why,	during	certain	times	in	prehistory,	most	people	lived	in
large	and	relatively	compact	villages,	while	at	other	times,	they	dispersed	into	smaller	hamlets	(Crabtree	2012).

2.2 The	original	simulation	was	designed	by	Tim	Kohler	and	colleagues	at	Washington	State	University	and	the	Santa	Fe	Institute	(Kohler,	Kresl,	van	West,	Carr	and
Wilshusen	2000).	The	simulation	creates	agent	households	that	live,	work,	and	reproduce	in	a	landscape	modeled	on	that	of	southwestern	Colorado.	Much	of	the
dynamism	of	the	simulation	is	provided	by	annual	and	spatially	specific	estimates	of	potential	maize	production	on	this	landscape,	originally	developed	by	Van
West	(1994)	and	later	refined	by	Kohler	(e.g.,	2012).	Agent	actions	on	this	landscape	are	designed	to	be	as	realistic	as	possible,	drawing	on	the	considerable
amount	known	about	this	place	and	time	(Lipe,	Varien	and	Wilshusen	1999).	Agents	are	responsible	for	gathering	their	resources,	while	feeding	their	families	and
exchanging	with	other	agents.	Agents	must	farm	maize,	hunt	for	protein	(cottontail	rabbit,	jackrabbit,	and	mule	deer),	obtain	water	from	rivers	and	springs,	and
gather	firewood	from	forests.	Agents	get	all	their	energy,	as	measured	in	calories,	from	maize.	When	protein	is	required,	it	costs	calories	to	procure.	Agent
households	must	provide	their	families	with	enough	calories	to	perform	these	tasks,	as	well	as	provide	for	their	basic	metabolic	needs.	In	the	case	that	agents
cannot	obtain	all	the	resources	they	need	on	their	own,	they	are	allowed	to	exchange	with	other	agents.	Families	and	family	members	are	tracked	in	the	model,
and	we	allow	different	kinds	of	exchange	relationships	between	kin,	and	among	non-kin,	drawing	on	models	appropriate	for	small-scale	societies	(Sahlins	1972).

2.3 If	an	agent	is	not	performing	well	at	its	present	location,	it	will	move	to	a	more	suitable	location	in	the	study	area.	Unfortunately	for	the	agents,	they	are	not	allowed
to	exit	the	study	area.	When	considering	locations	to	move	to,	agents	evaluate	the	resource	productivity	of	prospective	areas.	This	includes	evaluating	for	farming
productivity,	water	and	fuelwood	accessibility,	and	hunting	opportunities.	The	model	aims	to	represent	soil	productivity,	rainfall,	animal	density,	forest	density,	and
other	features	of	the	region	with	a	fair	degree	of	realism.	Even	the	vegetation	that	feeds	the	animals	in	the	simulation	is	affected	by	climatic	variability.

2.4 VEP	researchers	have	identified	two	population	cycles	in	the	archaeological	record	(Varien	et	al.	2007).	In	the	earlier,	smaller	cycle	there	is	relatively	little	evidence
for	specialization,	whereas	in	the	later,	more	populous	cycle	there	is	evidence	for	specialization	in	at	least	the	domain	of	political	leadership,	and	probably	also	in
provision	of	religious	services	and	in	aspects	of	ceramic	production	(Bernardini	2000).	Ortman	(2003)	provides	evidence	that	households	relocating	to	the	largest
site	in	the	VEP	area,	Yellow	Jacket	Pueblo,	towards	the	end	of	its	occupation	specialized	in	ceramic	production.	This	is	possibly	because,	as	late	arrivals,	the
newcomers	did	not	have	access	to	high-quality	farmland	and	needed	to	engage	in	craft	activity	to	integrate	with	the	economy.	The	framework	we	create	here
allows	the	emergence	of	resource-acquisition	specialists	within	the	simulation.	Ceramic	production	specifically	is	not	modeled	but	could	later	be	added	to	the
simulation.
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2.5 Kohler	and	Varien	(2012)	present	a	great	deal	of	additional	information	about	the	local	archaeological	record,	the	structure	of	the	simulation,	and	our	conclusions
derived	from	comparing	the	two.	The	version	of	the	simulation	reported	in	that	volume—on	which	this	paper	builds—is	available	at
http://www.openabm.org/model/2518.	Also	notable	in	the	present	context	are	the	investigations	by	Kobti	et	al.	on	the	role	of	exchange	in	aggregation	and
depopulation,	using	cultural	algorithms	(Kobti,	Reynolds	and	Kohler	2004;	Reynolds,	Kobti	and	Kohler	2004;	Kobti	and	Reynolds	2005).

	Approach

3.1 A	more	formalized	description	of	our	approach	is	presented	in	the	appendix.	Agents	are	allowed	to	divide	their	time	among	all	four	tasks	existing	within	our
simulation	(farming,	hunting,	gathering	wood	and	collecting	water).	The	percentage	of	their	time	spent	on	each	of	these	tasks	is	dependent	upon	their	needs	for	the
results	of	that	task,	as	well	as	their	perceived	ability	to	obtain	those	resources	more	cheaply	from	close	neighbours.	If	an	agent	has	30	kg	less	maize	than	it	needs,
it	will	seek	to	increase	its	maize	production	for	the	following	year	by	30	kg,	by	adjusting	the	percentage	of	its	time	that	should	permit	that	goal	to	be	achieved.	The
agent	will	try	to	do	the	opposite	if	it	is	over	its	threshold	for	a	resource.	It	will	often	happen	that	the	agent	will	change	multiple	allocations,	resulting	in	a	total	outlay
not	equal	to	100%.	At	this	point,	the	agent	will	normalize	these	allocations,	such	that	it	will	spend	100%	of	its	work	hours	on	these	tasks.

3.2 When	agents	have	excess	stores	of	a	resource,	they	will	let	their	neighbours	know.	Those	neighbours	that	have	higher	production	costs	for	these	resources	will
predict	that	this	agent	will	be	able	to	help	them	meet	any	shortfall	for	this	resource	in	the	upcoming	year.	They	will	be	willing	to	reduce	their	own	production
accordingly.	The	net	result	of	these	factors	is	that	agents	will	dynamically	adjust	their	allocations	based	on	personal	experience,	as	well	as	cooperation	and
competition	from	others.

	Simulated	environment

4.1 The	VEP	environment	consists	of	four	resources:	water,	wood,	maize	and	meat.	All	but	wood	are	needed	for	survival.	While	an	agent	dies	immediately	if	it	does
not	have	enough	maize	or	if	it	has	been	short	of	meat	protein	for	three	consecutive	years,	agents	are	allowed	to	survive	continual	shortages	of	wood	(however,	the
agents	don't	factor	this	into	their	planning).	While	agents	are	bound	by	these	resource	requirements,	they	don't	have	any	understanding	of	the	consequences	of
resource	shortfalls.	This	means	that	an	agent	does	not	prioritize	water	or	maize	over	wood	or	protein,	even	though	neglecting	the	former	increases	the	chances	of
death.

4.2 Each	resource	is	associated	with	a	task	that	produces	that	resource.	A	farmer	produces	maize,	a	hunter	acquires	protein,	a	woodsman	gathers	wood,	and	a	water
carrier	retrieves	water.	Each	task	also	has	constraints	and	requirements	for	the	performance	of	that	task.	Farmers	require	land	to	plant	their	maize.	There	are	a
limited	number	of	productive	plots	on	the	landscape	and	plots	vary	in	productivity,	both	within	a	year	(spatially)	and	from	year	to	year.	Hunting	requires	the
presence	of	animals	within	the	permissible	hunting	range	of	4	km.	Gathering	wood	requires	the	presence	of	deadwood	or	trees,	and	carrying	water	requires	that
there	are	water	sources	that	the	agent	can	travel	to.	For	wood	and	water,	agents	are	not	bound	by	the	distance	to	these	resources;	they	can	travel	as	far	as
necessary	to	obtain	them.	However	all	tasks	require	energy	to	perform,	and	thus	require	the	agent	to	have	sufficient	calories	to	perform	the	task.	The	amount	of
energy	required	for	these	tasks	was	incorporated	in	the	simulation	before	the	development	described	here	began,	as	explained	in	Kohler	at	al.	(2007).

4.3 Agents	must	allocate	their	family's	total	calories	available	for	the	year	among	the	given	tasks.	The	number	of	calories	required	by	each	household	is	determined	by
the	number	of	adults	in	the	household,	the	number	of	children	in	the	household,	as	well	as	how	many	hours	per	day	each	is	required	(or	willing)	to	work.	In	the
version	of	the	simulation	reported	here,	the	number	of	hours	willing	to	work	was	set	to	6	hours/day	for	each	individual	in	a	family	that	is	at	or	above	working	age	(8
years	old,	in	our	simulation).	Agents	are	able	to	spend	any	amount	of	their	calories	on	any	specific	task.	Agents	also	have	a	secondary	goal,	the	accumulation
(storage)	of	resources	that	increases	their	economic	security	for	times	when	they	cannot	procure	additional	resources,	such	as	during	a	famine	or	drought.	All
agents	can	only	store	a	maximum	of	10	years	supply	of	any	resource.	A	year's	supply	is	the	amount	the	household	(agent)	would	need	for	subsistence	estimated
according	to	its	current	circumstances.	It	should	be	noted	that	while	the	maximum	is	set	at	10,	it	is	rarely	the	case	that	an	agent	possesses	that	much	of	a
resource.	Meat,	for	example,	is	rarely	held	in	storage	because	of	the	scarcity	of	the	resource	and	the	high	rate	of	decay.	The	maximum	storage	would	theoretically
allow	a	household	specializing	in	hunting	to	store	the	meat	from	10	deer	while	waiting	to	trade	some	for	other	resources.	Any	excess	amount	above	the	maximum
allowed	storage	(10	years)	will	be	donated	to	nearby	relatives,	or	discarded	if	there	are	no	relatives	to	accept	them.	While	agents	must	sustain	needs	to	survive,
their	focus	is	on	maximizing	their	productivity	given	their	abilities.	All	agents	have	the	same	skill	level,	so	ability	is	delineated	by	the	productivity	of	an	agent	at
performing	a	task.	Thus	an	agent	having	more	productive	plots	would	get	a	higher	return	on	the	energy	expended	on	those	plots,	and	thus	can	be	claimed	to	be	a
"better"	farmer	than	an	agent	with	less	productive	plots.	To	prevent	agents	from	dying	before	they	have	time	to	procure	resources,	all	households	are	given	an
initial	allocation	of	two	year's	supply	of	maize	and	meat,	as	these	resources	can	only	be	gathered	in	autumn	and	summer	respectively.

4.4 It	is	not	feasible	to	initialize	an	agent's	allocation	among	tasks	randomly,	since	an	allocation	for	farming	that	is	too	low	would	likely	result	in	starvation,	with	similar
unfortunate	results	for	other	resources.	Additionally,	the	only	way	for	a	new	agent	to	be	introduced	to	the	system	is	for	a	household	to	survive	long	enough	to
produce	offspring.	To	address	this	problem,	we	have	households	calculate	how	much	of	each	resource	they	need	and	allocate	enough	time	to	meet	these	needs.
This	only	happens	in	the	year	in	which	a	household	is	created.	(Except	at	initialization,	this	is	always	due	to	a	marriage.)	We	use	the	resulting	allocation	of	time	in
that	first	year	to	seed	our	weights	for	the	second	year.	If	an	agent	spends	25%	of	its	energy	in	the	first	year	farming,	then	farming	will	have	a	25%	weight	in	our
system	during	the	second	year.	After	this,	agents	rely	on	a	performance	and	feedback	function	to	update	their	weights	for	subsequent	years.	If	agents	may	not	be
able	to	provide	themselves	with	all	the	subsistence	goods	they	need,	they	may	trade	for	or	request	those	resources	through	an	exchange	network.

4.5 The	simulation	reported	here	also	modified	the	version	reported	in	Kohler	and	Varien	(2012)	by	allowing	agents	to	pass	on	their	wealth	at	death.	If	an	agent
household	dies,	the	resources	it	has	stored	will	be	divided	equally	among	its	children	who	are	within	trading	range,	which	is	set	at	the	same	distance	(8	km)
permitted	for	balanced	reciprocal	exchanges	(BRN;	see	below).	If	no	children	are	within	that	range,	this	wealth	is	divided	equally	among	neighbours,	and	finally,	if
no	other	agents	are	within	range,	the	resources	go	to	waste.

4.6 The	general	decision-making	steps	required	of	each	agent	are	presented	in	Table	1.

Table	1:	Decision-making	process	for	each	agent	(household)

Step Decision/action
1 If	first	year	in	current	location,	perform	based	on	family	needs	and	proceed	to	step	3.	If	not,	proceed	to	step	2.
2 If	second	year	in	current	location,	use	allocations	from	previous	year	to	initialize	weights.	Proceed	to	step	3.
3 Perform	tasks	and	expend	energy.
4 Exchange	resources	if	needed.
5 If	still	alive,	update	weights	(defined	in	section	4.4).
6 If	agent	location	not	sustainable,	move	to	new	location.
7 Return	to	step	1.
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Agent	states

4.7 Agents	have	four	states	for	each	resource	that	affect	their	health	and	willingness	to	trade	that	resource.	Calculations	for	each	state	depend	on	the	size	and	makeup
of	each	family.	The	calculations	do	not	include	usage	of	the	resources	for	the	purposes	of	working	or	performing	other	tasks.	The	states	are	based	on	how	long	the
agents	estimate	the	amount	of	the	resource	they	possess	will	be	able	to	meet	their	family's	needs.

TRADING	-	2	years	supply	or	more.
SATISFIED	-	6	months	to	2	years	supply.
CRITICAL	-	less	than	6	months	supply	(but	more	than	0).
STARVING	-	When	an	agent	doesn't	have	any	of	the	resource,	and	needs	to	immediately	obtain	some	via	trading	or	begging.

Exchange

Barter

4.8 Barter—new	to	this	version	of	the	simulation—allows	agents	to	trade	one	or	more	resources	in	exchange	for	another	resource.	Previous	versions	of	the	simulation
allowed	only	generalized	reciprocal	exchange	and	balanced	reciprocal	exchange,	and	those	only	operated	within	the	domains	of	meat	and	maize,	as	discussed
below	in	§4.12	and	§4.13.	Moreover,	the	balanced	reciprocal	exchange	system	only	allows	time-delayed	exchanges	whereas	barter	simulates	immediate
exchanges.	We	have	developed	a	simplified	barter	system	in	which	agents	trade	goods	based	on	a	fair	valuation.	Prices	are	therefore	not	negotiated.	To
determine	values	for	resources,	we	use	the	agent's	cost	of	production.	We	accept	that	this	does	not	result	in	the	level	of	inequality	that	one	would	expect	in	a
capitalist	barter	system	where	prices	are	negotiated.	For	instance,	in	a	system	with	negotiation,	we	expect	that	if	an	agent	(household)	has	the	sole	supply	of	a
desired	resource,	it	could	inflate	the	price	of	that	resource	well	beyond	its	cost	of	production.	We	did	not	include	such	a	mechanism	as	it	would	unduly	increase
computational	complexity.	We	use	calories	as	a	form	of	currency	in	this	simulation.	The	interactions	between	the	barter	system,	and	the	exchanges	based	on
reciprocity,	are	outlined	below	in	§4.18.	We	postpone	for	later	investigation	whether	barter	increases	or	decreases	the	degree	of	agent	inequality	(as	measured	for
example	by	the	Gini	coefficient)	relative	to	exchanges	based	only	on	generalized	and	balanced	reciprocity.

Table	2:	Variables	used	in	barter

Abbreviation Meaning
Ag An	agent
rAG Some	resource	per	agent
tAG Agents	in	the	set	of	potential	trade	partners
RWA Set	of	resources	an	agent	is	willing	to	accept
REQag Amount	of	given	resource	required	by	agent	Ag

4.9 If	for	some	resource	rAG	(Table	2	lists	the	abbreviations	used	to	describe	the	barter	algorithm)	an	agent	is	in	a	state	of	CRITICAL	or	STARVING,	it	tries	to	obtain
enough	of	that	resource	to	get	back	to	a	SATISFIED	state.	First	it	must	identify	agents	that	it	can	possibly	trade	with	for	the	resource.	It	does	so	by	the	following
process,	which	is	repeated	for	each	resource:

1.	 Ask	each	agent	tAG	(within	trade	range)	if	it	is	willing	to	trade	the	needed	resource	and	what	it	is	willing	to	accept	in	exchange.
2.	 Call	the	set	of	resources	that	tAG	is	willing	to	accept	RWA(tAG)
3.	 If	tAG	has	enough	of	the	resource	being	requested	by	AG	(tAG	is	in	a	TRADING	state	for	that	resource)	and
4.	 If	rAG	has	enough	of	one	of	the	resources	being	demanded	(in	a	SATISFIED	state	or	better)	by	tAG,	then	add	tAG	to	a	list	of	trade	partners,	which	we	can

call	TList.
5.	 Sort	TList	in	order	of	price	for	the	resource	being	sought.

4.10 Since	this	process	is	repeated	for	each	resource	rAG	sought,	if	the	agent	is	in	need	of	multiple	resources,	it	will	first	seek	to	procure	one,	then	after	that	(regardless
of	success),	it	will	proceed	to	the	next	resource.	After	finding	out	which	agents	within	its	trade	range	are	potential	trade	partners,	AG	must	then	ask	these	agents	to
trade	in	exchange	for	what	it	can	offer	them.	That	process	is	as	follows:

4.11 For	each	agent	tAG	in	TList:

a.	 Calculate	how	much	of	the	required	resource	tAG	is	willing	to	offer.	tAG	is	willing	to	offer	any	amount	as	long	as	it	would	not	take	it	below	its	TRADING
state.

b.	 Filter	RWA(tAG),	removing	resources	rAG	not	above	the	CRITICAL	threshold	for	that	resource.	The	resulting	set	can	be	called	TRADE_SET.
c.	 Calculate	how	much	of	the	required	resource	tAG	is	willing	to	offer	(so	that	it	doesn't	fall	below	TRADING);	we	can	call	this	set	OFFER.
d.	 Limit	OFFER	to	the	amount	rAG	desired.
e.	 Calculate	an	amount	for	each	resource	in	TRADE_SET	that	is	equivalent	in	value	to	OFFER.	rAG	is	not	allowed	to	fall	below	SATISFIED	for	any	or	these

resources.
f.	 If	we	can	find	a	combination	of	such	resources,	then	trade	that	combination	of	resources	with	tAG	in	exchange	for	the	required	resource.
g.	 If	we	cannot	find	such	a	combination,	then	calculate	the	maximum	total	value	of	resources	that	we	are	willing	to	trade	with	tAG.

i.	 Calculate	the	amount	of	the	required	resource	that	tAG	is	willing	to	give	for	that	value.
ii.	 Trade	the	selected	amount	of	resources	in	exchange	for	the	equivalent	amount	of	the	required	resource	that	tAG	is	willing	to	give.

h.	 If	rAG	is	now	in	a	SATISFIED	state,	then	stop,	otherwise	move	to	the	next	agent	tAG	in	TList.

4.12 As	stated,	the	value	of	a	resource	for	an	offering	agent	is	determined	by	the	cost	to	that	agent	of	acquiring	that	resource.	So	if	it	costs	an	agent	1000	calories	to
acquire	10	kg	of	protein,	then	the	value	of	that	protein	is	100	calories/kg.	Agents	do	not	question	the	value	of	resources	as	determined	by	other	agents.	Agents	are
however	able	to	sort	through	those	providing	resources.	Therefore	an	agent	knows	who	in	their	neighbourhood	can	provide	the	resource	most	economically.	This
gives	the	requesting	agent	an	advantage	in	the	exchange	relationship,	as	it	can	sort	selling	agents	by	lowest	price,	and	selling	agents	will	accept	the	cost	to	AG	to
produce	the	goods	rAG	being	given	in	exchange.

Generalized	Reciprocal	Exchange

4.13 Even	as	we	add	barter,	we	maintain	reciprocity-based	exchanges	in	our	system,	since	we	can	readily	observe	that	even	contemporary	market	societies	retain	kin
and	reputation-based	reciprocal	exchanges	alongside	market	exchanges.	We	recognize	two	distinct	systems	of	reciprocity,	which	we	model	separately.	The	first	is
based	on	kinship.	An	agent	household	knows	the	households	of	the	parents	of	the	husband	and	the	wife	as	well	as	those	of	their	siblings	(again	bilaterally).	This
leads	to	the	introduction	of	the	generalized	reciprocal	network	(GRN),	which	operates	over	this	bilateral	kinship	network	(Kobti	et	al.	2004;	Reynolds	et	al.	2004;
Kobti	and	Reynolds	2005;	Sahlins	1972).	In	GRN,	agents	are	able	to	make	requests	for	resources	from	members	of	their	close	kin.	This	provides	a	social	safety
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net	whereby	related	households	band	together	to	help	each	other	survive.	Agents	are	not	expected	to	repay	the	resources	that	they	obtain	in	the	GRN,	so	if	an
agent	obtains	maize	from	a	parent,	they	are	not	expected	to	repay	that	gift.	This	works	out	in	the	long	run	for	agents	because	if	that	parent	later	were	to	ask	the
child	for	help,	the	child	would	reciprocate	(Crabtree	2012;	Sahlins	1972).	Details	on	the	internal	logic	of	the	GRN	can	be	found	in	the	papers	listed	above.	In
addition	to	requests,	agents	in	the	GRN	in	a	TRADING	state	will	donate	some	of	their	resources	to	a	member	of	their	family.	All	trading	and	donation	in	GRN	in	this
instantiation	of	the	model	are	limited	to	a	geographical	distance	of	6	km,	although	this	distance	is	changeable.	Moreover,	kin	will	not	put	themselves	below	the
SATISFIED	state	to	help,	as	this	may	put	their	own	household	at	risk,	and	importantly,	GRN	is	only	implemented	for	maize	and	meat.	The	order	in	which	the	three
types	of	exchange	networks	are	activated	is	outlined	below.

Balanced	Reciprocal	Exchange

4.14 The	balanced	reciprocal	exchange	network	(BRN)	is	a	reputation-based	borrowing/loaning	network	that	enables	agents	to	exchange	maize	or	meat	with
neighbours	who	are	not	kin	in	the	expectation	that	they	will	be	repaid	the	same	amount	of	the	same	resource	at	a	later	date.	This	is	probabilistic,	so	agents	will	not
automatically	loan	to	someone	requesting,	even	if	that	household	has	a	good	or	neutral	reputation	(in	this	model,	we	allow	a	75%	chance	of	saying	yes	to	these
individuals).	If	an	agent	loans	a	resource	to	a	neighbour	(here	defined	as	a	household	within	BRN	trading	distance	of	8	km,	but	like	GRN	this	distance	can	be
modified),	it	expects	to	receive	that	resource	back	when	it	asks	for	it.	Agents	will	ask	to	be	repaid	once	per	year,	at	the	end	of	the	harvest,	or	immediately	if	the
agent	is	in	dire	need	(in	a	STARVING	state;	however,	agents,	as	in	the	GRN,	will	not	exchange	if	they	are	below	a	user-specified	state	for	risk	of	death	by
starvation).	If	the	neighbour	repays	when	asked,	then	its	reputation	remains	intact.	If	the	neighbour	is	unable	to	repay	the	loan,	this	will	damage	its	reputation.
Reputations	are	only	dyadic	(between	two	agents),	so	an	agent	could	have	a	negative	reputation	with	one	agent	while	being	held	in	high	esteem	by	another
(Crabtree	2012).

4.15 Agents	are	able	to	improve	their	reputations	by	loaning	resources.	If	a	neighbour	loans	an	agent	a	resource,	its	reputation	with	that	agent	goes	up.	This	means	that
later	if	this	neighbour	is	in	need	of	another	resource	that	its	partner	in	a	previous	exchange	can	provide,	this	partner	is	more	likely	do	so.	Resource	transaction	in
the	BRN	is	like-for-like.	This	means	that	if	an	agent	is	loaned	some	maize,	the	debt	is	repaid	in	maize.	As	for	GRN,	BRN	is	only	implemented	for	maize	and	meat.

4.16 Neighbours	(those	agents	in	a	BRN)	are	much	less	generous	than	kin	(agents	in	a	GRN).	An	agent	has	to	be	in	a	TRADING	state	before	it	will	consider	making	a
BRN	exchange.	Then	the	reputation	of	the	asking	agent	is	considered.	The	asking	agent	needs	a	positive	or	neutral	reputation	before	the	neighbour	will	proceed.	If
these	two	requirements	are	met,	the	agent	will	consider	whether	it	is	in	a	"loaning	mood"	(as	determined	by	the	probability	noted	above).	An	agent	will	not	allow
itself	to	fall	below	a	TRADING	state	in	loaning	a	resource	to	a	neighbour.

4.17 BRN	promotes	a	strong	"community"	bond	among	agents,	though	these	bonds	are	only	expressed	dyadically.	While	agents	do	not	account	for	this	(in	either	their
movement	algorithm,	or	by	seeking	to	enhance	their	reputations	as	a	goal)	larger	communities	with	more	positive	linkages	provide	more	opportunities	for	trade	and
assistance.	Of	course	this	is	balanced	by	competition	for	resources;	if	local	populations	become	too	large,	resources	may	become	limiting.	This	can	result	in
agents	having	to	leave	their	community	to	find	a	more	productive	location,	even	at	the	cost	of	losing	their	current	trade	partners.	Note	that	while	we	use	the	word
community,	this	is	not	a	physical	construct	within	the	simulation.	Here	we	regard	a	community	simply	as	a	network	of	agents	within	a	certain	radius,	tied	together
by	their	exchange	practices.

Sequence	of	exchanges	in	the	model

4.18 Agents	first	seek	to	obtain	the	needed	amount	of	a	resource	via	the	barter	network.	If	the	agent	still	has	not	obtained	enough	of	the	resource	it	needs	from	its
trading	partners	and	it's	in	a	STARVING	state,	it	attempts	to	use	one	of	the	reciprocity	networks.	First	the	agent	uses	the	GRN	to	ask	up	to	4	kin	(this	number	is	a
changeable	parameter	in	the	simulation)	to	give	it	the	amount	it's	short.	If	it	cannot	obtain	enough	via	this	method,	it	then	tries	to	borrow	using	the	BRN.	If	after	all
this,	rAG	is	still	deficient,	then	AG	dies	if	the	resource	is	mandatory	(water,	maize)	or	suffers	malnutrition	(protein),	which	may	also	lead	to	death	after	3	years.
Since	balanced	and	generalized	reciprocity	exchanges	only	pertain	to	protein	and	maize,	agents	can	obtain	water	and	wood	only	via	barter	or	by	direct
procurement.

Social	Influence

4.19 Agents'	behaviours	may	be	influenced	by	the	behaviours	of	those	around	them	(Waibel,	Floreano,	Magnenat	and	Keller	2006).	Given	a	choice	between	multiple
specializations,	we	factor	in	what	an	agent's	neighbours	are	doing	and	allow	that	to	influence	the	agent's	decision.	An	agent	N	is	defined	as	a	neighbour	of	an
agent	Ag	if	N	and	Ag	are	directly	connected	within	a	social	network	(for	our	simulation	this	network	is	limited	to	the	trade	radius	of	BRN).	It	has	been	shown	that
social	influence	often	can	increase	the	level	of	agent	specialization	when	compared	to	systems	with	no	social	influence	(Cockburn	and	Kobti	2009a).	Cockburn	and
Kobti	(2011)	showed	that	a	weight-allocated	social	pressure	system	would	be	capable	of	stimulating	the	emergence	of	a	high	level	of	specialization	within	a
population.	We	base	our	current	model	on	that	method.

4.20 For	each	agent	Ag,	there	should	exist	a	composite	function	Soc(t)	for	each	task	t	in	EC.	Soc(t)	would	be	a	function	representing	the	social	influence	towards
performing	task	t.	An	example	of	such	a	function	would	be	peer	pressure	towards	performing	a	task.	In	an	economic	network,	the	social	influence	may	be	a
reflection	of	the	demand	for	a	product.	In	such	a	situation,	it	is	also	possible	to	create	the	social	influence	function	such	that	there	also	exists	negative	influence.	An
example	of	this	would	be	negative	influence	in	the	case	of	a	potential	sale	that's	lost	because	a	competitor	can	provide	a	better	product.	The	handling	of	the	result
of	Soc(t)	is	dependent	upon	the	agent	and	the	domain.	Given	the	same	example	of	an	agent	selling	a	product	and	the	same	demand-influence	function,	an	agent
may	reduce	production	or	reduce	the	price	of	its	product.

4.21 For	our	case,	we	first	designate	r(t)	as	the	resource	produced	by	task	t.	Each	agent	requesting	a	resource	r(t)	exerts	production	pressure	on	its	possible	trade
partners	in	the	following	manner:

1.	 Locate	all	agents	within	trade	range,	placing	them	in	a	list	we	call	POSS
2.	 Determine	an	influence	rate	IR=1/the	size	of	POSS
3.	 Let	rAmount	=	amount	of	resource	r(t)	that	Ag	is	seeking	to	procure
4.	 For	agent	tAG	in	POSS

a.	 exert	upward	production	pressure	on	tAG	for	task	t	in	the	amount	of	rAmount	×	IR	(for	tAG:	Soc(t)	=	Soc(t)	+	rAmount	×	IR)
b.	 Let	tAmount	=	amount	of	resource	r(t)	that	tAG	has	available,	OR	rAmount,	whichever	is	lower
c.	 exert	downward	production	pressure	on	tAG	for	task	t	in	the	amount	of	2	×	tAmount	×	IR	(for	tAG:	Soc(t)	=	Soc(t)	+	amountTraded	×	IR)
d.	 If	tAG	and	Ag	completed	a	trade	for	r(t)

i.	 Then	amountTraded	=	the	amount	of	r(t)	traded	between	Ag	and	tAG
ii.	 Exert	upward	production	pressure	on	tAG	for	task	t	in	the	amount	of	amountTraded	×	IR	(for	tAG:	Soc(t)	=	Soc(t)	+	amountTraded	×	IR)

(Interpretations	of	quantities:	4a	indicates	to	each	agent	that	may	provide	the	resource	that	this	agent	has	a	demand	for	the	resource;	4c:	This	pressure	accords
with	an	agent's	expectation	of	completing	a	trade	for	the	amount	possible	(tAmount).	If	the	agent	completes	the	trade,	the	pressure	will	be	reversed	based	on	the
amount	of	resource	traded.	If	the	agent	is	unable	to	sell,	then	this	is	either	because	there	exists	another	agent	that	was	a	better	trade	partner	for	the	requesting
agent,	or	the	requesting	agent	did	not	have	the	resources	that	the	selling	agent	was	demanding	in	exchange	for	the	resource.	4dii:	This	rewards	the	expectation	of
sale.	The	net	effect	is	that	if	an	agent	is	asked	for	a	resource	and	is	able	to	provide	it,	then	that	means	their	current	level	of	production	is	sufficient	to	meet
demand.)
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4.22 A	selling	agent	Ag,	having	excess	resources	available	at	the	end	of	a	production	period	(in	a	TRADING	state)	also	exerts	pressure	on	its	competitors	in	the
following	manner:

1.	 Locate	all	agents	within	trade	range,	placing	them	in	a	list	we	call	POSS
2.	 Determine	an	influence	rate	IR	=	1	/	the	size	of	POSS
3.	 Let	rAmount	=	amount	of	resource	r(t)	that	Ag	has	that	it	is	still	willing	to	trade
4.	 For	agent	tAG	in	POSS

a.	 If	production	cost	of	r(t)	is	higher	for	tAG	than	for	Ag
i.	 Exert	downward	production	pressure	on	tAG	in	the	amount	of	rAmount	×	IR	(stated	differently:	Soc(t)	=	Soc(t)	-	rAmount	×	IR	for	tAG)

4.23 Therefore	an	agent	will	attempt	to	indicate	to	competitors	with	higher	production	costs	that	it	is	a	better	source	of	the	resource	and	that	it	would	be	more	capable	of
providing	that	resource	to	them.	This	deals	with	agents	who	are	within	range	of	each	other,	but	are	both	self-sufficient	with	regards	to	a	resource.	Exerting
competitive	pressure	encourages	the	less	efficient	agents	to	lower	their	production	and	rely	on	the	more	efficient	ones	for	the	resource.

4.24 An	agent	that	is	pressured	socially	does	not	have	to	change	its	behaviour.	Sometimes,	if	an	agent	is	already	in	a	TRADING	state	for	a	resource,	they	will	ignore
pressure	to	increase	production.	The	reason	behind	this	behaviour	is	that	the	agent	determines	that	it	already	had	surplus,	but	no	one	was	able	to	exchange	for	it
(possibly	because	no	agent	has	anything	to	offer	that	the	agent	is	willing	to	accept).	In	that	case,	increasing	production	will	not	lead	to	an	increase	in	trade.	Agents
also	will	not	decrease	production	if	they	are	below	a	SATISFIED	state.	This	occurs	if	the	agent	determines	it	could	not	procure	more	of	the	resource	because	it	did
not	have	anything	to	trade	to	the	selling	agents.	Therefore	reducing	their	production	will	not	result	in	them	obtaining	more	needed	goods	and	would	therefore	be
antithetical	to	their	survival.

Update	function

4.25 We	use	a	uniform	update	function	for	each	task	in	our	weight	system.	This	update	function	is	applied	at	the	end	of	each	year,	and	determines	how	the	agent	will
allocate	time	for	the	upcoming	year.	Given	task	t	that	provides	resource	r	and	x	amount	of	resource	r:

1.	 If	the	agent	is	in	a	TRADING	state,	then	assume	y	=	x	-	the	threshold	for	TRADING.	The	agent	will	then	reduce	the	weight	of	task	t	proportionally	so	it
should	result	in	the	agent	producing	y	less	of	r	than	it	produced	this	year.	In	other	words,	if	the	agent	has	200	kg	too	much	maize,	then	it	will	reduce	the
weight	it	applies	to	farming	so	that	the	agent	expects	to	produce	200	kg	less	maize	next	year.	To	avoid	an	agent	making	too	drastic	a	cut,	based	perhaps
on	an	abnormal	amount	of	a	resource	because	of	trading,	we	restrict	the	amount	an	agent	is	allowed	to	reduce	a	weight	to	50%	of	the	current	value.

2.	 If	an	agent	is	in	a	CRITICAL	or	STARVING	state,	then	the	agent	will	attempt	to	increase	the	weight	for	the	task	t	so	that	it	expects	to	produce	enough
additional	resources	in	the	following	year	to	get	it	to	a	SATISFIED	state.	Again,	to	avoid	overcompensating,	we	restrict	the	maximum	increase	to	300%.

3.	 Apply	any	social	pressure	as	determined	previously.

	Results

5.1 To	evaluate	the	impacts	of	these	additions	to	the	base	simulation,	we	ran	the	simulation	three	times,	once	with	agents	allocating	effort	based	only	on	family	needs
(Scenario	1),	which	is	similar	to	the	original	simulation	but	with	additions	such	as	the	barter	network	and	resource	inheritance.	We	do	not	expect	this	scenario	to
result	in	much	specialization.	We	then	ran	the	simulation	with	agents	allocating	effort	based	only	on	their	current	economic	state	(Scenario	2).	In	that	case,	agents
set	their	weights	for	tasks	based	on	the	amount	of	a	resource	they	have	remaining.	If	they	have	more	than	they	need	based	on	their	reserve	threshold	(TRADING
state),	then	they	reduce	production.	They	increase	production	if	they	are	below	this	level.	The	calculation	for	this	update	was	explained	previously.	Finally	we	ran
the	simulation	with	both	economic	state	considerations	and	social	influence	enabled	(Scenario	3).	With	the	addition	of	social	influence,	agents	will	reduce	their
production	of	a	resource	if	they	are	in	a	TRADING	state	and	there	is	an	agent	available	that	can	provide	the	resource	more	cheaply	than	the	agent's	cost	of
production.

5.2 We	compare	the	different	methods	using	several	measures.	One	such	measure	is	the	level	of	task	specialization	(as	explained	below),	which	is	applicable	only	to
the	second	and	third	scenarios.	We	also	compare	the	proportion	of	the	population	in	each	of	three	"settlement	types"	differentiated	by	the	number	of	households
cohabiting	specific	cells	in	the	model.	We	also	note	the	change	in	the	volume	of	exchange	when	agents	allocate	based	only	on	needs,	and	when	they	attempt	to
specialize.	Additionally,	we	measure	the	accumulated	wealth	(measured	as	defined	below)	of	the	population	under	these	three	scenarios.

5.3 Finally,	we	compare	the	structure	of	the	exchange	networks	that	form	in	Scenario	2,	and	in	Scenario	3,	using	an	approach	designed	to	reveal	the	degree	of
compartmentalization	in	the	networks.	The	exchange	network	provides	another	means	of	characterizing	the	overall	structure	of	the	system;	for	example,	how	does
the	degree	of	specialization	affect	the	structure	of	these	exchange	networks?	In	network	analysis	one	analyzes	the	frequency	of	nodes	(the	agents)	and	the
frequency	of	edges	(here,	the	exchanges	between	agents)	(Newman	2010).	By	understanding	how	the	connectance	(the	proportion	of	possible	links	between
agents	that	are	realized)	of	each	agent	changes,	and	variability	in	the	number	of	edges,	we	can	better	understand	phenomena	of	interest	in	the	reference	system
such	as	the	resilience	of	the	network	to	perturbation	or	the	efficiency	of	the	network	in	distributing	goods	or	information.	We	presume	that	different	network
structures	have	different	outcomes	for	transmission	of	influence,	innovations,	and	socially	influenced	behaviours	in	general.	Below	we	contrast	years	of	high	and
low	population	within	and	between	scenarios.

5.4 To	measure	the	degree	of	task	specialization,	we	use	a	method	developed	in	Gorelick,	Bertram,	Killeen	and	Fewell	(2004)	to	calculate	the	level	of	task
specialization	within	the	system.	We	use	the	weight	given	to	each	task	to	calculate	the	level	of	task	specialization	at	the	end	of	each	step	in	the	simulation.	The
weights	of	all	agents	are	then	stored	in	an	n-x-m	matrix,	where	n	is	the	number	of	agents	and	m	is	the	number	of	tasks.	Therefore	each	row	in	the	matrix
represents	an	agent's	time	allocation	among	all	tasks.	The	matrix	is	then	normalized	such	that	the	total	of	all	values	in	the	matrix	is	1.	The	mutual	information	and
Shannon	entropy	index	(Shannon	1948)	are	then	calculated	for	the	distribution	of	agents	across	tasks.	The	Shannon	entropy	is	then	divided	by	the	mutual
information	score,	resulting	in	a	value	between	0	and	1.	A	value	of	1	indicates	that	all	agents	spend	all	their	time	on	one	task	(not	of	course	in	the	same	task),	while
a	score	of	0	means	that	there	is	no	task	specialization,	as	would	be	the	case	when	each	agent	divides	its	time	equally	among	tasks.	See	Gorelick	et	al.	(2004)	for	a
full	explanation	of	this	method.

Effects	on	Population	Size	and	Degree	of	Specialization

5.5 As	can	be	seen	in	Figure	1,	and	as	expected,	there	is	a	marked	increase	in	population	size	when	specialization	is	added	(Scenario	2	vs.	1).	Somewhat	surprising
is	that	population	levels	are	slightly	lower	when	social	influence	is	added	to	economic	specialization,	though	populations	converge	late	in	the	simulation	(Scenario
3	vs.	2).	Perhaps	the	addition	of	social	influence	can	make	agents	too	reliant	on	the	success	of	others	for	their	own	success,	somewhat	analogous	to	Hegmon's
demonstration	that	sharing	too	broadly	can	be	detrimental	to	community	survival	(Hegmon	1989).	Another	potential	explanation	may	be	that	since	agents	here	do
not	consider	social	networks	when	moving,	they	may	be	able	to	move	outside	of	their	social	network,	populating	an	area	where	they	have	no	exchange	partners.
This	increases	the	likelihood	that	agents	will	not	be	able	to	exchange	until	they	are	able	to	rebuild	an	exchange	network	(Crabtree	2012).

5.6 We	also	found	that	the	degree	of	production	specialization	increased	significantly	as	we	added	social	influence	to	the	factors	that	agents	consider	(Figure	2,
Scenario	3	vs.	2).	This	further	confirms	the	findings	of	Cockburn	and	Kobti	(2009a;	2009b).	In	all	figures,	AD	600	corresponds	with	the	initial	colonization	of	the
VEP	area	by	farmers.	However,	this	area	was	in	fact	depopulated	around	AD	1280,	a	fact	not	replicated	in	these	simulations.	Instead,	we	see	a	spike	in	the	levels
of	specialization	around	this	time	in	our	simulation.
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5.7 There	are	factors	to	be	noted	in	the	performance	of	the	underlying	specialization	mechanism	that	we	were	not	able	to	fully	explore	here.	Namely,	the	number	of
years	of	storage	we	allow	each	agent	is	very	important.	As	we	have	no	monetary	currency	(outside	of	caloric	costs)	and	do	not	allow	exchanges	of	goods	for
labour,	stored	resources	are	the	only	source	of	wealth	and	assets	for	exchange.	Investigations	not	presented	here	show	that	the	level	of	specialization	increases
as	we	increase	the	number	of	years	of	storage	allowed.	We	can	conclude	that	adding	social	influence	to	our	reference	system	with	economic	specialization	leads
to	a	population	that	is	not	necessarily	larger	in	size,	but	one	that	is	more	specialized.

Figure	1.	Population	levels	for	each	of	the	three	scenarios;	Scenario	1	needs	only;	Scenario	2	economic	state;	Scenario	3	based	on	both	economic	state	and	social
influence.	To	note	is	how	much	higher	populations	are	when	they	are	not	based	on	needs	only.
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Figure	2.	The	degree	of	production	specialization	between	Scenario	2	for	economic	state	and	Scenario	3	for	economic	state	and	social	influence.

Effects	on	Degree	of	Aggregation

5.8 As	noted,	agents	will	move	if	they	are	not	thriving	at	their	current	location.	When	choosing	a	destination,	agents	do	not	factor	in	the	presence	of	potential	exchange
partners,	or	any	exchange	networks	that	may	exist	among	those	households,	unlike	in	Crabtree	(2012).	Our	results	show	that	agents	are	more	likely	to	cohabit	the
same	cell	when	they	specialize,	as	seen	in	Figure	3.	Without	specialization,	agents	primarily	live	in	small	hamlets	of	1-2	households,	and	few	in	community	centers
(of	9	or	more	households).	We	found	that	with	just	economic	state	influencing	planning	(Scenario	2	vs.	1),	agents	are	more	likely	to	live	in	big	hamlets	(3-8
households),	surpassing	the	proportion	living	in	smaller	hamlets	after	about	AD	750	in	the	runs	presented	here.	The	proportion	of	agents	living	in	community
centers	is	also	greater	in	either	scenario	2	or	3	than	in	1.	This	may	suggest	that	agents	move	less	as	a	result	of	specialization,	or	it	may	suggest	that	they	are
better	able	to	tolerate	the	effects	of	scramble	competition	for	resources	when	their	resource	needs	are	complementary	rather	than	redundant.	More	generally	these
results	suggest	that	an	increase	in	specialization	might	often	lead	to	increases	in	sizes	of	the	largest	sites,	and	in	the	degree	of	aggregation,	in	the	archaeological
record.

5.9 Interestingly,	when	comparing	Scenario	3	vs.	2,	we	see	that	agents	taking	into	account	only	economic	state	(Scenario	2)	are	more	likely	to	live	in	community
centers	(>	8	households)	for	most	of	the	simulation.	Agents	in	Scenario	3	are	more	likely	to	live	in	big	hamlets	(of	3-8	households)	than	are	the	Scenario	2	agents.
These	differences	are	relatively	slight,	however,	and	might	disappear	if	we	were	to	repeat	this	exercise	using	multiple	realizations	of	each	of	these	economic
scenarios	using	different	random	number	seeds	and	different	parameter	settings	for	basic	agent	operation.	The	stronger	signal	is	the	clear	difference	between	the
greater	aggregation	expected	under	Scenarios	2	or	3	relative	to	Scenario	1.
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Figure	3.	Proportion	of	households	in	each	type	of	settlement,	hamlets,	big	hamlets	and	community	centers	for	Scenario	1	needs,	Scenario	2	economic	state	and
Scenario	3	economic	state	and	social	influence.

Effects	on	Volume	of	Exchange

5.10 Along	with	an	increase	in	the	proportion	of	households	living	in	larger	communities,	we	observed	a	significant	increase	in	barter	under	either	of	the	scenarios
promoting	specialization,	compared	to	the	condition	where	agents	allocate	efforts	based	on	their	private	subsistence	requirements	(Scenario	1).	This	is	due	in	part
to	workers	working	more	hours	on	average,	and	thus	trying	to	produce	more	than	they	need	to	meet	their	family's	needs.	The	excess	supply	of	resources	results	in
more	agents	in	shortage	being	able	to	find	someone	willing	to	meet	that	demand.	We	see	in	Figure	4	that	there	is	very	little	trading	in	some	resources	such	as
wood	in	the	"needs	only"	scenario	(whereas	much	is	requested,	but	almost	none	is	exchanged).	With	agents	just	trying	to	produce	enough	for	their	own	family,	it's
unlikely	that	they	will	overproduce,	and	so	they	accumulate	no	exchangeable	surplus.	Therefore	there	is	no	barter,	despite	the	fact	that	there	still	is	a	high	level	of
demand	for	wood.	With	the	change	in	allocation	strategy	more	of	the	demand	for	such	resources	can	be	met	because	there	is	more	overproduction	of	resources.
Although	the	level	of	demand	is	not	fully	met	under	specialization,	the	unmet	demand	is	much	less	than	in	the	"needs	only"	scenario.

Figure	4.	Volume	of	exchange	of	wood	per	scenario;	solid	line	depicts	requested	wood,	while	dotted	line	requests	exchanged	wood.	Note	how	in	Scenario	1	the	needs
only	scenario	wood	is	requested	frequently	but	seldom	exchanged.

Effects	on	Volume	of	Storage

5.11 Figure	5	reveals	that	when	agents	allocate	their	labour	based	only	on	needs	(Scenario	1),	we	found	that	they	store	less	than	in	the	specialization	scenarios	(2	and
3),	despite	the	fact	that	their	storage	restrictions	are	identical.	This	is	as	expected	since	agents	procuring	only	what	they	need	rarely	overproduce.	Overproduction
in	that	case	is	due	either	to	the	inability	of	an	agent	to	accurately	estimate	the	needs	of	its	family,	or	inability	to	procure	exactly	the	amount	required	(for	example
it's	not	possible	to	only	kill	half	a	deer).	On	the	other	hand,	when	allocating	labour	based	on	economic	and	social	factors,	agents	are	much	more	productive.	The
resources	they	overproduce	are	maintained	in	the	system	(the	society),	resulting	in	higher	average	agent	wealth.	We	can	see	that	there	is	still	a	low	storage
amount	for	meat.	This	is	due	both	to	the	high	decay	rate	for	this	resource	in	storage,	as	well	as	the	landscape-wide	depression	of	the	most	important	meat	source,
deer	(both	in	our	models,	and	in	the	world	they	reference).	Average	storage	levels	do	not	change	noticeably	when	social	influence	is	added	to	economic
specialization,	even	though	that	addition	results	in	a	small	increase	of	specialization,	as	we	saw	in	section	5.1.
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Figure	5.	Storage	based	on	each	scenario.	Note	that	in	the	needs	based	scenario,	Scenario	1,	agents	store	much	less	than	in	the	other	two	scenarios.

Effects	on	Social	Networks

5.12 As	seen	above,	exchange	increases	when	economic	state	and	social	influence	are	taken	into	account,	as	shown	in	Figure	4	for	wood.	Additionally,	storage	of	most
resources	is	greater	when	agents	specialize	than	when	they	only	take	into	account	their	needs,	as	seen	in	Figure	5.	Finally,	when	agents	specialize,	populations
increase	(see	Figure	4	for	example).	These	three	results	lead	us	to	expect	that	the	social	networks	that	form	from	bartering	of	each	of	these	resources	will	be
markedly	different	among	the	three	scenarios:	when	agents	take	into	account	only	their	needs	(Scenario	1)	and	when	they	specialize	(Scenarios	2	and	3).
Performing	a	network	analysis	on	the	dyadic	exchanges	between	agents	provides	a	means	for	comparing	the	structure	of	the	system	emerging	from	these
interactions.

5.13 For	this	analysis	we	identified	four	points	in	time	(as	reported	in	Table	3)	from	Scenarios	2	and	3.	Table	4	reports	the	number	of	exchanges	through	time	in	the
barter	network	for	Scenario	2.	Table	5	reports	the	corresponding	figures	when	allocation	of	effort	is	based	on	economic	state	and	social	influence	(Scenario	3).

5.14 Not	surprisingly,	when	the	simulation	begins	exchange	is	high.	When	the	agents	are	initially	seeded,	randomly,	on	the	landscape,	many	are	placed	in	areas	with
poor	production.	Consequently	the	agents	try	to	make	up	for	deficiencies	of	resources	by	bartering	with	one	another.	With	respect	to	the	number	of	edges	per	node,
both	Scenario	2	and	3	are	rather	similar,	and	decline	slightly	through	time.	However,	except	in	the	first	year	of	the	simulation,	Scenario	3	always	generates	more
exchanging	agents—nodes—and	more	exchanges—edges—than	does	Scenario	2.

5.15 Another	interesting	contrast	between	the	two	scenarios	lies	is	in	the	differing	degree	of	the	clustering	coefficient	that	each	network	generates.	The	network's
clustering	coefficient	is	the	measurement	of	the	number	of	edges	between	the	neighbours	of	a	node	n	divided	by	the	maximum	number	of	edges	that	could	exist
between	the	neighbours	of	node	n,	as	described	in	Assenov,	Ramirez,	Schelhorn,	Lengauer	and	Albrecht	(2008).	The	clustering	coefficient	of	a	node	n	is:

Cn=en/(kn(kn-1))

"where	kn	is	the	number	of	neighbors	n,	and	en	is	the	number	of	connected	pairs	between	all	neighbors	of	n"	(Assenov	et	al.	2008	Network	Analyzer	Supplemental
Materials).	The	clustering	coefficient	of	a	node	is	always	scaled	between	0	and	1,	which	allows	for	comparability	(Assenov	et	al.	2008;	Doncheva	et	al.	2012).	In
this	context,	a	higher	clustering	coefficient	means	that	the	entire	system	of	exchanges	exhibits	more	clustering	into	condensed	components.	A	lower	clustering
coefficient	means	that	the	system	of	exchanges	is	more	dispersed	overall.	Note	that	this	is	"aspatial"	in	that	the	clustering	of	exchanges	is	not	necessarily	related	to
the	location	of	agents	on	the	landscape.	Here,	we	calculate	the	clustering	coefficient	as	averaged	across	all	of	the	nodes	to	give	a	clustering	coefficient	for	the
entire	network.	Clustering	coefficients	are	calculated	differently	depending	upon	whether	the	network	is	directed	or	undirected.	Networks	of	exchange	are	directed,
since	one	household	is	providing	resources	for	another,	so	analyses	are	based	on	directionality;	even	though	exchange	is	reciprocal,	each	exchange	itself	is
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directional.	For	this	analysis	the	clustering	coefficient	is	computed	for	directed	networks.	These	results	are	reported	below	in	Figure	6.

5.16 Comparing	Scenarios	2	and	3,	we	see	in	Figure	6	and	Table	5	that	the	socially	influenced	network	generally	exhibits	a	higher	clustering	coefficient	even	as	the
overall	connectivity	of	the	agents	is	declining.	This	suggests	that	the	socially	influenced	network	(Scenario	3)	is	more	reliant	on	a	few	nodes	to	supply	the	rest	of	the
network.	Bascompte	(2010)	characterizes	the	reliance	on	few	nodes	to	supply	the	network	as	a	"compartmentalization"	or	"the	tendency	of	a	complex	network	to
become	organized	in	'compartments'	characterized	by	a	group	of	species	interacting	more	strongly	among	themselves"	(Bascompte	2010:	765).

5.17 Though	Bascompte	refers	to	biological	networks,	compartmentalization	is	similarly	useful	here.	Instead	of	different	species	interacting,	the	compartments	are
formed	of	groups	of	agents	who	together	can	be	conceptualized	as	communities.	For	example,	in	year	1100	of	Scenario	3	(Figure	7c)	the	overall	network	has	been
divided	into	multiple	groups;	some	of	these	groups	are	connected	through	just	a	few	individuals.	There	are	also	outlying	groups	that	are	completely	cut	off	from	the
flow	of	goods	in	the	main	network	and	other	subnetworks.	These	networks	appear	to	be	more	compartmentalized,	as	also	indicated	by	the	slightly	higher
clustering	coefficient	in	Table	5,	than	the	networks	generated	under	Scenario	2.

5.18 If	one	wanted	to	disrupt	the	flow	of	the	Scenario	3	networks	there	are	certain	nodes	that	would	be	instrumental	to	destroy.	In	Scenario	2	year	1100	(Figure	6c),	on
the	other	hand,	there	is	a	more	equal	distribution	of	node	interactions;	if	one	random	node	were	to	be	removed,	it	would	be	less	disruptive	to	the	overall	flow	of	the
network	since	node-to-edge	distribution	is	fairly	equal.	In	Scenario	3	if	one	were	to	remove	a	random	node	there	would	be	a	high	probability	of	removing	a	non-
essential	node.	However,	if,	perchance,	one	of	the	"hub"	nodes	(the	node	with	the	most	connections)	were	removed,	its	entire	network	would	collapse.	The	hub
nodes	provide	the	bulk	of	the	interactions,	and	once	removed	more	compartmentalization	would	occur—portions	of	the	network	would	no	longer	be	connected	to
each	other	(see	Reynolds,	Kobti,	Kohler	and	Yap	2005).

Table	3:	Characteristics	of	population	at	years	when	networks	are	assessed

Year Characteristic	of	population
600 Start	of	simulation
1000 Population	peak
1100 Population	trough
1200 Population	peak
1300 Population	trough

5.19 We	have	not	yet	investigated	whether	the	"hub	nodes"	of	Scenario	3	are	also	relatively	wealthy,	though	it	is	likely	that	they	have	both	large	families,	and	more
storage	than	average;	we	do	know	they	are	relatively	"rich"	in	the	number	of	connections	they	have.	We	also	hypothesize	that	they	are	advantageously	placed	on
the	landscape	both	with	respect	to	landscape	productivity	and	with	respect	to	their	ability	to	act	as	intermediaries	between	two	network	segments	because	of	their
location.	Clearly	they	are	instrumental	to	the	distribution	of	the	goods.

5.20 Upon	visual	inspection	of	the	figures	we	can	see	that	exchanges	look	very	similar	in	year	600	for	both	strategies	(Figures	7a	and	8a).	For	year	1100,	in	the	network
created	by	Scenario	2	agents	there	are	few	exchanges,	and	it	appears	that	each	exchanging	agent	is	equally	connected.	However,	in	year	1100	under	Scenario	3
we	see	that	exchange	is	more	frequent.	Possibly	the	social	influence	that	helps	to	create	"hub"	nodes	also	facilitate	exchange	among	larger	numbers	of	agents
than	is	possible	through	economic	state	alone.
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Figure	6.	Network	clustering	coefficient	for	each	of	Scenario	2	economic	state	and	Scenario	3	economic	state	plus	social	influence	for	year	600,	1000,	1100,	1200	and
1300.	Coefficients	are	reported	in	Table	4	and	Table	5.

Table	4:	Connectivity	when	allocating	only	based	on	economic	state	(Scenario	2)

Year Nodes Edges Network	Clustering	Coefficient Number	edges/node
600 181 478 0.130 2.64
1000 595 1592 0.013 2.68
1100 443 1194 0.014 2.70
1200 271 678 0.011 2.50
1300 317 749 0.016 2.36

Table	5:	Connectivity	when	allocating	based	on	economic	state	and	social	influence	(Scenario	3)

Year Nodes Edges Network	Clustering	Coefficient Number	edges/node
600 180 468 0.091 2.60
1000 625 1746 0.026 2.79
1100 495 1320 0.020 2.67
1200 455 1160 0.023 2.55
1300 470 1185 0.016 2.52
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Figure	7.	Example	exchange	networks,	scenario	2.	Pink	dots	represent	households	and	blue	lines	represent	exchanges.	Multiple	lines	represent	multiple	exchanges
for	those	households.	a.	year	600,	b.	year	1000,	c.	year	1100,	d.	year	1200,	e.	year	1300.	Graphs	are	formed	based	on	connectance,	not	on	physical	space.	Nodes

toward	the	edges	are	the	least	connected,	while	nodes	toward	the	center	are	the	most	connected.
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Figure	8.	Example	exchange	networks,	scenario	3.	Pink	dots	represent	households	and	blue	lines	represent	an	exchange.	Multiple	lines	represent	multiple
exchanges	for	those	households.	a.	year	600,	b.	year	1000,	c.	year	1100,	d.	year	1200,	e.	year	1300

	Conclusions

6.1 In	this	paper	we	created	a	weight-based	system	for	agent	time	allocation,	resulting	in	specialization	of	production.	This	in	turn	required	us	to	develop	a	system	of
barter	so	that	agents	could	exchange	the	goods	they	variably	produced.	We	explored	two	scenarios	for	such	specialization.	In	one,	agents	are	allowed	to
determine	the	degree	of	specialization	based	only	on	their	economic	state.	In	the	second,	they	take	into	account	both	their	economic	state	and	a	social	influence
from	their	neighbours.	As	expected,	households	became	more	specialized	when	they	were	"allowed"	to	do	so.	Agents	also	became	increasingly	co-resident	(that	is,
more	households	co-reside	within	specific	200m	×	200m	cells	in	the	simulation),	exchanged	more	goods	with	each	other,	and	achieved	higher	global	population
levels	in	either	of	the	specialization	scenarios	than	in	Scenario	1.

6.2 The	social	networks	formed	from	the	two	types	of	specialization	displayed	somewhat	different	characteristics.	While	both	displayed	increasing
compartmentalization	through	time,	Scenario	3	displayed	a	generally	higher	clustering	coefficient.	The	social	influence	of	agents	in	this	simulation	is	important	to
facilitate	the	flow	of	goods	throughout	the	system.	Future	research	into	the	"wealth"	of	the	hub	nodes	will	help	elucidate	how	these	nodes	supply	the	network.

6.3 As	we	begin	to	explore	this	new	model	using	parameterizations	more	reasonable	for	our	reference	case—the	Basketmaker	III	through	Pueblo	III	periods	in	the
central	Mesa	Verde	region—we	will	investigate	several	questions	raised	by	the	analysis	here.	What	are	the	spatial	characteristics	of	the	networks	formed	by	the
combination	of	specialization	and	barter?	How	do	the	sizes	and	locations	of	the	communities	discoverable	in	the	model	compare	with	those	known	from	our	study
area?	Does	the	combination	of	barter	and	specialization	increase	the	sizes	of	the	communities	in	the	model,	relative	to	communities	discoverable	from	the
networks	generated	by	reciprocity	among	agents	with	largely	redundant	production?

6.4 Kohler,	Herr	and	Root	(2004)	suggested	that	many	of	the	differences	between	pre-AD	1280	in	Southwest	Colorado	and	the	post-AD	1375	Pueblo	societies	in	the
northern	Rio	Grande	can	be	attributed	to	the	addition	of	proto-market	forces	to	economies	previously	structured	by	economies	based	mostly	on	reciprocity.	Abbott
et	al.	(2007)	suggested	that	in	the	Hohokam	area	in	the	deserts	of	southern	Arizona,	periodic	marketplaces	and	barter	in	goods	such	as	earthenware	containers
may	be	important	structuring	forces	even	earlier,	by	around	AD	1000.	Further	work	with	this	model	will	help	us	understand	the	extent	to	which	differences	in	site
and	community	sizes	and	locations	can	be	legitimately	attributed	to	the	addition	of	barter	and	specialization	to	economies	previously	based	on	reciprocity.

6.5 In	the	models	presented	here	we	are	engaging	in	counter-factual	explorations,	since	it	appears	unlikely	to	us	that	the	high	degrees	of	specialization	and	large
amounts	of	barter	that	typify	our	Scenarios	2	and	3	in	fact	characterized	the	economies	of	societies	in	southwestern	Colorado	between	AD	600	and	1300,	when	the
area	we	model	was	depopulated	in	a	collapse	that	affected	the	entire	northern	Southwest.	Assuming	that	this	depopulation	was	not	just	due	to	a	large	external
shock	(which	may	in	fact	have	been	the	case)	we	can	use	these	models	to	guide	our	intuitions	as	to	whether	the	pre-1300	societies	in	southwestern	Colorado
would	have	been	more	(or	less)	resistant	to	this	collapse	if	they	had	in	fact	developed	more	specialization	and	barter.

6.6 In	their	recent	review	of	the	structural	characteristics	of	systems	approaching	and	undergoing	critical	transitions,	Scheffer	et	al.	(2012)	propose	that,	in	general,
modularity	and	heterogeneity	create	more	robust	(less	fragile)	systems	than	do	connectivity	and	homogeneity.	In	our	model	systems,	it	is	true	that	specialization
and	barter	lead	to	more	connectivity	among	households,	as	pointed	out	in	section	5.5,	but	on	the	other	hand,	those	households	are	more	heterogeneous	than	in
the	Scenario	1	case,	where	all	households	engage	in	the	same	suite	of	activities	to	approximately	the	same	extent.	So,	while	their	high	connectivity	may	make
Scenario	2-	and	3-type	systems	more	prone	to	undergoing	a	critical	transition	such	as	collapse,	their	heterogeneity	may	provide	some	protection	against	that
possibility.	That	the	post-1300	Pueblo	societies	in	the	northern	Rio	Grande	seem	to	have	been	highly	stable	in	spite	of	their	(presumed)	high	degree	of	connectivity
may	signal	that	heterogenetity	is	more	fundamental	to	stability	than	is	degree	of	connectivity.	It	is	also	possible	that	the	agricultural	systems	developed	in	the
northern	Rio	Grande—based	on	water	management	rather	than	rainfall—were	so	much	more	stable	that	any	deleterious	consequences	for	high	connectivity	were
never	expressed.

6.7 The	next	phase	in	this	strand	of	VEP	research	will	involve	enlarging	our	study	area	to	include	both	southwestern	Colorado	and	the	northern	Rio	Grande.	This	will
provide	us	with	an	opportunity	to	see	the	extent	to	which	the	structure	of	the	environment	in	the	northern	Rio	Grande	itself	encourages	the	formation	of
specialization	and	barter,	or	whether	the	possibility	of	engaging	in	a	single	specialization	(such	as	growing	cotton,	which	was	not	possible	throughout	that	area,	or
in	southwestern	Colorado)	can	provoke	a	cascade	of	other	specializations	in	the	model	households.
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	Appendix	-	Formal	Problem	Description	and	Approach

Problem	Description

Given	agent	Ag,	the	set	tAG	and	a	resource	rAG,	how	does	an	agent	allocate	its	rAG	among	each	task	t	in	tAG?

So:	Σ	xi=S(RAg)	
where	i	is	each	task	in	tAG	,	S(rAG)	refers	to	the	amount	of	the	resource	rAG	available,	and	xi	refers	to	a	fraction	of	S(rAG).

The	problem	also	involves	the	following	conditions:	
The	problem	is	continuous	over	a	period	of	iterations	
S(rAG)	changes	between	iterations	
xi	is	allowed	to	change	over	iterations	
Each	agent	Ag	also	has	a	set	REQ(Ag),	such	that	a	resource	r	in	REQ	(Ag)	needs	some	amount	of	r	for	subsistence	between	iterations.

Weight-based	model	for	time	allocation	among	tasks

We	used	a	weight-based	approach	for	agents'	time	allocation	based	on	Cockburn	and	Kobti's	study	(2011).	A	quick	summary	of	that	approach	(named	WASPS)	is
presented	here.

For	each	agent	Ag,	we	propose	a	set	EC,	where	ei	in	EC.	There	is	a	task	i	in	tAG	and	ei	represents	the	weight	of	task	i.

Task	weights	in	EC	are	relative,	therefore	for	the	given	a	task	i	and	a	resource	to	be	allocated	rAG,	the	amount	of	rAG	to	be	allocated	to	task	i	is:	
ei/S(EC)	×	S(rAG)	
where	S(EC)	is	the	sum	of	all	elements	in	EC.	
We	make	no	assumptions	about	the	initialization	of	the	weights	in	EC.	They	can	be	randomly	assigned,	or	initialized	by	some	other	method.	A	task	having	a	weight
of	0	will	result	in	the	task	being	allocated	none	of	rAG.	
Ag	must	possess	some	evaluation	function	P(t)	for	each	task	t	in	EC.	
P(t)	is	assumed	to	be	a	composite	function,	assumed	to	be	an	economic	performance	function.	
P(t)	is	applied	to	each	task	in	EC	after	the	performance	of	that	task,	therefore	representing	the	result	of	performing	the	task.	
If	P(t)	>	0,	the	task	is	assumed	to	have	had	a	positive	result,	in	which	case	et	is	increased	by	some	factor,	which	is	domain	dependent.	In	the	case	of	P(t)	<	0,	et	is
similarly	decreased	by	some	factor.	The	result	of	this	process	is	the	updating	of	the	weights	in	EC,	which	in	turn	determine	how	each	agent	allocates	the	resource
in	question.	More	details	on	the	methodology	can	be	found	in	Cockburn	and	Kobti	(2011)
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