
ON LETTING A COMPUTER HELP WITH THE WORK

Thomas C. Schelling

Teaching & Research Materials No. 12
Public Policy Program

John F. Kennedy School of Government
Harvard University

November 1972

Preface

If I had to teach about computers I would not begin

with the "simulation model" that this paper is about, nor carry

it to .such length if I did. (But if somebody had to learn about

computers, he would not choose me to learn it from.) The moti-

vation of this paper is the other way around: it is written for

people who already have acquainted themselves with the model--

who have even, I hope, experimented with it by hand--and who,

having invested that much already, would like to use it as a vehi-

cle to which a computer might be harnessed, to see what comput-

ers can do and how they can be made to do it.

My advantage as teacher is that I so recently learned

what I know and learned most of it trying to get computers to

do the kind of job described here. To protect the reader from

the grosser consequences of my amateur status I asked three peo-

ple to look at this essay wno had already helped me along the

way. While I cannot cite them as warrantors, I can thank them . .
They are Alvin W. Drake, Associate Professor of Electrical Engi-

neering, Massachusetts Institute of Technology; Tom Shemo, Jr.,

Manager of Computer Services for the John F. Kennedy School of

Government; and James W. Vaupel, Instructor, Institute of Policy

Sciences and Public Affairs, Duke University.

I have to add that one of the exquisite learning expe-

riences of my life occurred Dne· Sunday afternoon when, for three

hours in a room with a blackboard, Jim Vaupel completely disas-

sembled my "model" into its smallest components and reassembled

-2-

it before my eyes as a set of instructions that a computer could

follow. (He sailed for Europe next day and I was on my own.)

The paper that follows explains in rather minute detail,

for people who have no iQ.ea of how a computer might be made to

do a complex job, how a moderately complicated task can be made

into a "program" that a can follow. Two cautionary points

need emphasis.

One is that the machine is being used to help with the

work but not to design the experiment or to draw the conclusions.

The fact that the computer can p;r:>oduce results without error does

not mean that it produces results with any significance. The

machine can save a lot of time and trouble (and sometimes take

a lot of time and make a lot or trouble); but the fact that the

results come out of a computer not give them any special

authority--possibly the contrar1, ort account of the second point.

That is that the computer. does most of i.ts work away

from our scrutiny. It raw materials and gi YeS back

a refined product. We lose some touch with.tbe intermediate steps.

We don't "see" what is going on, and may b1,.1ry the most revealing

part of the work in a and never know what is hap-

pening.

Let me illustrate. We could experiment by hiring a

thousand drivers to evacuate a lot with alternative sys-

tems of exits and traffic lights; we might more cheaply simulate

the process on a computer if we c.ould specify every driver's reac-

tion to his location and the traffic surrounding. him. With the

computer we could do multiple run.s cheaply, varying .the traffic

-3-

controls, the number of vehicles, and the driving conditions.

The computer could tell us things no driver would ever notice.

But real drivers might notice things--important things--that the

computer would never notice. The computer economizes by suppres-

sing information. Unless we can guess what' information will be

most revealing, and ask for it, crucial events and processes will

be unrevealed.

The experiment described in this paper is one that can

be done by hand, at least in simplified fashion on a small scale.

In this experiment there is no substitute for doing it by hand.

Far more insight into the processes at work is obtained by a few

hours of tabletop work than by the most elaborate project dele-

gated to a computer. If, for this particular experiment, one

had to choose between. exclusive reliance on a computer and no

computer at all, I would unhesitatingly recommend no computer

at all. But if one had a hundred hours to devote to the experi-

ment and a computer to help, I would recommend a few hours at

the tabletop and ninety-odd hours in command of a computer.

There is a third cautionary point for anyone who may

be tempted to let a computer help with the work. A computer pro-

gram for a "simulation experiment" has to be elementary and exhaus-

tive. An entire process must be decomposed into simple steps

that are exactly specified. Often the program is designed by

someone who is not the experimenter, in a "language" that the

experimenter is poor at reading. The programmer has to make a

myriad of small decisions, some rather arbitrary, in operation-

alizing the experiment for the computer. It is remarkable how

-4-

easy it is for the experimenter and the programmer to have dif-

ferent ideas, and not to realize that they have different ideas,

about details of the model. Perplexing results can occur because

of some minor discrepancy between what the experimenter thought

was happening and what the programmer made the computer do, each

unaware perhaps that there was an alternative interpretation of

the words they used to describe and to discuss the model and the

program. Sometimes the small discrepancies have large effects;

if so they may do more harm if undetected but may be less likely

to go undetected. Sometimes "interesting" results were innocently

planted by the on who designed the program. The three ways

to minimize these difficulties are to familiarize the programmer

with the purpose and design of the entire experiment, so that

he acquires :some personal judgment of matters; to familiar-

ize the experimenter, line by line, with the written program,

whether he understands the program language or not; and to keep

a lively awareness that, notwithstanding those efforts, the prob-

lem is always there. (As the paper will occasionally illustrate,

the problem does not entirely disappear when experimenter and

programmer are combined in the same person.)

ON LETTING A COMPUTER HELP WITH THE WORK

This is a guided tour through a computer program--a particu-

lar progra·m, one that I constructed· to have a computer do a job

that I· have done repeatedly without a computer. · (I invite the

reader to·take half an hour to do it without a computer so that

he will know what the job is that the program instructs the com-

puter to do.) *
The computer can do it faster and more reliably, and it can

keep records and compute statistics and print results faster and

more reliably. It may take a hundred hours to develop the instruc-

tions with which the computer does the job; we use a computer

only if we want to do the job so many times, or to do it on such

a large scale, that a task that takes fifteen or twenty minutes
' '

is more quickly done' by a machine demanding a minimum investment

of a hundred hours. If we do it five or six hundred times

we break even; if we do it five or six thousand times we're way

ahead. Alternatively, we can redesign the task so that it is

more cornpli.bated, taking· several hours rather than fifteen min-

utes, and. we can probably construct' the program for the bi

job in the same time as it take us to program the smaller

one. The computer may do the bigger job so fast that we hardly

notice the difference in computer time.

*It Is described in T. c. Schelling, 11 0n the Ecology of Micro-
mot;tves," The Public Interest, .Fall 19}1, pp. 82-89, and more
detail in· T. c. Schelling, "Dynamic Models of Segregation, Jour-
nal of Mathematical Sociology, l (1971), PP· 143-186.

-:2- .. ·

An important way to the job larger is to kfi4!P better

records and to calculate better The compUter can
\,

multiply and divide large as easily as small ones; and

because of its speed and re1iap111 ty ·it all·ows us not ·only to

do larger' "simulations" 't,HJ,t to more elaborate •

When I say the computer is more "reliable" I mean that it

almost never makes a mistake in following our instructions. But

be careful: any mistake in the instructions we give as long

as the instructions are logically capable of being followed, the

computer will carry out It will never .tell us that we

gave it a stupid instruction. (With skill we can instruct

it to recognize preposterous results and to send us a warning

signal; but then it won't tell if there's a silly error in

that part of the instruction.) The ·eomputer is able to make silly

mistakes at fantastic speed and with complete reliab.ility, if
' . ' ..

somewhere along the way instructed it to make those' mistakes.

The computer furthermore ·performs only simple tasks! It

can do an exceedingly complicated job, but only if the job is

broken down into simple tasks. As an example imagine a maze.

All passages in the maze are straight all angles are right

angles; all passages are of eqqal all passages that are
' ,: '

blocked end in a wall perpendicular to the sides. . You have to

find a way out. You have searched the maze for sqme

and you've concluded. the.t there is no· pattern you'll ever find.

A computer can help you. The compy.ter does not substitute a supe-

rior intell;tge1)ce; .:{ t .sell ves prqblem the waY: a high-

speed idiot solve

-3-

The idiot would pick a route at random and follow it until

he came to·a blank wall. Then he would go back until he found

another route and try that one, and continue this process untiJ.

he came out at the end. Eventually, if he chooses routes at ran-

dom, even if he repeats himself, the probability that he will

find his way out approaches 100% if he keeps at it long enough.

Of course, it may take him more than a lifetime. Since the com-

puter can do in a few minutes what the idiot could do in a life-

time, a maze that is "humanly impossible" to get out of, except

by sheer luck, can be explored by a computer that knows how

to follow the diagram. If tpe diagram can be expressed numeri-

cally, computer can do it all with numbers. (The reason I

used straight lines and right angles was so that we can visual-

ize the maze on lined paper, with a number in every square, and

can describe every by its coordinates and can locate

every wall on the side of a numbered square.)

The computer can do better than that; it can keep track of

where it been. This is what tne idiot could do if he dropped

sunflower seeds behind him and never went down a passage where

the seeds showed he had already been. In that case, with a guar-

antee against going anywhere twice, there is an upper limit on

the time the job will take. It may still be several lifetimes

for an idiot, but a quick job for a computer.

An impressive thing about a computer is that it can do this

kind of job s6 quickly.

An ·equally impressive thing about the computer is that a

properly instructed idiot could usually do its job. (He'd just

never get the done.)

"..-4 ...

I don't mean an o;rdina.roy idiot, I mean a Ul)er-idiot

I mean an idiot with the characteristics that (1) he can perform

a rudimentary task if he is told exactly what task to.perform;

(2) he can keep his place in an qrderly list. of instructions,

doing the next task after he completes each one.;. (3). he will stop,

and perhaps ring a bell, if the instruction is incomprehensible

in his language or :tf the :task he is told to do is unperformable;

(4) he never makes a mis or gets tired.

His from two characteristics: he

never makes a mistake in doing exactly what we tell him to do;

and he never thinks for himself,

* * * * *
What, now 1 are the rudimentary tasks that. our computer

can perform for u;:; '? . To w,fth, it can add and subtract, mul-

tiply and d:i, vide. It can keep in itfS memory the sums .and prod-

ucts it obtains in order to perform rel?eated operations; 1 t can

recall the sums and produqts when . ;1 t neec;is them. It oan cornmi t

to memory the formulae for repeated arithmetical operations.

It can erase things from its memory. And it can signal the keys

of a typewriter to type out the answers we want.

Our speedy, relitiible idiot can als? keep running totals.

That is, he can repeatedly add numbers and keep track o.f the

latest subtotal. .As a special case, he can count. By ·ad.ding

one to the total every time he performs an operation, he. "counts"

the number of times ne. performs it. He can keep track of "vari-. . .

•',' f

ables" that have names or labels, things J.f.ke "X," "Y," "hits,"

.-5-

"times at bat, 11 and "batting average." He can assign numbers

to these named variables; he can change those numbers at our instruc-

tion, substituting a new value :for an old one, either arbitrarily

or by adding something or subtracting something or multiplying

when instructed. We can give him the historical number of hits

and times at bat at the beginning of a game, and have him count

hits and times at bat during the game, and at any time during

the game,and at the end of it he can provide an up-to-date bat-

ting average for each member of the team and for the team as a

whole. We can .do this with a game, or do it experimentally

if we want to see how much difference it makes to an end-of-sea-

son batting average for a player to get one more hit during a

season in which he plays a hundred games and comes to bat an aver-

age of four times per game. With a little ingenuity we can instruct

the computer to signal a teletypewriter to type the information

in a table witp players' names spelled correctly and the numbers

rounded to.three digits.

The computer can compare two numbers to see whether one is

greater than the other and, if so, which one. (This is equiva-

lent to seeing whether a number is greater than zero, because

we can always subtract one from the other and compare the differ-

ence with zero.) We can combine these abilities so that the com-

puter will compare an old number with a new one, replacing the

old one with the new one if the new one is larger. If each num-

ber has a name, the computer can substitute the name of the new

number for the old name if the new number is larger than the old

number, keeping track of "who" is the largest number that he has

come across.

-6-

The computer can find a numbered entry in a list. We can

have it compare the batting average of the seventh name in a list

of names with the eleventh, pick the larger, and tell us the name

that goes with it. In particular, it can start with the first

name on the list and the number that goes with it, compare that

with the second, "remember" the larger of the two and compare

it with the third, and keep this up through the list, having one

name and one batting average when it gets to the end, namely,

the highest batting average and the name that goes with it. (We

have to instruct it what to do in case of ties.) It can simul-

taneously keep a running total of hits and at-bats, and calculate

a team average.

It can also keep a list of lists. We can number the teams

in the National League, and it can pick the fifth team and find

the player with the highest batting average on that team. In

particular, it can go through the list of lists and, by a combi-

nation of the things I have described, find the team with the

highest batting average, as well as the player with the highest

average or the batting average of the whole League. And of course

it can reject people, if we so instruct it, who have been at bat

fewer than a hundred times. If we asterisk the who are

rookies, who are black, or who play first base, it can treat the

asterisked players as a sub-list and find the rookie with the
-

highest batting average, compare the batting average fo;o black . ' players with that for the League as a whole, or pick the team

position that on the average has the highest batting average in
the League.

What I have described is not everything that the computer

can do but is typical of what ·computer does. Notice how rudi-

mentary· it is • It can Qount) pick out a numbered i tern in a list,

go through a list , keep runn;ing t; o t als , . perform some arithmetic ,

and that is about all. With ingenuity we can reduce a complex

task to a series of these rudimentary operat:t.ons, operations that

will have to be performed repeatedly but with repetition that is

fast and cheap.

One more thing the .computer can do that is equally simple

but of a slightly different character. In the same rudimentary

way, it can perform operations on its own instructions. And at

various points in its instructions we can provide it two or more

alternative sets of subsequent instructions and have it choose

which instructions to follow according to which of several vari-

ables has· the largest number associated with it, or according . .
to some number is positive or ve, or according .to

whether it has :repeated some operation a stipulated number of

times. ·

The reason we often want tne computer to operate on its own

instructions is tnat this permits to· economize on instructions.
'

Let me show you how. I somewhat exaggerated the sophistication

of this idiot. He may not know how to work his way through a

list of 25 baseball He may just know how to pick a player

who occupies a certain number on a list, like the 9th or the 25th.

To make him work his way through the list, we tell him to find

Player No.. X and perform an operation. In advance, we gave X

the value "1. II So when told: to go to Player No. X, he goes to

-8-

No. 1 and does whatever he is supposecl to do. Now we want him

to go to Player No. 2, and then No. 3. We tell him to replace

the value of X with X+l. Since X was equal to 1, X+l becomes

2. we then say, "Now go back anQ, perform that operation again

for Player No. X." Since we told him to change X to X+l, he changed

x from 1 to 2, and now he does 1 t for Player No. 2. Again he

comes to the instruction, "Replace X with X+l"; he replaces 2

with 3 and comes again to "Do it again." If we had to say this

25 times for 25 players, that with the X and the X+l

is a circuitous way of saying 2, 3, 4, 5 ... without using num-

bers other than 1; but we can economize.

Suppose he has a list of operations to perform in the sequence

in which they occur on his list, and the 99th is to perform that

operation on Item No. X in the list. does it, whatever it
, .

is--it may be computing a batting average--and then he goes to

Instruction No. 100. Instruction No. 100 tells him to change

X to X+l. Instruction No. 101 says, "If X is no larger than 25,

go back to Instruction No, 99 and take it again from.there."

Since there are 25 players on the list, as long as there are more

players on the list he goes back and does the next one. !f, when

he adds 1 to the earlier number, he gets 26, he•s finished the

list; since he goes back to 99 only if he hasn't finis'hed the

list, he goes on instead to tnstruction No. 102. This tells him

to do whatever comes next in the program after he

that operation successively for each of the 25 players.

It only took three lines of instruction to have hirri' it

25 times· Of course, if we coul.d Just say, ''Do it for everybody

-9-

on list, one after another in the order in which they appear,"

that would be even simpler for us. But he can be too dumb to

understand that instruction, able only to do 1 t for one player

identified by his numerical position on the list, yet as long

as he can add 1 to a player's number and can check whether the

number he's at is no larger than the number of names on the list,

he can perform two operations 25 times and cover the list just

as well as if he knew what the words meant when we said to do

it "successively for everybody on the list."

It may not strike you that the one instruction is more sophis-

ticated than the other. But if the idiot already knows how to

add 1 to some number he has in his memory, we don't have to add

words like "every" and "successively" to his vocabulary to get

the effect. It may take us a little longer to write the ins true-

tion, but it means we can get along with a much less articulate

servant.*

* * * * *
Now, after all this introduction, let's go to the task we

want performed. It is the one in which individuals are located

*Actually, to add "words" to his vocabulary, we'd put some
expression like "for one after another" in his code book; and
when he came across those exact words in a program involving 25
items he'd look up the recipe and find a short "subroutine" say-
ing, 11 (1) Put X=l; (2) Do it--whatever he's to do 'for one after
another'; (3) Change X to X+l; (4) If X less than 25 go back to
#1; (5) Otherwise carry on." If the computer's standard language
doesn't contain an expression for some reguiar operation that
we want performed often in a program, we can usually define some
terms of our own by' writing short programs that will be triggered
by some code words (somewhat as we might footnote, once for all,
the exact d-efinition of some term we wanted to introduce and use
repeatedly, italicized to recall the footnote, in a set of writ-
ten instructions to a helper).

-10-

. . .
· h k rboard pattern We have a rectangular board on squares a c ec e · .

divided into one-inch squares. It is n squares wide and m squares

high, with a total of m x n squares. Some squares are blank,

others have individuals located on them. Each individual belongs

to s orne group, and the groups are numbered 1, 2, 3. . . . Maybe

there are only two groups, maybe there are a dozen, maybe there

is only one. Each group is identified by a group number. If

a member of Group No. 3 occupies the cell three columns in from

the left and two rows down from the top, we identify the number

3 with Row 2, Column 3.

Each individual is assumed to care about the group composi-

tion of the individuals who are· located near him. Specifically,
. '

a member of Group 3 cares how many of his "neighbors" are also

Group 3. For the moment suppose that, if they are members of

other groups, he doesn't care which other group a neighbor belongs

to. A member of Group 3 distinguishes among neighbors who are

Group 3, neighbors wno are not G1:"oup 3, and possibly blank cells

in his neighborhood. Later we can change this so that a member

of Group 3 considers a member <:>f' Group 4 different from a member

of Group 5, perhaps considering Group 4 to be more ·-l:t'ke ·Group

3. That will be an easy adjustment to make, after learned

to hand.le the case in which members of each group mere.J:,y distin-

guish between "like" and "unlike" neighbors.

I shall assume that you have read something that explains

the purpose of all this.* (I even hope you have done· it by put-

ting nickels and dimes on a sheet of paper consisting of one-inch

*The citations are in the footnote, page 1.

-11-

squares in a rectangle.) So I shall describe only what we are

doing, not why we want to do it. The "wny" relates to the research;

the "what" relates to how we get the computer to help us do 1 t.

What we do is to have every individual consider his own neigh-

borhood, decide whether he's satisfied with the mix of like and

unlike neighbors and, if he's not, to consider moving. To con-

sider moving, he looks around for blank spaces that he likes bet-

ter than the position he is in. If he finds one nearby he moves

to it. ·Or, perhaps , if he finds one anywhere he moves to it .

Which one does he move to? Maybe he moves to the nearest one

that is decently satisfactory. Maybe he moves to the best space

on the whole board, regardless of how close it is. Since others

move, too, he can't be sure that the spot he moves to will remain

satisfactory once he gets there, since he may lose neighbors that

he likes or gain neighbors that ne dislikes. So he may have to

move again. Or maybe there's a spot that he likes but somebody

beats him to it; or there's a spot that he likes but neighbors

like himself move away before he can get there, or people unlike

himself move into the neighborhood before he gets there, so he

doesn't move there after all.

Members of each group have their own feelings about the kinds

of neighbors they want. One group may have strict requirements

for neighbors like themselves, another group may have modest require-

ments. The 11 requirements" may be stated in terms of the percent-

age of nearby neighbors that are members of one's own group.

They all keep moving in turn until everybody's satisfied,

or until everybody who is unsatisfied can't find a place to move

-12-

to. Maybe we drop the notion of "satisfied" and simply say that

everybody compares every available vacant spot with the spot he's

at, and moves to the best spot available if it's better than where

he's at. Maybe we impose moving costs, expressed in a ''currency"

that is translatable into the "attractiveness" of different spots;

and the moving cost is subtracted from the attractiveness in order

to pick the spot that is best, considering both neighborhood and

travel distance. And so forth.

Now this expresses the general idea. We can put nickels

and dimes and pennies on the squares, letting the different coins

represent the different groups. A "penny" counts the pennies

in its own neighborhood, counts the nickels and dimes in its own

neighborhood, calcula tea the percentage of the "local population"

that is pennies, and decides whether or not it likes that percent-

age. It stays for the time being if it likes it--somebodymay

move in, or move away, and change his mirid later--and if he does

not like his neighborhood he searches the board, or some portion

of the board near him, to see if there's· a place he'd like to

move to. If there is, he moves, if nobody beats him to it or

if, in our program, nobody else can· move until this one has had

his turn.

Very simple. But if we ask an assistant to start moving

the nickels and dimes and pennies in accordance with rules,

he is likely to tell us that our instructions are

Where does he start? Does he do all the pennies first· and then

the nickels? Does he start at the left of the top row and go

across the top row and then do the next row, and so ·.on down: to

-13-

the bottom of the boa:rtd, and go back to the top row to start again?

Does he look at everybody's position and pick the most dissatis-

fied, arid move him, and then look for the one who is now mast

dissatisfied? And what do we mean by "neighborhood11 ? Every square

is surrounded by 8 squares immediately; there is a 5 x 5 square

surrounding that, containing 24 in addition to the individual's

own spot. There is a 7 x 7 square that is still larger, contain-

ing 49 spots, onets own spot plus 48. One can "round" the cor-

ners a little, getting more nearly circular neighborhoods. What

is the "neighborhood" that an individual cares about? Does he

care about the "immediate" neighborhood of 8 neighbors in the

3 x 3 square more than he cares about the next 16 people in the

outer part of the 5 x 5 neighborhood? Will we please specify

precisely what ratio of like to unlike neighbors makes an indi-

vidual satisfied? And, since we shall be dealing with integers

--numbers up to 8 in the 3 x 3 square--is it simply a matter of

percentage,; or does 1 t depend a little on the total number of

neighbors 'ari individual has? For examp , if an individual is

surrounded by blank spaces and has no neighbors, do we consider

him completely satisfied, completely unsatisfied, or what? And

so forth.

Finally--a very crucial part of the instruction--if our young

employee keeps this up, scanning the board and moving the dissat-

isfied, when does he quit?

Evidently, if he scans the whole board and finds nobody who

wants to move, scanning the board again will lead to the same

result and he may as well stop. Suppose every time he scans the

-14-

board somebody moves; then he has to go back and re-scan, the whole

board from the point of view of every individual, because every-

body who moves can affect some other people, who may have been

satisfied a moment ago but are no longer satisfied. Does he quit

at 5:00? Does he stop at 5:00 and come back tomorrow and spend

another eight-hour day? If he finds that each time around he

reverses the move he made the last time around and is merely repeat-

ing a cyclical process, and he sees that, no matter how long he

goes on, people will be moving in the same circles, can he sim-

ply report that he has reached an endless cyclical process, one

that is predictable from here to eternity, and stop? It would

be a shame to go away on vacation .and come back and find that

he had been working an eight-hour shift getting nowhere merely

because we didn't give him instructions to quit.

So the first thing we have to do is to specify all of the

"parameters" of the problem exactly. We have to give the length

and width of the board, measured in number of squares. We have

to state how many different groups we want, how many.members of

each group and how many blank squares. For each group we have

to state its exact conditions for being content where it is or

for moving; and, if it moves, the exact portion of the board (per-

haps the whole board) that it will scan for a place to move to,

and the exact way that it evaluates every spot, both in terms

of neighborhood and in terms of moving distance if moving distance

matters. We have to state the precise order in which we do this

for different individuals; we can run through the board system-

atically, or we can do it for one whole group before going on

-15-

to the next group, or we can do· it by picking members at random

or according to some specified plan. But since our employee isn't

paid to "think," but only to do what we tell him, we have to give

him absolutely comprehensive instructions to cover every contin-

gency, so that he never is at a loss what to do next and never

has to do his own thinking.

We need some pattern to begin with. Either we must put the

nickels and the pennies and the dimes on the board, or we must

tell our "employee" how to put them there. Maybe we want our

computer to randomize the pattern; maybe we want it to locate

them in some regular pattern, and can instruct the computer exactly

how to lay down nickels and dimes and pennies, i.e. , to assign

numbers like 1, 2, 3 to the different successive cells in the

rows and columns. Or maybe we tell the computer the group num-

ber of the occupant in every cell, each cell identified by row

and column, with the number "O" being used to denote a blank cell.

Now what does the computer do?

It. does the same thing--something--over and over again f'or

each individual on ·the board, in some order or sequence. We have

to tell it the exact order in which it performs the operation

for every individual. It can even be told to choose them at ran-

dom, if we can arrange for it to find a randomizing process.

But it will do this "something" one at a time f'or an individual.

(More complicated: it might study-the situation for every indi-

vidual, and perform the action for the particular individual whose

gain in moving were calculated to be greatest. It ought to be

c ar that we can make it do that, if we can make it take them

-16-

in a particular order, so let's stick with a particular order.)

so we have told the computer how to pick the "next individual"

for which it does the basic operation: now how do we describe

that basic operation?

* * * * *
We have, let us say, the individual located at Position 3,5.

This means the cell in the third row, fifth column. Every square

on the board has three numbers associated with it, numbers that

will identify it and the group to which its occupant belongs.

One is the number of its row, counting from the top; . another is

the number of its column, counting from the left. The third is

the group number. We have a computer that can count rows and

columns, so when we say, "Individual 3, 5," it counts down the

third row from the top and the fifth column in from the left,

and identifies the group number of the individual who is located

there. (It actually doesn't use a board for the purpose; it sim-

ply has something like a table stored away in its memory. ·The

table has rows and columns. Essentially, each row is a ''list"

of individuals arranged in numerical order. The "row number"

tells the computer which list to examine· the "column number" -- '
tells the computer which numbered individual on that list to look

for· Metaphorically, we ask it to find the group number of the

individual in the third row and the fifth column; numerically,

we ask it to find the fifth individual on the third list:. We

can think in rows and columns, in two-dimensional It can

work in terms of card catalogs, code books, or any other kind
of "lists.")

-17-

!f we want it to start in the upper left corner and go across

the top. row, then come back from right to left in the second row,

then go. from left to right in the third row, and so on down the

board, we tell it to start with "List No. 1," and take the indi-

viduals in order, then to progress to List No. 2 and take the

individuals in reverse order, go on to List No. 3 and take them

in direct order, and so forth until it runs out of "lists." We

have already seen, above, how to arrange so that it knows when

it's at the end of' a or has finished the list of lists and

should··e;o back to the first list again.

So we have a way of telling it how to pick an individual.

We have a way of formulating that instruction in some regular

fashion, such as having it progress through the lists.

So he's found our 11 next 11 individual. What does he do for

him? The first step is to find out whether or not he is .satis-

Qr how satisfied he Then, if he is not satisfied, we

inst:i, tute a search f'or else to go. Then we move him.

Then .we· move· on to the next individual.

Step l is to evaluate the individual's present neighborhood.

This is done :by counting the number of ind,i Viduals belonging to

the same group ·in that neighborhood, counting the number of indi-

vi·ctu·als of different grou'ps, constructing the percentage that

the first is of the total', and comparing that with some minimum

percentage at which he is· satisf'ied. How do we do this?

we· already 'defined what· we mean by "neighborhood," and

suppose duit it is merely 'the 8 neighbors surrounding this par-

ticular individual :tn the 3 x 3 square. The computer has to look

-18-

at each square and see whether or not it is and, if

it is occupied, whether or not it is occupied by an individual

like the individual for whom we are performing the process. If

we were doing it ourselves, we could draw the boundary of the

3 x 3 square, and then run through the 3 squares in the first

row, the 3 in the second row, and the 3 in the third row, keep-

ing three running totals as we went (or perhaps just two totals,

knowing that the blanks would always be equal to 8 minus the sum

of the other two numbers, if we were interested in, the number

of blanks). To do this the computer has to know how to perform

two operations. First, it must know how to find the 8 cells that

we want to examine; second, it must know how to count. Consider

the first problem, finding a cell to examine.

Suppose we're dealing with the .individual in Row X, Column

Y. Going through the 3 X. 3 square surrounding him, and starting

in the upper ft corner of that little square, we want to look

at the individual located at Row X-1, Column Y-1. Next we want

to look at the individual in Row X-.1, Column Y. Then. Row X-1,

Column Y+l. Then we go to Row X, Column Y-1; then we want to

skip Row X, Column Y, because that's our own individual, and we

don't want him to count himself as a neighbor. Then Row X, Col-

umn Y+l. Then down to Row X+l, going through Column Y-1, Column

Y, and Column Y+l. Since our .own individual is identified by
the numbers, X and Y, it is easy to identify his. neighbors by
the numbers X and Y with a l added or subtracted here and there.
This we know how to do. We tell the computer, for Individual
X,Y, to find the square located at X-1, Y-1 and a count-

ing operation. When he has counted the individual located in

-19-

that sg'l,laxoe he adds l to the secopd of the two numbers (he adds

l to ap.d does 1 t agaip; then .he adds 1 to that second num-

ber again, getting Y+1. Then he must know that he's finished

that he has done all that he is to do when the first

number i.s x ... l""'!.-and add l to X-1, . making it x, and go back to Y-1.

Column

Y.-1 y Y+li
I

* * * * * * 1 * * i

X-1 * * * * * *
I
i * *)

X * * * * 0 * l * * I
* *

)

X+l * j * * * * * -----
* * * I * * I * *
* * * ! * * * * * I

I
I

* * * !
i * * * * *

* * * ; * * * * *
We do this by with the numbers X and Y, and subtract-

ing l. f:rom each. Specifically, we say, "Let P equal X-1. Let

Q equal Y-L" 'l'hen we say, "Count whatever you aile supposed to

count on Square P,Q.u That is, go to the square in Row Col-
. ' .

umn Q, wh1qh 1$ the square immediately to the upper left of X,Y,

and see who's there; make a note of it. Next we say,
11
If Q is

than Y+l, increase Q by 1. 11 Then, 11 Do that operation again.
11

(O.o back .to Operation No. 66, or whatever it was, where we said,

"Count and keep track of who's there.'') At the beginning, Q was

equal to it 11? therefore less than Y+l; therefore the instruc-

tion.· says to increase it by 1. So Q is changed from Y-1 to Y ·

-20-

And the "counting" operation is repeated. Wh.o.ever- is. located

in Row p, Column Q, which is now Row X-1, Column Y, is .counted.

Is Q less than Y+l? Yes,, since it is equal to Y. Therefore we

add 1, changing Q to Y+l, and perform Operation 66 again, which

is to count the person located at Square P, Q1 which is Square .

X-l,Y+l.

We have now counted, by membe:rship in the dif'f'erent groups,

any individuals located in those three squares in the row just

above the individual located at X,Y. The instruction says to

increase Q again, if Q is less than Y+l. But Q is not less; it

equal to Y+l. So the machine does not increase Q. What does

it do? It simply moves on to the next instruction, which says

to increase P by 1. P, which was equal to X-1, becomes equal

to X. We also instruct the computer to subtract 2 from Q, so

that Q goes back to Q-1, and we "sweep'' the three squares on Row

X, starting with the square to the left of X,Y, and finishing

with the square to the right of it.

We don't want to.count the individual at Square X,Y; it's

himself', not a "ne;1ghbor .. " We need a special instruction for

that, which I '11 come to in a minute. The same way tpat we increased

Q by 1, until Q was equal to Y+l, we sweep this seconli row. When

we get to the space to the right or the vidual we're doing

this for, the instruction puts Q back to Q-1 and adds 1 to P,

which becomes P+l, and we do it on the third row of' our 3 x 3
square.

We need a "skip" rule and a "stop". rule. We skip the square,

X,Y, by an instruction that says, "If P =X and Q • Y,.skip to

-21-

that instruction where you add 1 to Q, passing over the 'count'

operation. 11 There different ways to do this; if the computer

doesn't understand the expression, "If blank and blank, then

we may have to put 1 t through a "s cpeening 11 procedure, where it·

proceeds normally i.f P does not equal X, otherwise it looks to

see whether Q equals Y, proceeds normally if it does not, and

point skips if P and Q failed both tests.

For 11 Stopping" the procedure, we do with P what we did with

Q. We said, "If Q is less than Y+l, add 1 to Q," otherwise the

next instruction said to put Q back to Q-1, and add 1 to P. We

need an instruct;1on that says, "When Q is equal to Q+l, if P is

equal to P+l you're done, do the arithmetic on the basis of what

you have already counted." Thus every time it comes to where

Q is equal to Q+l, it either goes tq the next row by increas-

ing P, or, if P is already up to P+l, it skips the instruction

about adding 1 to·· P and doing· it again, and goes on to the next

opera t;t on.

Before we lqok at that operation, let's look at how the com-,..,.___ .

puter "counts," Every square has an associated number, namely,

the group numbe:r of the individual on· that square, if there is

a.nybqdy on that square. If there's nobody on the square, we can

use the number 0. "Count.tng" .tnvol ves this kind of instruction.

Keep in mind that the computer can look at two numbers and tell

whether or not they equal> just as it can look at two numbers

and tell. which is larger. We "name" two variables for the com-

puter, one is named "Like" and the other is named "Unlike, 11 and

we can abbreviate them L and U. For each individual whose neigh-

borhood is.to we start with L = 0 and U = 0. This

" . '

-22-

is where anybody starts when he wants to. count. He adds 1. to

his subtotal every time ·he finds something worth counting; and

if his starting subtotal is 0, his ending subtotal i.s equal to

the number of things he counted. So we put L and U at 0, and

te the computer, if the group number associated with a square

is the same as the group number of Individual X, Y, to add 1 to

1. If' the group number is different from the group, number of

Individual X,Y, look and see whether or not it is alsq differ-

ent f'rom 0. If it is different from X, Y and different from 0,

add 1 to u. (If it is equal to 0, it doesn't add anything to

anything.) Then it goes on to the next square, in acqordance

with the procedure described above, adding 1 to Q, or adding 1

to P and going through the next row.

Since L started at 0, and increased by 1 every time an indi-

vidual was encountered who had the same group number as Individual

X,Y, when we've been through the 8 spaces surrounding our central

individual, L has increased by 1 for every like individual encoun-

tered. Similarly for .U. And subtPacting L and U from 8 we have

the number of blank spaces, if we want it.

Now we have counted, and we have our data. What do we do

with them? We tell the computer to divide L by L+U. This gives

us a number from 0 to 1, the fraction of total neighbors who are

of the same group as lndividual X, Y. We now bring in a :piece

of "data" that we put into the project, namely, the percentage

of neighbors like himself that a member qf the group. represented

by X,Y needs in order to be satisf'ied. Suppose it is .5. We

ask the computer to compare . 5 with the number 1 t obtained when

-23-

it divided L by the sum of L and U; if .5 is larger than that

ratio, the individual dissatisfied, and we invoke the proce-

dure for ind:!,vidt.+als. We '11 get to that in a min-

ute. If . 5 is less than the rat:Lo obtained by our count, the

individual is satisfied and we leave him and go on to the next.

look at how we on to the next individual, since

we're going to have to do that anyway, even if we perform for

this individual the search for a better place to go and move him

there. Let's suppose, therefore, that this individual doesn't

need to move--that's the same as supposing he has already found

a place and moved--and see what we would do next.

You have probably guessed. We change Y to Y+l, leaving X

as 1 t was. This moves our reference numbers to the individual

in the same row as the one we just worked with, one square to

the right. And then we repeat the whole procedure.

We need one little safeguard. If the individual we just

worked with was already in the right-hand column, there is nobody

to his right, If there a:.re a total of n columns, Y was equal

to n. We need an instruction like, "If Y == n, change Y to 1,

cnange X: t.o X+l, an<;! go ba,ck to Instruction No. 55." This means

that it's come to the end of the row; it goes back to the first

entry in the next row and does again what it's already done.

[This ought to remind us of a problem we skipped a min-

ute ago. Because I pretended we were dealing with somebody

in the third row and the fiftq column, suggesting that there

were eight squares, we didn't consider what hap-

pened if there were only five columns. In that case the

-24-

. individual was on the right-hand edge of' the terri tory.

The computer can't look in the square to the .right of that

individual, because there is no square. Nor can it look

f'or an individual in the square one row up and one column

to the right, because there is nobody there either. Indeed,

if' our individual were located in the upper right· corner

there would be nobody in Row X-1, because . there is no Row

X-1, nor would there be anybody in Column Y+l, because there

is no Column Y+l. So we need a subsidiary instruction; after

putting P equal to X-1, we have to say, "If' P • 0 skip the

next few operations and add 1 to P. 11 Similarly, "If Q = n

don't increase Q by 1 but put it back to Y-1 and increase

P by 1 and start the next row." This is all straightforward

but important, because if we 'forget it the computer will

do one of two things, depending on the exact instruction

that we gave it. It may stop the whole program and send

us a "diagnostic message," telling us that it has an impos-

sible instruction. That will be a nuisance, and we shall

have to find out what's wrong w:!, th the program before we

can get the computer to do the job. Worse--again depending

on the exact language we used--the computer may find that

we put nobody in any place labeled p ,Q, where Q is greater

than n, and proceed to treat it as a blank space• giving

a 0 value to anybody who was never given any other number,

and count a blank space. If' blank spaces don't matter in

our arithmetic, no harm is done; but if we want to. calculate

population density in the local neighborhood, we have treated

-25-

territ9ry beyond the boundary as though it were unoccupied

terri tory within the and maybe we didn 1 t mean to.

And beqause the instructlon is feasible, the computer never

tells us that .it's something we didn't intend. It

is merely interpreting an instruction literally, in accor-

dance with certain rules of .interpretation--rules that gov-

ern contingenc.ies, and that we may not have been aware of

or alert to--and instead of stopping and ringing a bell because

we told it to do something ;tmpossible, it does something

possible that we didn't intend 1t to do.]*

* * * * *
Now, here is where we are. For one individual we've found

out whether or not he's satisfied. If he's satisfied we've moved

on. If he 1 s not satisfied we have reached the guts of the pro-

gram. We must search the board to see whether he'd like to move

somewhere, and move him. Once we have done that we've done all

is, for kee.i;>ing records. If we can move this indi-

vidual to the place he'd like to move to, we 1 ve done the only

significant thing there is to do. We simply go on to the next

person and do same tning for him if necessary. Then on to

the next person. And we just keep it up until nobody wants to

move or until, by we call it quits.

We shall, of course, need a way to go back to the upper left

corne:r when w19 reach the lower right corner; but we've had enough

practice with that sort of thing so that it's clear that, when

X = .m and Y = n, ;tnstead of ad<;ling 1 to Y, or switching back to

the next row and adding 1 to X, we identify ourselves as in the

*The trouble may be even harder to diagnose if the overall
format is no larger than the rectangular array we are working
with; 1nstead of getting a zero beyond the :right margin, the machine
may pick up the first entry in the line below·

-26-

lower right corner and put X back at 1, Y back at 1, and start

a new inning of the same game.

so: we now need to search the board for blank spaces that

are better than the space presently occupied by our individual,

find the best among them if there is one, and move him there.

Suppose we had already found the best among some blank spaces.

How would we move him? Of course, we don't physically "move"

him. The computer has no hands. Rather we make him· "disappear"

where he was and "appear" where he wants to go. If a chess player

hands his written move to a re.feree, it might say, nMove the knight

from king-bishop 3 to king-rook 4." The referee might say, "I

don't know the word 'move'. u The chess player might then say,

" (1) Let there appear a knight on king-rook 4. (2) Let there

be nobody at king-bishop 3." I.f our individual belonging to Group

2, located at Row 3, Column 5, wants to move to Row 9, Column

10, we tell the computer to change the group number at 9,10, from

0 (which it must have been, if the square was blank) to the same

group number as presently occupies 3, 5, namely, 2. We then tell

it to change the group number at 3,5, to 0. In effect, we have

"moved" the individual. Henceforth the computer's record shows

that an individual of Group 2 who was at 3, 5 has disappeared from

there, and an individual belonging to Group 2 has newly appeared
at 9,10.

Now that we see how we could move him, let us see how to

find out where to move. The general idea is that we .iook, on

his behalf, at every biank space on the board. We evaluate it

from his point of view;. we count the neighbors like him he would

-27-

have and the neighbors unlik.e him he would have at every avail-

able blank space. We keep a running record of' the "best" blank

space we have found. That is, we evaluate the first blank space;

we do it for the s1=cond, compare them, and remember the location

and the score of the better of the two; we then evaluate a third

blank space, it with that one that we saved, and keep

the better of the two. And so on f'or the fourth. To "save" the

better of the two means that we remember the location and the

value. We might do this by giving names to the three pertinent

numbers. The location is recorded by row and column, and we give

a variable named "R" the row number of the square we want to save,

and we call '!C" the column number of the square we want to save.

The score we can call "S." If the latest square we examine is

not as good as the last we saved, we leave R, C and S alone.

When we find a square that is "better" than the one we saved,

we have the computer change R to the row number of this new and

better square, change C to the column number of' this new and bet-

ter square, and change S to the score value of' this new and bet-

ter square. That "saves" this new sql\are in the memory, and ''forgets"

whatever the square was that we were carrying along as the best

so far.

(We need a rule to cover ties. We can be arbitrary; keep

the o+d one, the new one, keep the nearest one to the indi-

vidual on whose behalf we are searching the blank squares, or

even pick a random number and take the new square if the number

is odd and keep the old one if the. number is even.)

When we get to the end of the board, having looked at every

blank square, we compare the "best" available space with the space

-28-

the individual is already at, and move him as eatlier

if the best blank space is better than where he is. Othel:"Wise

we leave him alone. Alternatively, we can begin. this process

with the score of the individual's own position, letting R, C

and s denote the individual's own row, column and surrounding

score (using a slightly different scoring formula if we want to

give the benefit of the doubt to staying put, or if we want to

make the "improvement" exceed some minimum cost of transfer),

and compare the first blank square with his home square, "saving"

his home square until one is found that is better. If none is

better, we complete the process, having "saved" his original site.

[Here is a good place to illustrate the kind· of perplex-

ing and infuriating error that can creep into a program.

Suppose we devise the program the way I last described, namely,

by evaluating sequentially the individual's own square and

all blank squares, 11 saving" .tn the computer's memory the

best spot found so far. At the end we "move" the individual.

If he is to stay put, we might simply "move" him to his own

square. But be careful! If we "move" him the way I describedJ

the computer carries out two operations. · First it "changes"

the gro4p number associated with the individual 1 s own square

to the group number of that same individual. "Change 11 is

the wrong word, of course; it substitutes !'or the group num-

ber that was on that square the group number of the individual

in question, which is exactly the number that was already

there. It replaces 2 with 2 or 1 with 1 or 3 with 3. No

harm so far; being an idiot, 1 t doesn 1 t mind carrying out

-29-

foolish instructions, and the computer has no way of "notic-

ing, or doesn't care, that we have asked it to replace a

number with the same number. It is that second step in the
!:::

JProcess that can cause trouble. Now that we have caused

the right group number to show up on the square that the

individual "moves" to, namely his own square, the computer

has to make the individual "disappear" at the square he started

from, and it does this by changing the value on that square

to 0. So, if our individual was a member of Group 2, the

computer changes 2 into 2 and, immediately afterward, changes

the 2 to 0. The net result is that the individual has "moved

away." He is no longer on the board! population of

Group 2 has been reduced by 1. Individuals who move to another

square are still with us; individuals who do not move at

all, i.e., who want to "move" no place, erased. Unless

there is something in the dynamics of moving that causes

everybody, after some point has been reached, to keep mov-

ing, the entire population will disappear. When the computer

has finished the entire project, we ask it to type out, in

a rectangular array of rows and columns, the group numbers

corresponding to all the spaces, and we get a rectangle of

Q IS •]

The only part of the process we haven't covered that of

locating, one at a time, all of the blank squares. But by now

that must look easy. We let the computer start in the upper left

corner and go the rows from left to right. At each square

we have the computer test whether the group number is greater

-30-

than 0; if it is it skips the evaluation process and goes on to

the next square, because if the group number is greater than 0

the square is not blank and is not a feasible destination. Wt1en

the group number is 0, the computer performs the kind of evalua-

tion that we have already looked at, scrutinizing the 3 x 3 square.

[Here I can illustrate another pitfall. It probably

wouldn't occur to you, as it didn't to me. Only when some

strange result arouses your suspicion do you begin to look

for what may have gone wrong. And very possibly you will

find it only when you do as I did, following a bit of advice

I found in a book on the subject, which was to go through

one step of the program completely on paper--not doing it

on paper the way one would do it on paper if he had no com-

puter, but following on paper in exact detail the in&truc-

tions I had the computer. That way I found what I

had done wrong.]

[What can happen is this. Suppose there is a blank

square just to the right of the individual on whose behalf

we are conducting the search. When we count the neighbors

who surround that blank space, we count himself! In other

words, if the blank space is a nneighboringn space, then

he, where he is right now, is a neighbor of that blank space.

If a real person enters a vacant house next door and looks

around to see who his neighbors would be if he moved there,

not being an idiot he will know that he can't count himself,

because if he moves he won't be next door to himself. But

the idiot won't recognize that the individual on whose behalf

-31-

we I searching can never be his own neighbor. We only

t;<;>ld him to count "people" in the houses adjacent to any

. given blank square. And if by coincidence it turns out that,

_not counting himself, the two squares are equally attractive

-·the one where he already resides and the one adjacent to

if he correctly omits himself as a neighbor in evalu-

ating his own neighborhood but neglects to omit himself as

a '.'neighbor" when he evaluates the neighborhood of a neigh-

boring square, the blank square will always have one more

neighbor like himself than the square he is at. Under the

rules, he will move to it. Instantly the square he vacated

acquires a "neighbor" like himself. It is himself. The

space. he moved to "lost" a neighbor and the space he moved

from "gained" a neighbor. If the rest of his environment

stays put, he will hop back and forth forever, or until so

many moves have been made that the computer runs into its

instruction to stop.]

[This is an easy error to correct, but it is an easy

one to make and it may not be an easy one to find. It is

the kind that you may find if, keeping your wits about you,

you put yourself in the idiot's place and do his job labo-

riously.]

[I have mentioned a couple of these ways that the pro-

gram may go astray, to emphasize how cautious you may have

to be when your servant will literally perform every act

in exact compliance with what you have told him to do· J
Now let's recapitulate, The guts of the program is a lit-

tle procedure whereby the computer examines, one after another,

-32-

the eight squares surrounding a given square. It comp-utes a "score 11

as simple or as complicated as you please, depending 'Ori the group

numbers of the individuals in tnose squares. This little process

then embedded in a surrounding process; the surrounding pro-

cess is the search of the whole board for blank squares, perform-

ing that central process just described and keeping track of the

"best" location. Finally we have some arithmetic that is equiva-

lent to "moving, 11 if moving is indicated.

Now we have taken care of an individual. We have a still

larger process in which all of that is embedded, a proces's by

which we do this for every individual on the board, i'li some speci-

fied order. Then that in turn is embedded in a still broader

set of instructions that tells the machine when to keep going

and do it 1 again, and when to stop.

Basically, it ean be told to stop when everybody has had

a chance to move and nobody did move (a very easy kind o'f ins truc-

tion to provide), or after everybody has had some specified num-

ber of opportunities, say a dozen complete "innings" in which

everybody had his chance to move (also an easy kind of instruc-

tion to give, the computer just adding one to some counting vari-

able every time it switches back to the upper left corner, with

a stop rule when that counting variable hits the limit), or (per-

haps too complicated for us to write out, but no problem for the

computer if we can write it out) when some endless repetitive

pattern of movement has been reached that looks as though it will

go on forever.

All of this can be further embedded in a packaged research

program. It is easy (if tedious) to tell the computer to use

-33-

successively small, medium and large rectangles, or to use two,

three or 'f'our different groups successively, or to use two groups

of equal' slightly unequal and drastically unequal' size, and to

use values o'f .3, .5 and .8 successively as the "satisfactory"

fraction of neighbors like oneself, for the two groups separately.

This, is just a matter of the computer's storing its results and

changing some basic "data" at the end of an embedded program,

and going back to the beginning and doing it all again. And,

as we could within the program itself, we can give contingent

instructions in our research program, e.g., enlarge the rectan-

gle successively by two rows and two columns as long as each enlarge-

rnent causes a significant change (precisely defined numerically)

in some specified average values, stopping when further enlarge-

ment to make no further difference in the results.

And so forth. And again it can calculate averages, standard devia-

tions, correlation coefficients and more complicated statistics,

printing out what we want and even plotting diagrams. (Diagrams

are plotted by nothing more subtle than repeated use of the tele-

typewriter space bar: a value of 14 is denoted by typing 13 spaces

followed by a dot or an asterisk, or 14 hyphens if a bar diagram

is desired.)

* * * * *
And that's it. That's the "computing." But where are our

results? If it were a real idiot pushing nickels and dimes around

on a checkerboard, we could walk into the room and look at the

hi i .t. · And if he had kept checkerboard, copying or photograp ng

an account of the moves, we could look at his records of how many

-34-

people moved, how much total distance was moved, how many neigh-

bors like themselves people had at the beginning and how many

they have at the end, and all of' that. But since this was a com-

puter, all of our data exist in some magnetic f'orm at the other

end of a telephone line.

The computer has our results; now we have to instruct the

computer, like the dog that has retrieved our partridge, to drop

it in our hand. We have to instruct it to type out the results

that we want. (We have to make sure that it types out only what

we want, because. it may have a great quantity of useless individual

statistics in its memory, of which we want only some totals and

some averages.)

At this point it should be clear that we could ·have kept

running totals of all the things we added and all the things we

counted, and if we know the formula for an arithmetic mean, or

of a correlation coefficient or a standard deviati.on, we can instruct

the machine to multiply certain things and add certain things

and divide by certain things and giVe us the resulting st.atistics,

rounded off to whatever accuracy we like.

We can also instruct the machine to "label" the nwnbers it

prints out. We can do this by having the instruction, "Print

the average number of moves per member of Group 2," preceded by

an instruction like , "Print 'Group 2' ; print colon; print apace."

And a little earlier it would have printed a table heading with

an instruction like, "Print 'Average Number of Moves'." Of course

we wouldn't actually say, "Print the average .number of moves for
; d

Group 2." We would say something like, "Print where

-35-

n(2) is''the number of individuals belonging to Group 2, and m(2)

is the "counting variable" that kept track of another move every

time a member of Group 2 made one, and represents the total moves

made by that group. The computer has been given a language so

that, when two variables are separated by a slash, the first is

to be divided by the second; and so that, if that expression :fol-

lows some recognized verb like "print" or "type," it goes to a

list of "m() " values and finds the i tern "m(2) , " gets n(2) :from

a list of "n()"values, divides the former by the latter and

activates the teletypewriter keys to type out the result. And

there are techniques by which to instruct it to print only to

the third decimal place, or to print hyphens if no such number

exists, just as we can arrange to have it space things across

the page and down the page in the form of a neat table with head-

ings.

If we want the computer to give us a picture of our "town 11

with the individuals belonging to different groups distributed

around the town, we need a way to convert lists of numbers, and

lists of lists of numbers, into a visual pattern. If the pattern

is two-dimensional, like a checkerboard, and if the lists are

of equal length, it is easy to "list 11 every individual in rows

and columns and interpret the rows and columns as spatial coor-

dinates. Every individual's "location" on a list is denoted in

the computer's memory by two numbers, one the number of the "list"

he is on, the second his position number on the list; if his num-

bers are 3,5, he is in the fifth position on the third list.

We don 1 t want his name--he has no name unless we put a name in

-36-

our program, which we did not--all he has is a identify-

ing the group that he belongs to. So if the group number of the

individual in the f'i.fth position on the third list is 2, the com-

puter types the number 2 as the .fi.fth entry .from the left in the

third row from the top. Because a teletypewriter goes across the

page f'rom left to right and then switches down a line, we can

instruct the computer to run through List No. 1, typing succes-

sively the group numbers of the individuals it encounters on that

list in the order in which they appear, with a space or two between

them on the page for visual convenience, and to switch to List

No. 2 when it comes to the end o.f List No. 1, returning the tele-

typewriter carriage and dropping down one line. It then types,

as the second row of our matrix, the group numbers. of everybody

on List No. 2, that is, of everybody whose first coordinate is

the number 2.

It is worth remembering here that there is nothing spatial

about the material the computer worked with. It worked with what

I have called "lists" of numerical values. It could equally well

print out, separately for each group, a list of' the co.ordinates

of the individuals comprising that group. In the computer 1 s memory,

Row 2 is not necessarily "next to" Row 3; Row 3 comes next in

a search process or a typing process only if, .for conve.nience

of programming, we have the computer "count by 1 's" in order to

guide itself exhaustively through the set of lists. . And if we

had worked with a three-dimensional space, letting the "individu-

als" occupy rooms in a building, there would have bee.n .no way

to type out on a flat sheet of paper a good visual rep:resentation

-37-

of everybody's location. If we visualize the building as having

express elevators, Floor 22 may not be closer to Floor 20 than

Floor 30 is. And so forth.

* * * * *
That pretty well describes how we convert what might have

looked like a fairly complicated procedure to a series of small

instructions that an idiot might carry out, the operations being

things like counting, comparing numbers, substituting one number

for another, and skipping or acting out certain· instructions accord-

ing to whether or not some number is 0 or has reached some upper

limit. A very important kind of instruction is, "Go back and

do 1 t again for the next one, n which is typically accomplished

by adding 1 to some number, or putting some number back to 0,

and cycling the computer back to an earlier point in the instruc-

tion sheet. In actual practice, the instructions all have to

be written in a "language" that itself has already been "programmed"

into the computer. This is essentially a "coding" operation.

Procedures that are complicated and that would be tedious for

us to write out every time we wanted them are given a code name,

usually one that consists of short English words and punctuation

marks; we memorize the code name and let the computer use the

code book to find the recipe for the task we have in mind.

* * * * *
Students who sit at a computer console for the first time

often cannot dispel the impression that the computer is talking

to them, asking them questions or accusing them of error. A pro-

gram like the one I have described might begin, once a "run" has

-38-

been properly initiated, by typing out some explanations, tell-

ing what the program does and what the researcher at .the console

is going to have to do. It may then ask a series of questions,

such as, 11 How many rows and columns ?--Type two numbers separated

by commas. 11 The student types two numbers separated by a semi-

colon and the computer comes back with the charge, "Illegal for-

mula, try again." The student does it right this time, asking

for a long, thin array consisting of 5 rows and 40 columns. The

computer comes back and says, "Only 20 columns fit on a page.

Not programmed to break town in two and print right-hand half

below left-hand half. Can do the job and get the statistics,

but cannot type it out for you. Alternatively, if. it makes no

difference to you, use 40 rows and 5 columns; that can readily

be typed." The language may be cryptic or eloquent, in the style

of telegraphs or of essays, and it may take an infuriating length

of time for somebody who, at the first few words, reali.zes what

he has done wrong but has to sit and watch the whole message be

typed out.

The computer may sound even more human. Suppose in a 10 x 10

array you want four different groups and some blank spaces, and

when the computer queries you as to how many indi victuals you want

in each group, you inadvertently give numbers that add up to 100.
' ' . ' ' ' . .

The computer might come back and say, "Can't you count? You haven't

left any blank spaces. Do you wq.pt me to i search. 100 for

blank spaces, for 100, individuals, making 10,000 stops along the
.' .. (. . .) ·(: ' '

way, when any fool can see that I can't ever find a 'Plank ,space
,, • :· :·. ,·. ; 1 t' •

for anybody the way you've set it up? 11 It sounds. hutnan until

•

-39-

you look at the written version of the program. There you will

find, perfectly deadpan, an instruction written by the program-

mer. The instruction goes something like this. "Let n equal

n(l) plus n(2) plus n(3) plus n(4). If n less than [rows] times

[columns] proceed. If n greater than or equal to [rows] times

[columns] print '· • message. . . ' • " And the message is the

one I wrote above.

In other words, the computer is simply copying the message

that it's to transmit if some number equals or exceeds another

number. It will reliably misspell any word that was misspelled

in the program, just as it will misspell your name if somebody

got it wrong the first time on the addressograph. So keep in

mind that, whenever the computer seems to be "talking" to you,

it is simply copying pertinent messages that were written into

the program as messages to be typed out if certain conditions

arise. If some program were designed, let us say, to help you

calculate the relative merits of two retirement systems, it might

ask you to type your birth date into its memory at some point

along the way. A whimsical programmer could have arranged for

the computer to type out "Happy Birthday" if 1 t 's your birthday.

But nobody 's wishing you happy birthday. If two numbers match,

namely your birth date and the date of the day you're sitting

at the console, there is a "canned" signal to the teletypewriter

keys. To reassure you that nobody is eavesdropping, the program-

mer might have had the computer say, "This is a recording. The

message says 'Happy Birthday.' This recording is automatically

activated when the date of your birth corresponds to today' s date."

-40-

I I I I I

It would be wrong to leave the reader with the impression

that the particular program elucidated in this paper is typical

of what computers can do or are generally used ror. The program

described here belongs to a subset of activities called simula-

tion, that is, the examination or processes that cannot be han-

dled "analytically" and have to be acted out experimentally (or

that are easier handled that way, or that yield analytically more

readily if one has experimented rirst).

It is furthermore in a subset among simulations, namely,

the subset of abstract theoretical models rather than more exact,

concrete, faithfully descriptive models aimed at "realism" or

realistic detail. And among these it represents a very special

subset, those that ha:ve a :two-dimensional interpretation (although

we could add dimensions, e.g., by doing floors in a multi-storied ' .
building, defining "ne.ighborhoods" and "distances" appropriately).

Finally, an especially simplified version of even this model

has been discussed, one in which all groups other than one's own

are lumped together as "unlike," and in which local percentages

are all that matter. An age-group model would be dif.ferent:

a 40-year-old may consider 30-year-.olds "different" but less dif-

ferent than 20-year-olds.

Two features, though, this essay probably shar.es ,l,fith any

examination of how simulations are programmed. . First, "program-

ming" depends on analyzing a rich and complicated phenomenon or

process into its elementary steps. Second, there is an inescap-

able requirement to define the process in exact detaU .•. You can't
'· (.c> t

•
-41-

give a half-articulate instruction to the idiot and wave your

arms and say, "You know, . . . " He doesn 1 t. An interesting

consequence of tnis discipline is that one often learns much about

his own "model" in making the program, even if the computer is

never plugged in. (Sometimes he learns that he has to throw 1 t

away: .there are inconsistencies that can't be programmed, or

what appeared to be a new idea embodied in a new model proves,

when reduced to an exact statement, to be the same old idea that

underlay yesterday's model.)

Annex

The reader may wonder what an actual "program" looks

like on paper. There are several different languages for commu-

nicating with a computer via teletypewriter; some look a little

more like ordinary English than others, but in all of them words

like "if" and "go" and "print" and "next" and "for" are act ly

code names for rather complicated routines the computer has to

follow.

The languages all involve a rigid syntax. Some have

larger and more flexib vocabularies than others. One language

might allow you to say, "Stop if both A and B are true, 11 or "Stop

if either A orB is true"; another might permit only the state-

ment, "Stop if A is true." You then have to make the equivalent

of the nor" statement by two successive statements, "Stop if A

is true, 11 followed by, "Stop if B is true." If B is true but

not A, the second instruction will take care of the stopping,

with the effect of an "or" statement. The "and" statement could

similarly be achieved by two successive instructions: "If A is

false, skip the next instruction," followed by, "Stop if B is

true."

Below is printed an eleven-line 11 subroutine." It gen-

erates a "random town" of individuals, each identified by his

"group number," each occupying a space in a rectangular array.

7110 FOR G = 1 TO 3
7120 z = 0
7130 RANDOMI
7140 I = INT(M*RND + 1)
7150 J = INT (N*RND + 1)
7160 IFG(I,J) # 0 THEN 7130
7170 G(I,J) = G
7180 z = z + 1
7190 IF Z # Z (G) THEN 7130
7200 NEXT G
7210 RETURN

-2-

Lines are numbered. Somewhere in the program there

was an instruction, "GOSUB 7110" ("GO to the SUBroutine at Line

7110") , sending the computer to Line 7110. It starts working

from there, continuing down the numerical list· of instructions

until it comes to the word, "RETURN." That is a code word mean-

ing, "Go back, now, to where you came from, when you came in at

Line 7110." (If there are several places in the whole program

where a "random town" is needed, at each such place there will

be a line of instruction saying, "GOSUB 7110"; at Line 7210, get-

ting the "RETURN" signal, the machine must go. back to the particu-

lar place at which the referral occurred.)

Line 7120 merely introduces a "counting variable."

Note that at Line 7180 a +1 is added to Z. The several instruc-

tions between 7110 and 7200 are going to be followed repeatedly;

and each time the machine runs through the set of instructions

it will, at Line 7180, increase the value of Z by 1, thus "count-

ing" the number of times it has run the gamut from 7120 through

7190. In Line 7190 the symbol, #, means "is not equal to," and

Z(G) stands for some number; so as long as Z is less than Z(G)

it goes back to Line 7130 and plays it all over again. That's

what the "IF . THEN" instruction does. Z (G) is some number

that the machine knows, because we told it earlier what Z (G) stands

for. If Z has reached, in its "counting," the value ,of Z(G),

the "IF" condition is not met, so the machine does not go back

to Line 7130 but proceeds straight to Line 7200.

Line 7 200 ties in with Line 7110, and nEd line means

anything without the other. Here is what they mean together.

-3-

Some variable, known as G, is going to be given successive val-

ues, starting with G = 1 and going through G = 2 up to G = 3.

That is what the quasi-English phrase, 11 FOR G = 1 TO 3," sets

up. But at each successive value of G, the program that follows

(Lines 7120-7190) will be completed. Each time that program has

been completed for one of the values of G, Line 7200 says, "NEXT

G," and, in conjunction with 7110, that means to step up the value

of G to the next number, 2 or 3 as the· case may be. Line 7110

halts the process when the program has run with G = 3.

Now, what is the machine doing in between? Well, think

of G as the number of "groups" into which the population has been

divided. According to 7110 we are going to use three groups.

Z (G), down in Line 7190, stands for the number of members there

are to be in Group G, a number we put into the program earlier.

If there are to be 40 individuals in the first group, Z(l) = 40.

Then if there are to be 20 each in the second and third groups,

Z(2) = 20 and Z(3) = 20. When G = 1, Z(G) is Z(l) and Z has to

count up to 40 before we switch to the next G. Then G changes

from 1 to 2; Z is put back at 0 by Line 7120 (or else it would

continue counting, "41, 42, . . •) ; then something is done over

and over until Z reaches Z(2) = 20; and then "NEXT G11 takes us

back and we do it all with G = 3.

But what is the 11 something" being done in there, from

7130 to 7170? What we do is to pick at random one row among the

M rows in our rectangular array--one "list 11 among the M lists

that we shall think of as rows in a table--and one column among

the N columns in our array--one numbered place on the 11 list" that

-4-

gets chosen. We earlier told the machine we wanted M rows and

N columns. Suppose we wanted 8 rows and 8 columns; then M = N = 8

and the machine will read Lines 7140 and 7150 as though· we had

writ ten 8 's inside the parentheses where the M and N occur. Line

7140 is full of code words, but what it does is to have the machine

pick at random a number from 1 to 8 and call that number I. Line

7150 has the machine pick another number at random, from 1 to

8, and call that one J. Thus, the two lines together pick, at

random, two numbers, one of which we call I and let it stand for

a row, the· other we call J and let it stand for a column.

Now we come to G(I ,J) in Line 7170. There are 64 dif-

ferent possible (I ,J) combinations if we stick to 8 r-ows and 8

columns. Each combination has some number associated with it,

and the "name" of that number is "G(I;J) • 11 Thus G('3,'5) stands·

for the number associated with the third row and' fifth icolurrin.

For simplicity we begin with G(I ,J) = 0 for every value of I and

J. We are going to replace the 0 's with numbers 1. through 3,

and let them stand for the group memberships of the individuals.

We can think of the 0 as meaning "unoccupied,". if we wish, and

our process is to locate individuals, identified by group member-

ship, at empty spaces in the I ,J array.

Look at 7160. It says, "If the group number at Row

I, Column J is not 0, go back to 7130 and start again." In other

words, if there is already an ;tndi vidual at the locati'on denoted

by I and J, leave that location and go pick another I and J at

random. (Picking at random, we are bound· to get repeated "hits"

on particular squares; we want to populate only the empty spaces

-5-

that our procedure turns up for -us.) What if G(I ,J) is O? That

means that, at the particular I,J location we have picked at ran-

dom, there is nobody there yet; so we move on to the next step,

7170, and put somebody there.

The way we do this is simple. Remember, G(I,J) is merely

a number associated with Row I and Column J. To be concrete,

let I = 3 and J = 5 ·be the two random numbers we just picked.

The number associated with .Row 3, Column 5 is 0; Line 7170 says

to change it so that it is equal to G. What is the value of G?

It's 1, 2 or 3, according to whether we are in the process of'

locating forty 1' s, or twenty 2 's, or twenty 3' s. Line 7170 says

to substitute whatever value G currently has for the value at

was originally there. If we are still locating the 40 members

of Group ·1, 0 changes to 1 at Location 3,5. (If we pick a 3 and

a 5 at random sometime later in the process, ne 7160 will tell

us to go back to 7130 and pick new row and column, because there

is a 1 there now.)

So here's the way it goes. We put G equal to 1; we

pick two numbers at random, call t:blem Row and Column, and perma-

nently attach a 11 group number" of 1 to that particular pair of

numbers drawn at random. We repeat this until we have attached

the number 1 to 40 different formerly empty I ,J combinations·

At that point z has been upped 40 times and we go back to 7110,

change G to 2, put Z back to 0 y and pick I and J values at ran-

dom until we've hit 20 blank spaces and labeled them with 2's.

Then· G goes to 3, and we pick more I ,J coordinates at random·

By now, with 60 spaces occupied, the chances of pick-

ing a blank one are only 4 in 64, so the machine may have to pick

-6-

a score or more of I,J pairs to :find one where G(I,J) = 0. It's

speedy, though, and you won't notice the time it takes. It's

when we get three 3' s located that the situation becomes inter-

esting. There's one blank I,J combination left, and 1 chance

in 64 of finding it on a given random try. But af'ter repeated

random tries it gets found, and a 3 is located there. There are

now forty 1 's, twenty 2 's, and four 3 's located at the 64 differ-

ent combinations of I ,J values. No blank spaces left. What does

the machine do now?

IT DOES EXACTLY WHAT WE TOLD IT TO DO. It picks two

numbers from 1 to 8 at random, checks its memory to see whether

G(I ,J) is or not 0, finds the space occupied and, since G(I ,J) # 0,

goes back to 7130 and picks two more numbers for I and J. .Again

it finds the space ocq.upied, and goes back to 7130. And back,

and. back, and back. Forever.

We gave it an uncompletable task.; Not an unperformable

one, an uncompletable one. We forgot we had only 64 spaces when

we asked for 40, 20 and 20 as group sizes (or we forgot we had

4o, 20 and 20 when we told the machine to work with 8 rows and

8 columns). We never programmed the machine to stop when the

last blank was filled, because we never intended :to fill the last

blank. We always planned to have fewer indi victuals in total than

the number of I ,J combinations, so we made no plan for the con-

tingency that blank spaces would be exhausted. The machine goes

on spinning its wheels forever and ever.

People do make mistakes--mistakes like the .one we made

above. It may be wise to· put in a f'ew safeguards. ·An easy one

-7-

is t'o the machine add Z(l)+Z(2)+Z(3) and multiply MxN early

in the program and; if the sum exceeds the product, to stop and

type us a message. Another is to have, along with Z as a count-

ing variable, another one, W, which does not go back to o, and

to tell the machine to stop if W ever gets to some astronomical

figure, indicating that something is being repeated insufferably.

The formulae at 7140 and 7150 are full of code symbols;

but if you've read this far you may as well hear what they do.

RND is a single instruction and tells the machine to find us a

random number between 0 and 1, i.e., a random fraction. The aster-

isk is the multiplication sign, so M*RND tells the machine to

multiply M, the number of rows, by some random fraction; the result

will be a number in the range from 0 to M, or 0 to 8 if we have

8 rows. By adding 1 we convert that to a number f'rom 1 to 9.

The symbol INT() means to take the "integer value" of whatever

is in the parentheses, the integer value being what's left when

everything after the decimal point has been dropped. Thus INT(4. 7332)

is equal to 4. So by taking just the integers we end up with

randomly selected integers from 1 to 8. * (The word, "RANDOMIZE, 11

in Line 7130 tells the machine to pick a new set of random num-

bers every time we use the program, not to pick a random selection

the first time and remember it.)

The name of the language in which Lines 7110- 7210 are

written is BASIC.

*There is a very small chance that a random number selected
by the computer will be exactly 1. In that case the integer value
of (8*1+1) will be 9. We don't want a 9. We can avoid this in
various ways; otherwise what can (improbably) happen is that one
member of our population will be missing. He' 11 be located in
the nonexistent Row 9. He'll never bother us there, but the "count-
ing" will proceed as though he had been put in a legitimate spot·

-8-

The actual program described in this paper runs to some-

thing over 200 lines with the gep.eral appearance of Lines 7110-

7210.

