ON LETTING A COMPUTER HELP WITH THE WORK

Thomas C. Schelling

Teaching & Research Materials No. 12
Public Policy Program

John F. Kennedy School of Government
Harvard University

November 1972

Preface

If I had to teach about computers I would not begln
with the "slmulation model" that this paper is about, nor carry
it to such length if I did. (But if somebody had to learn about
computers, he would not choose me to learn it from.) The moti-
vation of this paper is the other way around: it is written for
people who already have acquainted themselves with the model--
who have even, I hope, experimented with 1t by hand--and who,
having invested that much already, would like to use it as a vehi-
cle to which a compﬁter might be harnessed, to see what comput-
ers can do and how they can be made to do it.

My advantage as teacher is that I so recently learned
what I know and learned most of it trying to get computers to
do the kind of Job described here. To protect the reader from
the grosser consequences of my amateur status I asked three peo-
ple to look at this essay who had already helped me along the
way . While I cannot cite them as warrantors, I can thank them.
They are Alvin W. Drake, Associate Professor of Electrical Engi-
neering, Massachusetts Institute of Technology; Tom Shemo, Jr.,
Manager of Computer Services for the John F. Kennedy School of
Government; and James W. Vaupel, Instructor, Institute of Policy
Sciences and Public Affairs, Duke University.

I have to add that one of the exquisite learning expe-
riences of my life occurred one Sunday afternoon when, for three
hours in a room with a blackboard, Jim Vaupel completely disas-

sembled my "model" into its smallest components and reassembled

it before my eyes as a set of instructions that a computer could
follow. (He salled for Europe»next day and I was on my own.)

The paper that follows explains in rather minute detail,
for people who have no idea of how a computer might be made to
do a complex job, how a moderately_complicated task can be made
into a "program" that a computer can follow. Two cautlonary points
need emphasis. | ,

One 1s that the machine is being used to help with the
work but not to design fhe experiment or to draw the conclusions.
The fact that the computer can produce results without error does
not mean that it preduces reeults with any significance. The
machine can save a 1et of time and trouble (and sometimes take
a lot of time and make a lot of trouble); but the fact that the
results come out of a computer does not give.them any. special
authority--possibly thevcontrary,uon account of the second point.'

That is that’the e6mputer~doesvmost of its work away
from our scrutiny. It processes raw meterials,and‘gives_back
a refined product. We lose some touch wilth. the intermediate steps.
We don't "see" what is going on, and may bury the most revealing
part of the work in a magnetic memor&_and,never know what 1s hap-
pening. | ‘ |

Let me illustrate.: We eould‘experiment‘by hiring a
thousand drivers to evacuate a parking lot with alternatlve sys-
tems of exits and traffic lights ; we might more cheaply simulate
the process on a computer 1f we ceula‘specify every driver's reac-
tion to his location and the'thaffic surrounding him, With the

computer we could do multiple runs cheaply, varying the traffic

-3

controls, the number of vehicles, and the driving conditions.

The computer could tell us things no driver would ever notice.

But real drivers might notice things--important things--that the
computer would never notice. The computer economizes by suppres-
sing information. Unless we can guess what information will be
most revealing, and ask for it,kcrucialkevents and processes will
be unrevealed.

The experiment,describedrin this paper 1s one that can
be done by hand, at least 1n simplified fashion on a small scale.
In this experiment therg is no substitute for doing it by hand.
Far more insight into the processes at work is obtained by a few
hours of tabletop work than by the most elaborate project dele-
gated to a computer, If, for this particular experiment, one
had to choose between,excluéive reliance on a computer and no
computer at all, I would unhesitatingly recommend no computer
at all. But if one had a hundred hours to devote to the experi-
ment and a computer to help, I would recommend a few hours at
the tabletop and'ninety-odd hours 1in command of a computer.

There is a third cautionary point for anyone who may
be tempted to let a computer help with the work. A computer pro-
gram for a "slmulation experiment" has to be elementary and exhaus-
tive. An entire process must'be decomposed into simple steps
that are exactly speéified. Often the program 1s designed by
someone who is not the experimenter, 1n a "languagg" that the
experimenter is poor at reading. The programmer has to make a
myriad of small decisions, some rather arbitrary, in operation-

alizing the experiment for the computer. It is remarkable how

Y

easy 1t i1s for the experimenter and the programmer to have dif-
ferent ideas, and not to realize that they have different ideas,
about detaiis of the model. Perplexing results can occur because
of some minor discrepancy between what the experimenter thought
was happening and what the programmer made the computer do, each
unaware perhaps that there was an alternative interpretation of
the words they used to describe and to discuss the model and the
program. Sémetimes'the small discrepancies have large effects;
if so they may do more harm i1f undetected but may be less llkely
to go undetected. Sometimes “interésting" results were innocently
planted by the person whé designed the program. The three ways
to minimize these diffilculties are to familiarize the programmer
with the purpose and design of the entire experiment, so that

he acqulres some personal judgment of what matters; to familiar-
ize the experimenter, line by line, with the written program,
whether he understands the program language or not; énd‘to keep
a lively awareness that, notwithstanding those efforts, the prob-
lem is always ﬁhere. (As the paper will occasionally illustrate,
the problem does not entirély disappear when experimenter and

programmer are combined in the same person.)

ON LETTING A COMPUTER HELP WITH THE WORK

This is a guided tour through a computer program--a particu-
lar prog‘ram,‘ one that I cons’truct'éd" to have a’ éomputér do a job
thatk.Ifha‘ve done repeatedly without a computer. (I invite the
reader.f:o” take half an hour to do it without a computer so that
he will know what the job is that the program instructs the com-
puter to do.)* | ‘

The computer can do 1t faster and more reliably, and it can
keep records and compute statistics and print results faster and
more ’féliafjly. It méy take a hundred hours to develop the instruc-
tions with which the computer does the Job; we use a computer
only 1f we want to do the job so many times, or to do it on such
a lérge‘ scale, that a task that takes fifteen or twenty minutes
is m‘o%'é”duickljv' done by a machine demanding a minimum investment
of pérhaps a huﬁdred hours. If we do it five or six’hundréd times
we bréé,k‘ éveh; if we do 1t fivne or six thousand times we're way
ahead. ‘Alte‘rnatively, we can redesign the task so that it is’
more comiplicated, taking several hours rather than fifteen min-
utes, an"‘d'ive can pi"obébly construct the program for the bigger
job in the same time as it would take us to program the smaller
one. 'fhe computer may do the bigger Jjob so fast that we hardly

notice the difference in computer time.

T T C. Schelli r ‘ f Micro-

¥It Ts desoribed in T. C. Schelling, "On the Ecology ©
motives," The Public Interest, Fall 1971, pp. 82-'89, and’ if} more
detall in T. C. Sehelling, "Dynamic Models of Segregation,” Jour-
nal of Mathematical Sociology, 1 (1971), pp. 143-186.

e

An important way to make the Job larger 1s to kaep better
‘records and to calculate better statistics The computer can

multiply and divide large numbers as easily as small ones,and
" because of its speed and reliability 1t allows us not Only tc

do larger "simulations" but to keep mare elaborate records,

When I say the computer is more "reliable" I mean that it
almést never makes a mistake in follcwing our 1nstructions But
be careful: any mistake in the instructions we give it, as long
as the instructions are lcgically capable of being followed, the
computer will carry oub exactly. It will never tell- us that we
gave it a stupid 1nstruction (With skill we can sometimes instruct
1t to recognize preposterous‘results’and to send us a warning
signal; but then it won't tell us if there's a silly error in
that part of the instruction.) The cbmputer‘is able to make silly

mistakes at‘faﬁtastic speed‘énd with'compléfe reliabiiity, if
L somewhere along the way we instructed 1t to make those mistakes

The computer furthermore performs only simple tasks. It
can do an exceedingly complicated Job but only if the Job is
‘broken down into simple tasks., As. an example 1magine a maze.

All passages in the maze are straight lines, all angles are right
angles; all passages are of equal wiqth, all passages that are
blocked end in a wall perpendicul&r to the sides.' You have to
find a way out. You have searched the maze for some pattern,

and you've concluded that there.‘is neapattern you’ll ever find.

A computer can help you. The computar does not substitute a supe-

rior 1ntelligence, it solves the prqblem the way a- reliable, high-
speed idiot would. solve it. PR L

: _3_,‘

The 1diot would pick a route at random and follow it until
he came to a blank wall. Then hefwould go back until he found
anoﬁhef rcute and try that one, and continue this process until
he came out at the end. Eventually, if he chooses routes at ran-
dom,‘even 1f he repeats himself;»the probability that he will
find'his Way out approaches 100% if‘he keeps at it long enough.
Of'course; 1t may take him more than a lifetime. Since the com-
puterbcanAdo‘in a few minuteskwhat the idiot could do in a life-
time, a maze that is "humanly impbssible" to get out of, except
‘by sheer dumb luck, can be explored by a computer that knows how
to'f6110W'the'diagram. It thé diagram'can be expressed numeri-
cally, the computer can do it all with numbers. (The reason I
used stra;ght lines and right éngles was so that we can visual-
ize thé;mazé on lined paper, with a number in every square, and
can descriﬁe every position by its éoordinates and can locate
every‘wail on the side of a numbered square.) |

| The domputér‘can do béttér than that; it can keep track of
where 1t hés“béen. This is whaf the idiot could do 1f he dropped
sunfloWéffsééds behind him and never went down a passagé where
the seédsiéhCWed he had already'béen. In that case, with a guar-
antee against going anywhere twice, there is an upper limit on
the time thevjob will take. "It may still be several 1ifetimes
for. an idiot but a quick job for a computer.

An impressive thing about a computer is that 1t can do this
kind of . Jcb 80 quickly

| An equally 1mpressive thing about the computer is that a
pPOperly instructed 1diot could usually do its Jjob. (He'd just

never get the job done.)

R

I don;t meén an'ofdinafykidiot, I mean a,"§up§r-idiot,”
I mean an idiot with thé‘éhafaéteristigs that (i) he can perform
a rudimentary task if he 1s told exactly what task to perform;
‘(2) he can keep his place in‘an Qrderly_1istlof,instruétiqns,
doing the next task‘after‘he completes each one; (3) he will stop,
"and perhaps ring a bell, 1f fhe inétfuction is incomprehensible
in his language or if the task he 1s told to do is unperformable,
(4) he never makes a mistake or gets tired.

| His" reliability derives from two characteristics he
never makes a mistake in d@ing exactly what we tell him to do;
and he never thinks for himselfq
% % * * *

What, now, are the rudimentary tasks that our computer
can perform for us? To begin with it can add and subtract mul-
tiply and divide. It can keep in ita memory the sums and prod~
ucts 1t obtains in order to perform repeated operations, it can
recall the sums and pro@ucts whenwit needsLthem.‘,Ib‘can'commit
to memory'the‘formulae for_repeated éfithmetical‘operaéions. |
It can erase things from its'memor&k And it can. signal the keys
of a typewriter to type out the answers we want.‘

, Our speedy, reliable 1diot can also keep running totals.
That is, he can repeatedly add numbers and keep track of the
latest subtotal. As a special case, he can count. By adding
one to the total every time he performs an operation,khe "counts"
the number of times he performs it ‘He can keep track of "yari-

ables" that have names or labels, things 111(6 "X n "Y n "hits 1

- -5-

"timesvat bat," and "batting average." He can assign numbers

to these named varlables; he can change those numbers at our instruc-
tion, substituting a new value for an old one, elther arbitrarlly

or by adding something or subtraoting something or multiplying
when‘iHStructed. We can'give him the historical number of hits
aﬁd t1me$ at bat‘at the béginning‘of a game, and have him count
hitsvand4£imes at bat during the game, and at any time during

the géme;and at the end of it he can provide an up-to-date bat-

ting average for each member of the team and for the team as a
whole. We can do this with a real game, or do it experlmentally

if we want to see how much difference it makes to an end-of-sea-

sen batting average for a player to get one more hit during a

season in which he plays a hundred games and comes to bat an aver-
age of four times per game. With a little ingenuity we can instruct
the computer to signal a teletypewriter to type the information

in a table with players' names spalled correctly and the numbers
rounded to. three digits.

The computer can compare two numbers to see whether one is
‘greater than the other and, 1f so, ‘which one. (This is equiva-
lent to seeing whether a number is greater than zero, because
we can always subtract one from the other and compare the differ-
ence with zepo.) We can combine these abilities so that the com-
puter will compare an old number with a new one, replacing the
old one with the new one 1f the new one is larger. If each num-
ber hés a‘name, the domputer cah substitute the name of the new
number for the Qld name if the new number 1s larger than the old

number, keeping track of "who" 1is the 1argest number that he has

come across. .

e

The computer can find a numbered entry in a list. We can
have it compare the batting average of the seventh name in a 1ist
of names wlth the eleventh, pick the 1arger, and tell us the name
that goes with it. In particular, it can start with the first
name on the list and the number that goes with 1it, compare that
with the second, "remember" the larger of the two and compare
it with the third, and keep this up through the 1list, having one
name and one batting average when it gets to the end namely,
the highest batting average and the name that goes with 1t, (We
have to instruct it what to do in case of ties.) It cag simul-
taneously keep a running; total of hits and at-bats, and calculate
a team average. | | | » |

It can also keep a list of lists. We can number the teams

in the National League, and 1t can pick the fifth team and find
the player with the highest batting average on that team. In
particular, it can go ﬁ'hrough the 1list of lists and ‘by -a veombi-
nation of the things I have described find the team with the
highest batting average, as well as the player with the highest
average or the batting averege of the whole League. And of course
it can reject people, 1f we so lnstructﬁit whoi have been at Bat
fewer than a hundred times. If we asterisk the players who are
rookies, who are black, or who play first base, it can treat the
asterisked players as a sub list and find the rookie with the
highest batting average, compare the batting average for black
players with that for the League as a whole, or pick ‘che team

position that on the average ha.s the highest batting average in
the League. | |

-7

What I have described is not everything that the computer ‘
can do bu’c is typical of what . tho computer does, Notice how rudi-
mentary i‘c 1s It can count pick out a numbered item in a 11..,1:
go through a list, keep running fotals,. perf‘orm some amthmetic,
and that 18 about all. With ingenuity we can reduce a complex
task to a series of these rudimentary operations, operations that
will,have to be performed repeatedly but with repetition that is
fast and cheap.) |

‘One ‘more “thing the ,compute:b ;can do that is equaily'simple
but oi‘ a ;sli‘ghtly (differ"ent ‘chéract‘e‘f. In the same‘,rudimentary |

way; it can 'perform‘operation,s‘on jts own instyr’uc’cions. And at

various points' in its instructions we can provide it two'or more

alternative sets of subsequent instructions and have 1t choose

which instructions to follow according to which of several vari-

ables has the largest number associated with it or according
to wbether some number is positive or negative, or according to
whether :L‘c has repeated some operation a stipulated number of
times. |

The reason we often want the computer to operate on its own
| instructions is that this permita us to eccnomize on Instructions.
Let me show you. how. I somewhat exaggera’ced the sophistication
of this idiot He ‘may not k;ncw how to work his way through a
list of 25 baseball players. He may just know how to pick a player
who occupies a certain number on a list, like the 9th or the 25th.:
To make him work his way thrcugh the list we tell him to find
Player No. X and pcrfcrm an operation. In advance, we gave X

the Vaiue"ﬁ'l;“’_ So when told to go to Player No. X, he goes to

‘..'.8'.. | :

"No. 1 and does whatever he 1s supposed to do. Now we wan‘c him
to go to Player No. 2, and ’t;hen No. 3'. We tell him to replace
the value of X wi‘ch X+1. Since X was equal to l X+1 becomes
2. We then say, "Now g0 back and perf‘orm that operation again
for Player No. X." Since we told him to change X to x+1 he changed
X from 1 to 2, and now he does 1t for Player No. 2. Asain he
comes to the instruction, "Replace X with X+1", he replaces 2
with 3 and comes again to "Do it again " If we had to say this
25 times for 25 players, that business with the X and the X+l
is a circultous way of saying: 2, 3," y, 5. . .without using num-
bers other than 1 but we can economize. | | ’

Suppose he has a list of operations to perform in the sequenee
in which they occur on his. list, and the 99th is to perform that
operation on Item No. X in the 1ist. He does it, whatew}ef it
is-—it may be compui:ihg a battihé ‘aireir"alée-l--and- then“ he g'o'es'to
Instructlon No 10‘6 Instruction No. 100 tells him ‘co change
X to X+1. Instruction No‘ 101 says, "If X 1s no larger than 25,
go back to Instruction No. '99"and t-ake it again from there."
Since there are 25 players on the list, as long as there are more
players on the list he goes back and does the next one. If when
he adds 1 to the earlier number he gets 26, he's finished the
list; since he goes back: to 99 only 1f he hasn't finished the
list, he goes on instead to Instruction No. 102. This tells him
to do whatever comes next in the program after he hae oerformed
that operation successively for each of the 25 playere.

1t only took three 1ines of instruction to have him do 1t

25 times. of course, 1f we could Just say, "Do 1t f‘or everybody

-9~

~on the 1’1‘St‘;‘, one after ‘ariother 1n the order in which they appear,"
that would be even simpler for us. But he can be too dumb to
understand that 1nstru¢’cion, ’able 'only to do it for one player
identified by his numerioal pos:Ltion on the 1ist, vet as long

as he can add 1 to a player s number and can check whether the
number he's -=at is no larger than the number of names on the 1list,
he can- perform two operations 25 times and cover the 1ist Just

as well as if he knew what the words meant when we sald to do

1t ‘V'Successively for everybody on the list."

It may not strike you that the one instruction is more sophis-
ticated than the other. But 1f the idiot already knows how to
add l to some number he has in his memory, we don't have to add
words like "every" and "successively" to his vocabulary to get
the effect. It may take us a little longer to write the instruc-
‘tionv,f but. i;c means ke can get along Qith avmuch less articulate
‘ kservant,.*?f R | i
| £ % % * *

Now, after all this introduction, let's go to the task we

want perform‘ed{‘ It 1s the one in Which'individuals are located

¥ictually, to add "words" to his vocabulary, we'd put some
expression like "for one after another" in his code book; and
when he came across those exact words in a program involving 25
items he'd look up the recipe and find a short "subroutine" say-
ing, "(1) Put X=1; (2) Do it--whatever he's to do 'for one after
another'; (3) Change X to X+1; (4) If X less than 25 go back to
#1; (5) Otherwise. carry on." If the computer's standard language
doesn‘t contain an expressian for some regular operation that
we want performed often in a program, we can usually define some
terms of our own by writing short programs that will be triggered
by some code words (somewhat as we might footnote, once for all,
the exact definition of some term we wanted to introduce and use
repeatedly, italicized to recall the foo’cnote, in a set of writ-
ten instructicms to a helper)

» _10~

on squares in a checkerboard pat’cern.‘ We have a r'ec‘th'ah}'guiar board
divided into one-inch 5quarés; It is n squares wide and m gsquares
high, with a total of m x n squares. Some squares are blank,
others have 1ndividuals‘ locatéd on them. E:a.ch individual belongs
to some group, and the groups are numbered 1, 2, 3. L Maybe
there are only two groups, maybe there are a dozen, maybe there
is only one. Each group is 1dentified by & group number, If

2 member of Group No. 3 occuples the cell three columns 1n from
the left and two rows down from the top, we identify the number

3 with Row 2, Column 3.

Each individual is assumed to cé,re about the group ébmposi-
tion of the individuals who are"locatédi near him. Speéifieally,
a member bf Group 3 careé how many of"his "’rieighbors" are also
Group 3 For the moment suppose that if they are members of
other groups, he doesn't care Which other group a neighbor belongs
to. A member of Group 3 distinguishes among neighbors who are
Group 3, neighbors who are not Group 3, and possibly blank cells
in his neighborhood Later we can change this so that a member
of Group 3 considers a member @f Group 4 dif:t‘erent from a member
of Group 5, perhaps considering Group M to be more 1ike Group
3. That will be an easy adjustment to make, a‘fter wé'Ve learned
to handle the case in which mémbef's of each group merelj distin-
guish between "like" and "unlike™ neighbors)

I shall assume that you have read something that explains
the purpose of all this.* (I even hope you ha‘ve‘ doﬁé“it by put-

ting nickels and dimes on a sheet of paper consisting of one-inch

¥The citationskare in the footnote, page 1.

-]l

squareslin a rectangle.) So I shall describe only what we are
doing, ndt‘ygx we want to do it. The "why" relates to the research;
thev"what" relates to how we get the computer to help us do it.

- What we do 1s to have every individual consider his own neigh-
borbood,_decide whether he's satisfled with the milx of like and
unlike neighbors and, if he's not, to consider moving. To con-
sider mqving, he looks around for blank spaces that he likes bet-
ter than the position he is in. If he finds one nearby he moves
to it. Or, perhaps, if he finds one anywhere he moves to it.
Whichloﬁe dbes he move to? Maybe he moves to the nearest one
that is‘decently satisfactory. Maybe he moves to the best space
on the whole board,'regardless of how close it 1s. Since others
meve, too, he cén‘t be sure that the spot he moves to will remain
satisfactory énce he gets there, since he may 1ose neighbors that
he likés‘or gain neighbors thét he dislikes. So he may have to |
‘mOVe ag&iﬁ. Or maybe there‘s a spot that he likes but somebody
beafs:him'to it; or there's a sﬁot that he likes but neighbors
like himself move away befbré he can'get there, or,people unlike
himselffmove into the,neighborhood,before he gets there, so he
doesn‘thove there after all.
| Members of each group have their own féelings about the kinds
of neighbors they want. One group may have strict requirements
for neigﬁbors like themselves, another group may have modest require-~
meﬁts;; The "pequlrements" may be stated in terms of the percent-
age of nearby nelghbors that are members of one's own group.

They all keep moving in turn until everybody's satisfied,

or until everybody who 1s unsatisfied can't find a place to move

-12-

to. Maybe we drop ‘che notion of "satisfied“ and simply say that
everybody compares every avallable vacant spot with the spot he's
at, and moves to the best spot available if it's better than where
he's at. Maybe we impoSe moving éoSts, expressed 1n a ".currency"
that 1s translatable into the "‘a‘bttractivenes‘s"' of different spots;
and the moving cost 1s subtracted f‘fom the attractiveness 1n'order
to pick the spot that is’bes‘t, Cdnsidering both neighborhoo& and
travel distance. And so forth. o

Now this expresses the general 1dea. We can put nickels
and dimes and pennies on the squares, letting the different colins
represent the different groups; A "pénriy" counts the pennies
in its own neighborh.ood, counts the nickeis and dimes in 1ts own
neighborhood, calculates the percentage of the "local population"
that is pennies, and decldes whether or not 1t 1ikes that pér'cerit-
age. It stays for the time being if it likes it--somebody may
move in, or move away, and ‘chaxﬁée his mind later--and if he does
not like his neighﬁérhood he searches the board, or some portion
of the board near him, to see 1f there's a place he'd like to
move fo. If there is, he move'sx, if nobody beats him to it or
if, in our program, nobody else can‘fncve until this one has had
his turn.

Very simple. But if we ask an assistant to start moving
the nickels and dimes and pennies in accordance with these rules,
he 1s likely to tell us that our instructions are inadequate.
Where does he start? Does he do all the pennies first and then
the nickels? Dces he start ét the left of the top row and go

across the top row and then do the next row, and so on down to

~13-~

the bottom of the board, and go back to the top row to start agaln?
Does he look at everybody's pcsition and pick the most dissatis-
fied,~and move him, and then look for the one who 1s now most
dissatiéfied? And what do we mean by "neighborhood"? Every square
is surrounded by 8 squares immediately; there is a 5 x 5 square
surrounding that, containing 24 in additién to the individual's
own spot, There is a 7 X 7 square. that 1s still larger, contain-
ing L9 spots, one'slown spot plus 48. One can "round" the cor-
nérs a 1itt1e,’getting more nearly circular neighborhoods. What
is the "neighbofhood" thét an individual cares about? Does he
éarevabout the "immediate" neighborhood of 8 neighbors in ﬁhe
3 x 3 square more than he cares about the next 16 people in the
outér‘part of the 5 x 5 neighborhocod? Will we please specify
precisely what ratio of like to unlike neighbors makes an indi-
vidual satisfled? And, since we shall be dealing with integers
--humbers‘up to 8 1n the 3 x 3 square--is it simply a matter of
perceritage; or does 1t depend a little on the total number of
neighbors an individual has? Forféxample; if an individual is
surrounded by blank spaces and has nb_neighbors, do we consider
him completely satisfied, compleﬁelf'unsatisfied, or what? And
"~ so forth,. |

Finally--a very crucial part of the instruction--if our young
employee keeps this up, scanning the board and moving the dissat~
isfied, when does he quit?

Evidently, if he scans the whole board and finds nobody who
wants‘to move, scanning the board again will lead to the same

result and he‘may»as well stop. Suppose every tlme he scans the

-

rboa;rd somebody moves; then he has to go back and re-scan the whole
board from the point of view of every individual, beéause every-
body who moves can affect some other people, who may have been
satisfied a mdment ago but are no longer satisfled. Does he quit
at 5:00? Does he stop at 5:00 and come back tomorrow and spend
another eight-hour day? If he finds that each time around he
reverses the move he made the last time around and is merely repeat-
ing a cyclical process, and he sees that, no matter how long he
goes on, people will be moving in the same circles, can he sim~
ply report that he has reached an endless cyclical process, one
that 1is predlctable from here to eternity, and stop? It would

be a shame to go awéy on vacation and come back and find that

he had been working an eight-hour shift getting nowhere merely
because we didn't give him instructions to quit.

So the first thing we have to do 1s to specify all of the
"parameters" of the problem exactly. We have to give the length
and width of the board, measured in number of squares. We have
to state how many different groups we want, how many members of
each group and how many blank squares. For each group we have
to state its exact conditions for belng content where 1t 1s or
for moving; and, 1f it moves, the exact portion of the board (per-
haps the whole board) that it will scan for a place to move to,
and the exact way that it evaluates every spot, both in terms
of neighborhood and in terms of moving distance if moving distance
matters. We have to state the precise order in which we do this
for different individuals; we can run through the board system-

atically, or we can do it for one whole group before going on

-15-

to the nextvgroup, or we can do -1t by picking members at random

or according to some specified plan.’ But since our employee isn't
paid‘to "think," but only to do what we tell him, we have to give
him absolutely comprehensive instructions to cover every contin-
gency, so that he never is at a loss what to do next and never

nas to do his own thinking.

We need some pattern to begin with. Either we must put the
nickels and the pennies and the dimes on the board, or we must
tell our "employee" how to put them thefe. Maybe we want our
computer to randomize the pattern; maybe we want 1t to locate
them in some regular pattern, and can instruct the computer exactly
how to lay down nickels and dimes and pennies, i.e., to assign
numbers like 1, 2, 3 to the different successive cells in the
rows and coiumns. Or maybe we teil the computer the group num-
ber of the occupant in evéry'cell, each cell identified by row
and coluﬁnngith the number "0"~beingAused to denote a blank cell.

Now what does the computer‘doq |

It does the same thing-«something~—over and over again for
each individual on‘the board, in some order or sequence. We have
to tell it the‘eXact order in which 1t performs the operation
for every individual. It can even be»told to choose them at ran-
dom; 1f we can arrange for it to find a randdmizing process.

But 1t will do this “something“ one at a time for an individual.
(More complicated it might study the situation for every indi-
vidual, and perform the action for the particular individual whose
galin in moving_were'calculated to be greatest. It ought to be

clear that we can make it do that, if we can make it take them

-16—

in a particular order, so let's stick with a particular: order.)
S0 we have told the computer how to pick the "next individual"
for which it does the basic operation: now how do we describe

that baslc operation?

¥ K # * ¥
We have, let us say, the individual located at Posltion 3,5.
This means the cell In the third row, fifth column. Every square
on the board has three numbers assoclilated with 1t , numbers that
will identify it and the group to which its occupant belongs.
One is the number of its row, counting from the top; another is
the number of 1ts column, counting from the left. The third 1s
the group number. We have a computer that can count rows and
columns, so when we say, "Individual 3,5," it counts down the
third row from the top and the fifth column in from the left,
and 1dentifies the group number of the individual who is located
there. (It actually doesn't use a board for the purpose; 1t sim-
rly has something like a tab‘le' Sto:{:'ed away in its memory. The
table has rows and columns. Essentially, ‘each row 1is a "list"
of individuals arranged in numerical order. The "row ’number“
tells the computer which list to examine; the "column number"

tells the computer which numbered individual on that 1ist to look

for. Metaphorically, we ask it to find the group number of the
individual in the third row and the fifth column; numerically,
we ask 1t to find the fifth individual on the third 1ist. We
can think in rows and columns, in two-dimensional space: It can

work in terms of card catalogs, code books, or any other kind

of "lists.")

-1

: If we wgnt it to -start in the upper" left cor'ner‘ and go across
the tolp_rcw, then come back from right to left in the second row,
then gé,ﬁfrom left to right in t‘he third row, and so on down the
board, we t’e‘il it to start‘ with "List No. 1," and take the indi-
viduals in 5ofdér, then to progress to List No. 2 and take the
indiv‘idual‘s in reverse order, go on to List No. 3 and take them
in‘dijr"e.ct order, and so forth kumtil it runs out of "lists." We
have“élréady seén, above, how to a‘rrange sc that it knows when
1t's at the end of a list, or has finished the 1list of lists and

shoul‘d ‘80 back to the first list again.

S0 we have a way of yteili‘ng it how to pick an individual.
MWe ﬁave' a way of 'fofmulating that instruction in some regular
fashion, suéh as having it progress through the lists.

‘ *.‘Sthe‘s found our "next" individual. What does he do for
him?i{‘The"firsﬁ step 1s to find out whether or not he is satis-
fiea; df'hé@isatisfied he 15. Then, if he is not satisfied, we
‘i‘n:'stitu'ce‘ "a;"search' for éomeplﬁce‘» else to go. Then we move him.
Then‘ ""w‘é? move on to the next individual.

‘VHSﬁép’l is tb evaluate the individual's present neighborhood.
This 18 ?déne‘?‘by" counting the number of individuals belonging to
the 'a'aiﬁlé':z grou;} in that neighborhood, counting the number of indi-
viduals of different groups, ~'constructingvthe percentage that
thé‘fiﬁét'is of the‘tétalgrand comparing that with some minimum
percentage at which "he is satisfied. How do we do this?

’” :'k\Wé‘*have_'élr'eady ‘defined what we mean by "neighborhood," and
supp03é~€ﬁé€ it is*merely"the‘B neighbors surrounding this par-

ticulér -_indi’t}i‘dual”inthe 3'x 3 square. The computer has to look

18-

at each square and see ‘whether or not it is voécupied, and, 1if
it is occupled, whether or not 1t is occupled by an individual
1ike the individual for whom we ai:*e performing the process. If
we were doing it ourselves, we could draw the boundary of the
3 x 3 square, and then run through the 3 squares in the~first
row, the 3 in the second row, and the 3 in the third row, keep-.
ing three running totals as we went (or perhaps Just two totals,
knowing that the blanks would always be equal to 8 minus the sum
of the other two numbers, 1f we were interested in.the number
of blanks). To do this the computer has to know how to perform
two operations. First, it musﬁ know how to find the 8 cells that
we want to examine; Asecond, it must know how to count. Conslder
the first problem, finding a ceilrto examine.

Suppose we're dealing with the individual in Row X, Column
Y. Going through the 3 x 3 square surrounding him, and starting
in the uppef left corner of that}‘little,s@are, we want to look
at the individual located at Row X-1, Column Y-1. Next we want
to look at the individual in‘Row"X-&-_lg Column Y. Then Row X-1,
Column Y+l. Then we go to Row .X; Column Y-1; then we want ﬁo
skip Row X, Column Y, because that's our own 1ndividu‘aly; and we
don't want him to count himself &s a neighbor. Then Row X, Col-
umn Y+1. Then down to Row X+1, going through Column Y-1, Column
¥, and Column Y+1. Since our own ‘individ‘ual is identifled by
the numbers, X and Y, it is easy to identify his nelghbors by
the numbers X and Y with a 1 added or subtracted here and there.
This we know how to do. We tell the cbmputer, for Individual
X,Y, to find the f‘k><1u.'a.re located at X-1,Y-1 and perform a count-

ing operation. When he has counted the individual located in

19'

that aquare, he adds ‘1l to the seeand,,ovf the two numbers (he adds
1t0 ?w;), and does it - again; then he adds 1 to-that'seCond num-
ber aga.ix;, getting Y+1. Then» he ‘mus’c know that he's finished
that‘rcw4;that.he has done all that he 1s to do when the first

number is X-l--and add 1 to X-1, making it X, and go back to Y-1.

Co‘llimn
Y-1 Y Y+Q
* o | % * % ’ K *
X=1 * | * * | * * * | ¥ ¥
"X . ¥ % ¥ 0 M- *
x+i‘v * A I N
* * % E* * % | % *
* # * 1% * # | % #
* * # L w ¥ * % ¥
* P # * | % *

We do this by starting with the numbers X and Y and subtract-—
,ing 1 t‘x‘cm each | Specifically, we say "Let P equal X-—l Let
-Qequa.l Y-l." V 'I‘hen we say, "Count whatever you ane supposed to
‘count Qn Square P,Q." ‘ Tha’c is, go to the square in Row P, Col-

umn'Q? which is'the square immedlately to the upper left of X,Y,
“and- see who's there; make a note of it. Next we say, f'If Q 1is

léss than "Y+~l increase Q by 1." Then, "Do that operation again."

(6o back to Operation No. 66, or whatever 1t was, where we saild,

"Count and keep track of who's there.") At the beginning, Q was

equal ‘co Y~1; it is therefore less than Y+1; therefore the instruc-

tior;A says; «to« increase 1t by 1. So Q 1is changed from Y-1 to Y.

_k-f20-.' :

Anci the "couﬁting" operation is repeated. Whoever is,; located
in Row P, Column Q, which is now Row X-1, Column Y, 1s counted.
Is Q less than Y+1? Yes, since it is equal to ¥. 'Therefore we
add 1, changing Q to Y+1, and perform Operation 66 again, which
is to count the person located at Square P,Q, which is Square .
X-1,Y+1. o

We have now counted, by membekrfshipk in t‘he different groups,
any Individuals located in those éhree'squares in the row Just
above the 1ndividual located at X,Y. The instruction says to

Increase Q again, 1f Q is less than Y+1l. But Q is not less; it

1s equal to Y+l1. So the machine does not increase Q. What does
it do? It simply moires on to thé next instruction, whlch says
to increase P by 1. P, {vhicﬁ was equal to X-1, becomes equal

to X. We also instruct the computer‘ to subtract 2 from Q, so
thét Q goes back to Q-—l, and we "sweep" the three squares on Row
X, starting with the sciuare to the left of X,Y, and finishing
with the square to the right of 1t.

We don't want to.count the individual at Square X,¥; 1t's
himself, not a "neighbor." We need a speclal instruction for
that, which I'll come to in a minute. The same way that we increased
Q by 1, until Q was equal to Y+1, .we sweep thls second row. When
we get to the space to the right of the individuai»we're doing
this for, the instruction puts Q baeck to Q-1 and adds 1 to P,
which becomes P+1, and we do it on‘«the",third row of our 3 x 3
square.

~ We need a "skip" rule and a "stop" rule. We skip the square,

X,Y, by an instruction that says, "If P = X and Q = Y, skip to

- oy

that instrﬁétion where you add 1 tQ Q, passing over the 'count':
operation." Therevare different ways to do this; if the computer
doesn’t understand the expreséion, "If blank and blank, then . . .
we may have to put it through a "screening" procedure, where it
proceeds normally 1f P does not equal X, otherwise it looks to
See‘whether Q‘equals Y, proceeds normally if 1t does not, and
at that point skips 1f P and Q falled both tests.

For "stopping" thé’procedure, we do with P what we did with
Q. We sald, "If Q 1s less ﬁhan Y+1, add 1 to Q," otherwise the
next instruction said to put‘Q‘back to Q-1, and add 1 to P. We
need ah instructlion that says, "When Q is equal to Q+1, 1If P is
equal to P+l yéu’re dcne,'do the arithmetic on the basis of what
you have already counted." Thus every time it comes to where
Q 1s eqgual to Q+1, i£ elther goes back tg the next row by increas-
Ing P, or, if P 1s already up'tO‘P+1,‘it skips the instruction
about3édding 1 to P éﬁd doihg:it again; and goes on toc the next
operation. | | | |

Béf0597we lgok at that operation, let's look at how the com-
puter "coﬁnts,“' Every square has an associated number, namely,
the group number of the individual on that square, if there 1s
anybody on'that square. If there's nébody on the square, we can
use thé number 0, "Counting” involves this kind of instruction.
Keep‘in‘mind that the CQmputer can look at two numbers and tell
whether‘of not they are equal, just’as it'cantlook at two numbers
and tell Wﬁich is larger. We '"name" two variables for the com-
puter, one is named "Like" and’the other is named "Unlike," and

We can abbreviate them L and U. For each individual whose nelgh-
0 and U = 0. This

borhcod is. to be "counted," we start with L

22—

is there anyﬁody starts when he’ wants to count . - He adds 1 to
his subtotal every time -he finds something worth counting; and
if his starting subtotal 1s 0, his ending subtotal 1s equal to
the number of things he counted. So we put L and _UA at 0, and
tell the computer, if the group number assoclated with a square -
is the same as the group number of Individual X,Y, to add 1 to
L. If the group number is different from the group number of
Individual X,Y, look and see whether or not 1t is also differ-
ent from 0. If it is different from X,Y and different from 0,
add 1 to U. (If it is equal to 0, it doesn't add anything to
anything.) Then it goes on to the next square, 1in accordance
with the procedure described above, adding 1 to Q, or adding 1
to P and golng through the next row. -

Since L started at 0, and increased by 1 every time anindi-{
vidual was encountered who had ,tvhe same group number as Individual‘
X,Y, when we've been through the 8 spaces surrounding our central
individual, L has increased by 1 for every‘ like 1indilvidual encoun-
tered. - Similarly for U. And subtracting L and U from 8 we have
the number of blank spaces, if we want 1t.

Now we have counted, and we have our data. What do we do
with them? We tell the computer to divide L by L+U. This gives
us a number from 0 to 1, the fraction of total neighbors who are
of the same group as Individual X,Y. We now bring in a .plece
of "data" that we put into the project, namely » the percentage
of neighbors like himself that a member of the group represented.
by X,Y needs in order to be satisfied. Suppose 1t is .5. We

ask the computer to compare .5 with the number 1t ‘obtained when

-2 3

1t diVided L by the sum of L and U; if .5 is larger than that
ratio, the 1,ndbividual is dissatisfied, and we 1invoke the proce-
dure for,disSatiSf’ied individuals. Weﬁl get to that in a min-
ute. If .5 1s less than the ratio obtained by our count, the
indivldual 1s satisfied and we leave him and go on to the next.

Let's look at how we go on to the next individual, since

we're Ygoing to have to do that anyway, even if we perform for
this 1ndiv‘idual the search for a better place to go and move him
there. Let‘s suppoSe,v therefore, that this 1ndividual doesn't
need i:,o fnove--that's the same as supposing he has already found
a place and moved--and see what we would do next.

You have probably guessed. We change Y to Y+1, leaving X
as it was. This moves our reference numbers to the individual
in the same row as the one we jast worked with, one square to
the right. And then we repeat the whole procedure.

, er‘ neédone little safegizard‘. If the individual we just
worked with was 'alreac’ly in the right-hand column, there is nobody
to his right. If there are a total of n columns, Y was equal
to n. '.Wea need an instruétio‘n ylike, LS a4 = n, change Y'{:o 1,
chéngé X‘V“c‘c‘}){‘kl, and go back to-InStruc‘tio‘n No. 55.% Thils means
that it's come‘to the end of the row; it goes back to the first
entry in the next row and dées again what it's already done.

[This oughf to remind us of a problem we skipped a min-
~ute ago. Because I pretended we were dealing with somebody

in the third row and the fifth column, suggesting that there

were eight surrounding squares, we didn't consider what hap-

pened 1f there were only five columns. In that case the

oy

-individual was on the right-hand edge of the territory.

The computer can't look in the square to the right of that
individual, because there is no square. Nor can it look
for an individual in the square one row up and one column
to the right, because there 1s nobody there either. Indeed,
- if our individual were located in the upper right corner
there would be nobody in Row X-1, because there 1s no Row
X-1, nor would there be anybody in Column Y+1, because there
is no Column Y+1. So we need a subsidliary instruction; after
putting P equal to X-1, we have to say, "If P = 0 skip the
next few operations and add 1 to P." Similarly, "IfQ =n
don't increase Q by 1 but put 1t back to Y-~1 and increase

P by 1 and start the next row." This is all straightforward
but important, because if we forget it the computer will

do one of two things, depending on the exact instruction
that we gave 1t. It may stop the whole program and send

us a "diagnostic message," telling us that it has an impos-
sible instruction. That will be a nulsance, and we shall
have to find out what's wrong with the program before we
can get the computer to do the job, Worse--again depending
on the exact language we used--the computer may find that
We put nobody in any place labeled P,Q, where Q is greater

than n, and proceed to treat it as a blank space; glving

a 0 value to anybody who was never glven any other number,
and count a blank space. If blank spaces don't matter in
our arithmetic, no harm is done; but if we want.to calculate

bPopulation density in the local neighborhood, we have treated

- -25-

ﬁer’riﬁéry'bgyond the ’bOunda;r*y as though it were unoccupied
territory wit‘hin the ‘bouﬁdary; ‘and maybé we didn't mean to.
"And because the ‘instructiqh‘ is feasible, the computer ne'vér
tells us that 1it's dolng sor.nething we didn't intend. It

is merely interpre’cing'an instruction literally, in accor-

dance with certain rules é)f interpretation--rules that’ gov-

ern ¢ontingencies, and that we may not have been aware of
or alert to--and ins‘tead'o‘f, stopping and ringing a bell because
we;‘toldv"it to do s‘ométh‘ing impOSSible, it does something

possvible that we didn't intend it ﬁo‘do.]* V

X E R OB

Now, heré‘ is where we are." "For one individuyal we've found
out whether or not he's satisfied. If he's satisfied we've moved
on. If he's not satlsfied we have réached the gﬁts of the pro-
gram. We must search the board .fco see whether he'd’ like to move
somewhere, and move h‘imﬂ.‘v Once we ‘have done that we've done all
there 13,‘Vexcept for keeping records. If we can move this indi-
vidual to the placé he'd like to mové to, We've done the only
signifiéaﬁt thiﬁg there 1is t;o"d'or.' We simply go on to the next
per'sbnv ‘an‘d} do.ﬁﬁe;‘ same thing f(}t him 1if necessary. Then on to
the next pvervscn. - And we just keep‘k it up until nobody wants to
move or uhtil, by prearrangement, we call it quits.

We’ shall, of cburse, need a ”way to go back to the upper left
corneyr when we reach thé lower right corner; but we've had enough
practioé with that sort of thing so kthat it's clear that, when
X=mand Y = n, instead of adding 1 to Y, or switching back to

the next row and adding 1 to X, we identify ourselves as in the

“Thé trouble may be even harder to diagnose 1f the overall
format 1s no larger than the rectangular array we are working .
with; instead of getting a zero beyond the right margin, the machine

may pick up the first entry in the line below.

—-2b=

lower right corner and put X back at 1, Y back at 1, and start
a new inning of the same game.

So: we now need to search the board for blank spaces that
are better than the space presently occupled by ouf ihdividual,
find the best among them if there 1s one, and move him there.

Suppose we had already found the best among somé blank spaces.
How would we move him? Of course, we don't physically "move"
him. The computer has no hands. Rather we make him "disappear"
where he was and "appear'" where he yv.ea’nts to go. | If a chess player
hands his written move to a referee, 1t might say, "Move the knight
from king-bishop 3 to king-rook 4." The referee might say, "I
don't know the word 'move' " The chess player might“ then say,
"(1) Let there appear a knight on king-rook 4. (2) Let there
be nobody at king-—bishop 3." If our individual belonging to Group
2, located at Row 3, Column 5, wants to move to Row 9, Cdlumn |
10, we tell the computér to change ’che group number at 9,10, from
0 (which it must have been 1f the square was blank) to the same
group number as presently occupies 3,5, namely, 2. We then tell
it to change the group number at 3,5, to O. In effect, we have
"moved" the individual. Henceforth the computer's record shows
that an individual of Group 2 who was af 3,5 has disappeared from
there, and an individual belonging to Group 2 has newly appeared
at 9,10. ' '

Now that we see how we @g_ki_ move him, let us see how to

find out where to move. The genéral idea is‘ that we -iook:‘ on

his behalf, at every blank space on the board. We evaluate it

from his point of view; we count the neighbfors like him he would

-27-

have and the neighbors unlike him he would have at every avail-
able blank space. We keep a running record of the "best" blank
space we have found. That 1s, we evaluate the first blank space;
we do it for the second, compare them, and rememb‘er the location
and the score of the better of the two; we then evaluate a third
blank space, compare it with that one that we saved, and keep

the better of the two. And so on for the fourth. To "save'" the

better of the two means that we remember the location and the
__fg]_._g_ew. ‘We might do this by giving names to the three pertinent
numbers. The location is recorded by row and column, and we give
a variable named "R"™ the row number of the square we want to save,
and we call "C" the column number of the square we want to save.
The score we can call "3." If the latest square we examine 1is
not as good as the last one we savéd, we leave R, C and 8 alone.
When we find a square that is "better" than the one we saved,

we have the vcomputer change R to the row number of this new and
better‘square, change C to the column number of this new and bet-
ter square, and change S to the score value-of this new and bet-
ter square. That "saves" this new square in the memory, and "forgets"
whatever the square was that we were carrying along as the best
so far.

(We need a rule to cover ties. We can be arbitrary; keep
the old one, keep the new one, keep the nearest one to the indi-
vidual on whose behalf we are searching ‘ﬂtfhe ‘blank squares, Or
even pilck a random number and take the new square if the number
is odd and keep the 0ld one if the. number is _even.)

When we get to the end of the board, having looked at every

blank square, we compare the "nest'" available space with the space

. =28~

the indlividual 1s already at,.and move him as described earlier

if the best blank space 1s better than where he 1s. Otherwise

we 1eave him alone. Alternatively, .we ¢can beginthis" proéess

with the score of the individual's own position, letting R, C

and S denote the individual's own row, column and surrounding

score (using a slightly different scoring formula if we want to

give the benefit of the _Vdoubt td staying put, or if we want to

make the "improvement" exceed some minimum cost of transfer),

and compare’ the first bvlank square with his home squaré, "saving"

his home square until one 1s found that is better. If none is

better, we complete the process, having "saved" his original site.

[Here is a good placé fo 1llustrate the kind of perplex-

ing and infuriating error that can creep into a program.
Suppose we devise the program bthe way I last described, namely,
by evaluating sequén_tialiy the individual's own sduare and
~all blank squafés, "savihg'T in the computer's memory the
best spot found'vsé far. At the end we "move" the individual.
If he is to stay put, we mibght‘ simply "move™ him to his own
square. But be carefull If we "move" him the way I described,
the computer cai*riés out two operations. '~ First it "changes"
the grouyp number associated with the‘ individual's own square
to the group number of that same individual. "Change" is
the wrong word, of course; i1t substitutes for the group num-
ber that was on that square the group number of the individual
in question, which is exactly the number that was already
there. It replaces 2 with 2 or 1 with 1 or 3 with 3. No

harm so far; being an idiot, 1t doesn't mind carﬁryiﬁg out

-2 -

f(}:&'lish instructions, and the computer has no way of "'notic-
ing," or doesn't éare, that we have asked 1t to replace a ;
number with the same number. It is that second step in the
process that can cause trouble. Now that we have caused
the right group number to show up on the square that the
individual "moves" to, namely his own square, the computer
. has to make the individual "disappear" at the sqﬁare he started
frorh, and it does this by changlng the value on that square
to 0. So, if our individual was a member of Group 2, the
computer changes 2 into‘Z and, immediately afterward, changes
the 2 to 0. The net result is that the individual has "moved
awé.y." He is nAo longer on the board! ‘I‘he’ population of
Group 2 has been reduced by 1. Individuals who move to another
square are stl1ll with us; individuals who do not move at
| all, i.e., who want to "move" no place, get erased. Unless
th’er"ve is something in the dynamics of moving that causes
ever&body, after some point has been reached, to keep mov-
ing, the entire popuiation will disappear. When the computer
has finlished the entire pro,] ect, we ask it to type out, 1in
a rectangular array of rows and columns, the group numbers
corresponding to all the spaces, and we get a rectangle of
O's.] |
The’only part of the process we haven't covered is that of
locating, one at a time, all of the blank squares. But by now

that must 1ook easy. We let the computer start 1n the upper left

corﬁer and go acrogs the rows from left to right. At each square

Wé héve the computer test whether the group number is greater

=30-

than 0; if it is 1t skips the evaldation process and goes on to
the next square, because 1f the group number 1s greater than O
the square 1is not blank and is not a feasible destination. When
the group number 1is 0, the computer performs the kind of evalua-
ftion that we have alréady looked at, scrutinizing the 3 x 3 square,.
[Here I can illustrate another pitfall. It probably
wouldn't occur to you, as it didn't to me. Only when some

7

strange result arouses your susplcion do you begin to look

for what may have gone wrdng. And very possibly you will
find it only when you do as I did, following a bitf of advice
I found in a book on the subject, which was to go through

one step of the program completely on paper--not doing it

on paper the way one would do 1t on paper if he had no com-
puter, but following on paper in exact detail the instrucm‘
tions I had given the computer. That way I found what 1
had done wrong.,]

[What can happen is this. Suppose there is a blank

square Just to the right of the individual on whose behalf
we are conducting the search. When we count the neighbors
who surround that blank space, we count himself! In other
words, if the blank space is a "neighboring" space, then

he, where he 1s right now, is a neighbor of that blank space.

If a real person enters a vacant house next door and 1locoks

St

S el S

around to see who his neighbors would be if he moved there,
not beling an 1idiot he will know that he can't count himself,
because if he moves he won't be next door to himself. But

the 1diot won't recognize that the individual on whose behalf

-31-

We_,,. are searching can never be.his own neighbor. We only
ﬁqld.him to count '"people" in the houses adjacent to any
.glven blank square. And 1f by coincidence it turns out that,
Nhot counting himself, the two squares are equally attractive
-fthe one where he already resides and the ocne adjacent to

. 1t--and if he correctly omits himself as a neighbor in evalu-
ating his own neighborhood but neglects to omit himself as
a "neighbor" when he evaluates the neighborhood of a nelgh-
boring square, the blank square will always have one more
néighbor like himself than the square he is at. Under the
rules, he will move to it. Instantly the square he vacated
acquires a "neighbor" like himself. It is himself. The
space he moved to "lost" a neighbor and the space he moved
from "gained" a neighbor. If the rest of hils environment
stays put, he will hop back and forth forever, or until so

. many moves have been made that the computer runs into its
_inst.rﬁction to stop.]

[This is an easy error to correct, but it is an easy
one to make and it may not be an easy one to find., It 1is
the kind that you may find if, keeping your wits about you,
jmu put yourself in the idiot's place and do his job labo-
riously.]

[I have mentioned a couple of these ways that the pro-

. gram may go astray, to emphasize how cautious you may have
to be when your servant will literally perform every act
in exact compliance with what you have told him to do.]
Now let's recapitulate, The guts of the program is a 1lit-

tle procedure whereby the computer examines, one after another,

-32~

the eight squares surrounding a gi?en square. It computes a "score"
as simple or as complicated as you please, depending -on the group
numbers of the individuals in those squares. This little process
is then embedded in a surrounding process; the'surbounding pro-
cess is the search of the whole board for blank squares, perform-
ing that central process Just described and keeplng track of the
"best" location. Finally we have some arithmetic that is equiva-
lent to "moving," if moving is indilcated.

Now we have taken care of an individual. We have & still
largér process in which all of that 1s embedded, a process by
which we do this for every individual on the board, in ‘some speci-
fied order. Then thét in turn is embedded in a still broader
set of instructions that tells the machine when to ‘keep going
and do it all again, and when to stop. | '

Basically, it can be told to stop when everybody has had
a chance to move and nobody did move (a very easy kind of instruc-
tion to provide), or after everybody has had some specified num-
ber of opportunities, say a dozen complete "innings" in which
everybody had his chance to move (also an easy kind of instruc-
tion to give, the computer just adding one to some counting vari-
able every time it switches back to the upper left corner, with
a stop rule when that counting variable hits the 1imit), or (per-
haps too compliéatéd for us to write out, but no probiem for the
computer 1f we can write it out) when some endle‘ss'repetitive
pattern of movement has been reached that looks as though it will
go on forever.

All of this can be further embedded in a packaged research

program. It is easy (if tedious) to tell the computer to -use

-33-~

successively small, medium and large rectangles, or to use two,
three or four different groups successlvely, or to use two groups
of equal, slightly une.qual and drastically unequal size, and to

use values of .3, .5 and .8 successively as the "satlsfactory"
fraction of nelghbors like oneself, for the two groups separately.
This\ is just a matter of the computer's storing its results and
changing some basic "data" at the end of an embedded program,

and golng back to the beginning and doing it all again. And,

as we could within the program itself, we can give contingent
instructions in our research program, e.g., enlarge the rectan-

gle successively by two rows and two columns as long as each enlarge-
ment causes a significant change (precisely defined numerically)

in some s_pecif‘ied average values, stopping when further enlarge-
ment "appears" to make no further difference in the results.

And so forth. And again it can calculate averages, standard devia-
tions, correlation coefficients and more complicated statistics,

- printing out what we want and even plotting dlagrams. (Diagrams
are plotted by nothing more subtle than repeated use of the tele-
typewriter space bar: a value of 14 is denoted by typing 13 spaces

followed by‘a‘ dot or an asterisk, or 1l hyphens if a bar diagram

is desired.)

¥ % % % ¥

And that's it. That's the "computing." But where are our
results? If it were a real idiot pushing nickels and dimes around

on a 'checkerboard, we could walk into the room and look at the

checkerboard, copylng or photographing it.” And if he had kept

an account of the moves, we‘ could look at his records of how many

-3

people moved, how much total distance was moved, how many neigh-
bors like themselves people had at the beginning 'andv how many

they have at the end, and all of that. But since this was a com-
puter, all of our data exist in some magnetic form at the other

end of a telephone 1line.

The computer has our results ;‘ now we have to ins,truc_t‘ the
computer, like the dog that has retrieved our partridge, to drop
it in our hand. We have to instruct 1t to type out the ‘results
that we want. (We have to make sure that i1t types out only what
we want, because it may have a great quantity of useless individual
statistics in 1ts memory, of which we want only some to»tals and
some averages.) |

At this point it should be clear that we could have kept
running totals of all the things we added and all the things we
counted, and if we know the formula for an arithmetic mean, or
of a correlation coefficient or a standard deviation, we can instruct
the machlne to multiply certaln things and add certain things
and divide by certain things and give us the resu.lting statistics,
rounded off to whatever accuracy we like . |

We can also instruct the machine to "label’t the numbers it
prints out. We can do this by having the instruction,’"Print
the average number of moves per member of Group 2," preceded by
an instruction like, "Print 'Group 2'; print colon; print space.”
And a little earlier 1t would have printed a table heading with
an instruction 1ike,‘ "Print ’Averfag;e Number of Moves'." O0f course
we wouldn't actually say, "Print the average pumbér gf moves for

Group 2." We would say something like, "Print m(z)/ﬁ(é){," where

-35-

n(2) 1s the number of individuals belonging to Group 2, and m(2)
is the "counting variable" that kept track of another move every
time a member of Group 2 made one, and represents the total moves
made by that group. The computer has been given a language so
that, when two variables are separated by a slash, the first is
to be divided by the second; and so that, if that expression fol-
lows some recognized verb like "print" or "type," it goes to a
list of "m()" values and finds the item "m(2)," gets n(2) from
a 1ist of "n()" values, divides the former by the latter and
activates the teletypewriter keys to type out the result. And
there are technigues by which to instruct it to print only to

the third decimal pl'ace, or to print hyphens 1f no such number
exists, Just as we can arrange to have it space things across

the page and down the page in the form {;f a neat table with head-
ings.

If we want the computer to give us a picture of our "town"
with the individuals belonging to different groups distributed
around the town, we need a way to convert lists of numbers, and
lists of 1lists of numbers, into a visual pattern. If the pattern
~is two-dimensilonal, like a checkerboard, and if the lists are
of equal length, it 1s easy to "list" every individual in rows
and columns and interpret the rows and columns as spatial coor-
dinates. Every individual's "location" on a 1list is denoted in
the computer's memory by two numbers, one the number of the "1list"
he 1s on, the second his position number on the 1list; if his num-
he is 1in the fifth position on the third list.

bers are 3,5,

We don't want his name--he has no name unless we put a name in

~36-

our program, which we did not--all he has is a number identify-
ing the group that he belongs to. §o if the group number of the
individual in the fifth position on the third 1list is 2, the com-
puter types the number 2 as the fifth entry from the left In the
third row from the top. Because a tevletypewriter goes across the
page from left to right and then switches down a 1line, we can
instruct the computer to run through List No. 1, typing succes-
sively the group numbers of the individuals it encounters on that
list in the order in which they appear, with a space or two between
them on the page for visual convenience, and to switch to List
No. 2 when it comes to the end of List No. 1, returning the tele-
typewriter carriage 5nd dropping down one line. It then types,
as the second row of our matrix, the group numbers of everybody
on List No. 2, that is, of everybody whose flrst coordinate 1s
the number 2.

It is wor;th remembering here that there 1s nothing spatial
about the material the computer worked with. ’Ifb worked with what
I have called "lists" of numerical wvalues. It could equally well
print out, separately for each group, a list of the co\o‘rdinates
of the individuals comprising that group. In the computer's memory,
Row 2 is not necessarily "next to" Row 3; Row 3 comes next in
a search process or a typing process only 1if, for conve,nq.ence
of programming, we have the computer "count by 1's" in order to
gulde itself éxhaustively through the set of lists. And if we
had worked with a three-dimensional space, letting the "individu-
als" occupy rooms in a building, there would have been no way

to type out on a flat sheet of pape“x* a good visual reﬁ;,resen’cation

-37 -

of everybody's location. If we visualize the building as having
express elevators, Floor 22 may not be closer to Floor 20 than
Floor 30 1s. And so forth.

B X R X %

That pretty well describes how we convert what might have
looked like a falrly complicated procedure to a series of small
instructions that an 1diot might carry out, the operations being
things like counting, comparing numbers, substituting one number
for another, and skipping or aCting out certain- lnstructions accord-
ing to whether or not some number is O or has reached some upper
limit. A very important kind of instruction is, "Go back and
do 1t agaln for the hext one," which 1s typically accomplished
by adding 1 to some number, or putting some number back to 0,
and cycling the computer back to an earlier point in the instruc-
tion sheet. In actual practice, the instructions all have to
be written in a "language" that itself has already been "programmed"
into the computer. This is essentially a "coding" operation.
Procedures that are complicated and that would be tedious for
us to write out every time we wanted them are given a code name,
usually one that conslsts of short English words and punctuation
marks; we memorize the code name and let the computer use the

code book to find the recipe for the task we have in mind.
¥ % % % K
Students who sit at a computer console for the first time
often cannot dispel the impression that the computer is talking
to them, asking them questlions or accusing them of error. A pro-

gram‘ 1ike the one I have described might begin, once a "run'" has

-38-

been properly initiated, by typing out some explanations, tell-
ing what the program does and what the researcher a.t’.the console
is golng to have to do. It may then ask a seriles of questions,
such as, "How many rows and columns?--Type two numbers separated
by commas." The student types two numbers separated by a semi-
colon and the computer comes back with the charge, "Illegal for-
mula, try again.” ‘The student does 1t right this time, asking
for a long, thin array consisting of 5 rows and 40 columns. The
computer comes back and says, "Only 20 columns fit on a page.

Not programmed to break town in two and print right-hand halfl
below left-hand half. Can do the Jjob and get the statlstics,

but cannot type it out‘ for you. Alternatively, 1f it makes no
difference to you, use 40 rows and 5 columns; that can readily
be typed." The language may be cryptic or eloguent, in the style
of telegraphs or of essays, and 1t may take an 1nfuriating‘ length
of time for somebody who, at the first few words, reallzes what
.he has done wrong but has to sit and watch the whole message be
typed out.

The computer may sound even more human. Suppose in a 10 x 10
array you want four different groups and some blank spaces, and
when the computer queries you as to how many individuals you want
in each group, you inadvertently give numbers that ,a’c‘m up to 100.
The computer might come back and say, "Can't you caoux;;t? You haven't
left any blank spaces. Do you want me togsearch_;c‘}o .pquares for
blank spaces, for 100, individuals » making 10,099‘.51;99%319;18 the
way, when any fool can see that I can't ever fj_nda, piig_ﬁk,;gpace

for anybody the way you've set it up?" It sounds human until

-390~

you look at the written version of the program. There you will
find, perfectly deadpan, an instruction written by the program-
mer. The instructlion goes something like this. "Let n eqﬁal
n(1l) plus n(2) plus n(3) plus n(ld). If n less than [rows] times
[columns] proceed. If n greater than or equal to [rows] times
[columns] print '. . .message. . .'." And the message is the
one I wrote above.

In other words, the computer is simply copying the message
that it's to transmit if some number equals or exceeds another
number. It willl reliably misspell any word that was misspelled
in the program, just as 1t wlll mlisspell your name if somebody
got 1t wrong the first time on the addressograph. So keep 1in
mind that, whenever the computer seems to be "talking" to you,
1t is simply copylng pertlnent messages that were written into
the program as messages to be typed out if certain conditions
arise. If some program were designed, let us say, to help you
calculate the relative merits of two retirement systems, it mlght

ask you to type your birth date into its memory at some point
along the way. A whimsicavl programmer could have arranged for
the computer to type out "Happy Birthday" if it's your birthday.
But nobody's wishing you happy birthday. If two numbers match,
namely your birth date and the date of tkhe day you're sitting

at the console, there is a "canned" signal to the teletypewriter
keys. To reassure you that nobody is eavesdropping, the program-

mer might have had the computer say, "This is a recording. The

message says 'Happy Birthday.' This recording is automatically

activated when the date of your bilrth corresponds to today's date."

-l Q-

% ¥ ¥ ¥

It would be wrong to leave the reader with the impression
that the particular program elucidated in this paper 1s typlcal
of what computers can do or are generally used for. The program
described here belongs to a subseﬁ of activitles called simula-
tion, that 1s, the examination of processes that cannot be han-
dled "analytically" and have to be acted out experimentally (or
that are easier handled that way, or that yleld analytically more
readily 1f one has experimented first).

It 1s furthermore in a subset among simulations, namely,
the subset of abstract theoretical models rather than more exact,
concrete, faithfully descriptive models aimed at "realism" or
realistic detalil. And among these it represents a very special
subset, those that have a two-dilmensional interpretation (although
we could add dimensiops, e.g., by doing floors in a multi-storied °
building, defining "neighborhoods" and "distances" appropriately).

Finally, an especially simplified version of .even this model
has been discusséd, one in which all groups other than one's own
are lumped together aé "unlike,"” and in which local percentages
Care all that matter. An age-group model would be different:

a 40-year-old may consider 30-year-olds "different" but less dif-
ferent than 20-year-olds.

Two features, though, this essay probably shares with any
examination of how simulations are programmed. First, “«'p‘rogram—
ming" depends on analyzing a rich and complicated ph‘e{xv’xo‘menon or
process into 1ts elementary srteps. Second, there is an inescap-

able requirement to defilne the process in exact detall. You can't

41—

glve a half-articulate instruction to the idiot and wave your

arms and say, "You know," He doesn't. An interesting
consequerice of this disclpline is that one often learns much about
his own "model" in making the program, even if the computer is
never plugged in. (Sometimes he learns that he has to throw it
away: - there are inconsistencles that can't be programmed, or

what appeared to be a new idea embodied in a new model proves,
when reduced to an exact statement, to be the same old idea that

underlay 'yesterday 's model.)

Annex

The reader may wbnder what an actual "program" looks
like on paper. There are several different languages for commu-
nicating with a computer via teletypewriter; some look a little
more like ordinary English than others, but in all of them words
like "if" and "go" and "print" and "next" and "for" are actually
code names for rather complicated routines the computer has to
follow.

The languages all involve a rigid syntax. Some have
larger and more flexiblé vocabularies than others. One language
might allow you to say, "Stop if both A and B are true," cr "Stop
if either A or B is true"; another might permit only the state-
‘ment, “Stop if A is true." You then have to make the equivalent
of the "or" statement by two successive statements, "Stop if A
1s true," followed by, "Stop if B is true." If B is true but
not A, the second instruction will take care of the stcpping,
with the effect of an "or" statement. The "and" statement could
similarly be achieved by two successive instructions: "If A is
false, skip the next instruction," followed by, "Stop if B 1is
true."

Below is printedkan eleven-~line "subroutine." It gen-
erates a "random town" of individuals, each identified by his

"group number," each occupying a space in a rectangular array.

7110 FOR G =1TO 3

7120 Z =0

7130 RANDOMIZE

7140 T = INT(M¥RND + 1)

7150 J = INT(N¥RND + 1)

7160 IF G(I,J) # 0 THEN 7130
7170 G(1,J) = G

7180 7 =72+ 1

7190 IF 2 # Z(G) THEN 7130

7200 NEXT G
7210 RETURN

s -

Lines are numbered. Somewhere in the program there
was an instruction, "GOSUB 7110" ("GO to the SUBroutine at Line
7110"), sending the computer _to Line 7110. It starts working
from there, continuing down the numerical list of 1nstructions
until it comes to the word, "RETURN." That is a code word mean-
ing, "Go back, now, to where you(came ffom, when you came in at
Line 7110." (If there are several places in the whole program
where a "random town" is needéd, at each such place there will
be a line of instruction saying, "GOSUB 7110"; at Line 7210, get-
ting the "RETURN" signal, the machine must go. back to_the particu-
lar place at which the referral occurred.)

Line 7120 .merely introduces a "counting variable."
Note that at Line 7180 a +1 is added to Z. The several instruc-
tions between 7110 and 7200 are going to be followed repeatedly;
and each time the malchine runs through the set of i1nstructions
it will, at Line 7180, increase the value of Z by 1, thus "count-
ing" the number of times 1t has run the gamut from 7120 through
7190. In Line 7190 the symbol, #, means "is not equal to," and
Z(G) stands for some number; so as long as Z is less than Z(G)
1t goes back to Line 7130 and plays it all over again. That's
what the "IF . . . THEN" instruction does. Z(G) is some number
that the machine knows, because we told it earlier .whaﬁt Z(G) stands
for. If Z has reached, in its "counting," the value ,”of Zz(G),
the "IF" condition is not met, so the machine ‘does__rchi go back
to Line 7130 but proceeds stralght to Line 7200

Line 7200 ties in with Line 7110’, én’d ‘néi’q:h‘er line means
anything without the other. Here 1s what they me‘a‘.'rvl_gogether.

iy
ihs

-

Some varlable, known as G, is going to be glven successive val-
ues, starting with G = 1 and going through G = 2 up to G = 3.

That 1is what the quasi-English phrase, "FOR G = 1 TO 3," sets

up. But at each successive value of G, the program that follows
(Lines 7120-7190) will be completed. Each time that program has
been completed for one of the values of G, Line 7200 says,"NEXT
G," and, in conjunction with 7110, that means to step up the wvalue
of G to the next number, 2 or 3 as the case may be. Line 7110
halts the process when the program has run with G = 3.

Now, what is the machine doing in between? Well, think
of G as the number of "groups" into which the population has been
divided. According Ato 7110 we are going to use three groups.
Z(G), down in Line 7190, stands for the number of members there
are to be in Group G, a number we put into the program earlier.
If there are to be 40 individuals in the first group, Z(1) = 40.
Then 1f there are to be 20 each in the second and third groups,
7z(2) = 20 and 2(3) = 20. When G = 1, Z(G) is Z(1) and Z has to
count up to 40 before we switeh to the next G. Then G changes
from 1 to 2; Z is put back at 0 by Line 7120 (or else it would
continue counting, "41, 42, . . .); then something is done over
and over until Z reaches 7(2) = 20; and then "NEXT G" takes us
back and we do it all with G = 3.

But what 1s the "something" being done in there, from
7130 to 7170? What we do is to pick at random one row among the
M rows in our rectangular array--one "list" among the M lists
that we shall think of as rows in a table--and one column among

the N columns in our array--one numbered place on the "1ist" that

e

gets chosen. We eérlier told the machine we wanted M rows and
N columns. Suppose we wanted 8 rows and 8 columns; then M = N = §
and the machine wiil reéd Lines 7140 and 7150 as ‘tho@‘gh' we had
written 8's inside the parentheses where the M and N oceur. Line
7140 1s full of code words, but what it does 1is to’haVe” the machine
plck at ranrdom a number from.l to' 8 and call that number I. Line
7150 has the machine pick another number at random, from 1 to
8, and call that one J. Thus, the two lines together pick, at
random, two numbers, one of which we call I and let 1t stand for
a row, the other wé call J aﬁd ié't it stand for a column.

Now we come to G,(I,‘J) in Line 7170. There are 64 dif-
ferent possible (I,J;) combinatiohs if we stick to 8 rows and 8
columns. Each combination has some number assoclated with it,
and the "name" of that number 1s "G(I;J)." Thus G(3,5) stands
for the number associlated with the third row and’ fifth ‘column.
For simplicity we begin with G(I,J) = 0 for every value of I and
J. We are going to replace the O's with numbers 1 through 3,
and let them stand for the group memberships of the individuals.
We can think of the 0 as meaning "unoeccupied,”". i1f we wish, and
our process is to locate individuals, identified by group member--
ship, at empty spaces in the I,J array

Look at 7160. It says, "If the group number at Row
I, Column J is not 0, go back to 7130 and start again." 1In other
words, 1f there 1s already an individual at the location denoted
by I and J, leave that locationaandf go pick another I and J at
random. (Picking at random,.we are k’bound to get repeated "hits"

on particular squares; we want to populate only the empty spaces

- -

that our procedure turns up for.us.) What if G(I,J) is 0?2 That
means that, at the particular I,J location we have picked at ran-
dom, there is nobody there yet; so we move on to the next step,

7170, and put somebody there.

The way we do this is simple. Remember, G(I,J) is merely
a number assoclated with Row I and Column J. To be concrete,
let T = 3 and J = 5 be the two random numbers we Jjust picked.
The number assoclated with Row 3, Column 5 is 0; Line 7170 says
to change it so that 1t is equal to G. What is the value of G?
It's 1, 2 or 3, according to whether we are in the process of
locating forty 1's, or twenty 2's, or twenty 3's. Line 7170 says
to substitute whatever value G currently has for the value that
was originally there. 1If we are still locating the 40 members
of Group '1l, 0 changes to 1 at Location 3,5. (If we pick a 3 and
a 5 at random sometime later in the process, Line 7160 will tell
us to go back-to 7130 and pick new row and column, because there
is a 1 there now.)

So here's the way it goes. We put G equal to 1; we

pick two numbers at random, call them Row and Column, and perma-
nently attach a "group numb_er'" of 1 to that particular pair of
numbers drawn at random. We repeat this until we have attached
the number 1 to 40 different formerly empty I,J combinations.
At that point Z has beeﬁ upped 40 times and we go back to 7110,
change G to 2, put Z back to 0, and pick I and J values at ran-
dom until we've hit 20 blank spaces and labeled them with 2's.
Then G goes to 3, and we pick more I,J coordinates at random.

By now, with 60 spaces occupied, the chances of pick~

ing a blank one are only 4 in 64, so the machine may have to pick

-6-
a score or more of I,J palrs i:o find one where G(I,J) = 0. It's
speedy, though, and you won't néti‘ce the time 1t takes. It's
when we get three 3's located that the situation becomes inter—
esting. There's one blank I,J combinat;ion left, and 1 chance
in 64 of finding it on a given fandom try. But after repeated
random tries it gets found, and a 3 1s located there. There are
now forty 1l's, twenty 2's, and fourkB's located at the 64 differ-
ent combinations of I,J values. No blank spaces left. What does
the machine do now?

IT DOES EXACTLY WHAT WE TOLD IT TO DO. It picks two
numbers from 1 to 8 at random, checks its memory to see whether
G(I,J) 1is or is not O; finds the space occupied and, since G(I,J)
goes back to 7130 and picks two more numbers for I and J. Again
it finds the space ocgupled, a‘nd‘ goes back to 7130. And back,
an'dAback, and back. Forever} |

We gave it an uncompletaﬁle task. Not an unperformable
one, an uncompletable one. We fofgot we had only 64 spaces when
we asked for 40, 20 and 20 as group sizes (or we forgot we had
40, 20 and 20 when:we told the machiné to work with 8 rows and
8 columns). We never programmed the mé.chine to stop when the.
last blank was filled, because we never intended -to fill the last
blank. We always planned to have fewer individuals in total than
the number of I,J combinations, so we made no plan for the con~
tingency that blank spaces would be exhausted. The machine goes
on spinning its wheels forever and ever.

People do make mistakes—--mistakes like the .one we made

above. It may be wise to put 1in a few safeguards. -An easy one

0,

-7~

is t'ohévéf‘thei machine add Z(1)+Z(2)+2(3) and multiply MxN early
in the program and‘,» 1f the sum exceeds the product, to stop and
type us a message. Another is to have, along with Z as a count-
ing variable, another one, W, which does not go back to 0, and
to tell the machine to stop If W ever gets to some astronomical
figure, indicating that something 1s being repeated insufferably.
The formulae at 7140 and 7150 are full of code symbols;
but 1f you've read this far you may as well hear what they do.
RND is a éingle instruction and tells the machine to find us a
randdm number between 0 and l, i.e., a random fraction. The aster-
isk 1is the multipliéation slgn, so M¥RND tells the machine to
multiply M, the number of rows, by some random fraction; the result
will be a number in the range from 0 to M, or 0 to 8 if we have
8 rows. By adding 1 we convert that to a number from 1 to 9.
The symbol INT() means to take the '"integer value" of whatever
is in the parentheses, the integer ‘value being what's left when
everything afte'r‘th‘e decimal point has been dropped. Thus INT(4.7332)
is equal to 4. So by taking Just the integers we end up with
randomly seleActed integers from 1 to 8.% (The word, "RANDOMIZE ,"
in Line 7130 tells the machine to pilck a new set of random num-
bers every time we use the program, not to pick a random selection
the f‘ii‘st time and remember it.) |
" The name of the 1anguagé in which Lines 7110~7210 are

wrlitten 1s BASIC.

¥There is a very small chance that a random number selected
by the computer will be exactly 1. In that case the integfzr value
of (8%1+1) will be 9. We don't want a 9. We can avold this in
various ways; otherwise what can (improbably) happen 1s that one
member of our population will be missing. He'll be located il"'l .
the nonexistent Row 9. He'll never bother us there, but the '"count-
ing" will proceed as though he had been put in a legitimate spot.

-8

The actual program described in thls paper runs to some-

thing over 200 lines with the general appearance of Lines 7110-
7210. |

