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Abstract

Resource	reallocation	problems	are	common	in	real	life	and	therefore	gain	an	increasing	interest	in	Computer	Science	and
Economics.	Such	problems	consider	agents	living	in	a	society	and	negotiating	their	resources	with	each	other	in	order	to
improve	the	welfare	of	the	population.	In	many	studies	however,	the	unrealistic	context	considered,	where	agents	have	a
flawless	knowledge	and	unlimited	interaction	abilities,	impedes	the	application	of	these	techniques	in	real	life	problematics.	In
this	paper,	we	study	how	agents	should	behave	in	order	to	maximize	the	welfare	of	the	society.	We	propose	a	multi-agent
method	based	on	autonomous	agents	endowed	with	a	local	knowledge	and	local	interactions.	Our	approach	features	a	more
realistic	environment	based	on	social	networks,	inside	which	we	provide	the	behavior	for	the	agents	and	the	negotiation	settings
required	for	them	to	lead	the	negotiation	processes	towards	socially	optimal	allocations.	We	prove	that	bilateral	transactions	of
restricted	cardinality	are	sufficient	in	practice	to	converge	towards	an	optimal	solution	for	different	social	objectives.	An
experimental	study	supports	our	claims	and	highlights	the	impact	of	a	realistic	environment	on	the	efficiency	of	the	techniques
utilized.
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	Introduction

1.1 	In	the	past	few	years,	an	increasing	number	of	studies	focused	on	resource	allocation	problems,	either	from	a	centralized	or	a
distributed	point	of	view.	Optimally	allocating	a	set	of	resources	between	agents	in	an	artificial	society	is	an	important	issue	in
Computer	Science	as	well	as	in	Economics.	Indeed,	numerous	applications	can	be	formulated	as	allocation	problems	in	various
domains	ranging	from	auctions	(Bachrach	&	Rosenschein,	2008;	Sandholm,	2002)	to	industrial	procurement	(Giovannucci	et	al.,
2004),	including	grid	computing	(Galstyan	et	al.,	2005).

1.2 	Centralized	solving	techniques	only	aim	to	determine	the	best	way	to	assign	resources	in	order	to	optimize	the	objective
function,	without	consideration	for	their	origin.	At	the	opposite,	distributed	solving	techniques	consider	that	resources	are	initially
allocated	between	agents,	and	the	aim	is	to	determine	a	sequence	of	transactions	leading	to	an	optimal	allocation.	However,
most	of	these	techniques	cannot	be	used	in	practice:	either	they	do	not	consider	some	constraints	inherent	to	the	application
context	or	they	rely	on	unrealistic	assumptions.	For	instance,	in	many	studies	(e.g.	Endriss	et	al.,	(2006)	or	Chevaleyre	et	al.,
(2010),	agents	can	compensate	disadvantageous	transactions	using	money	from	an	infinite	wallet.	This	way,	any	condition	on	a
transaction	can	be	satisfied.	Similarly,	relationships	between	agents	are	often	not	considered	whereas	this	characteristic	occurs
in	many	applications.	Indeed,	agents	in	the	population	usually	all	know	each	other	and	can	negotiate	freely	with	each	other.
However,	communications	are	often	restricted	in	a	significant	number	of	applications	(Lieberman	et	al.,	2005):	business,	spatial,
applications	based	on	social	networks	or	Internet	applications.	Most	of	the	time,	these	studies	rely	on	omniscient	agents	which
know	everything	about	everybody	(i.e.	flawless	knowledge	of	the	whole	society).	However,	in	large-scale	applications	(with	a
large	number	of	agents),	the	agents	only	have	access	to	local	information.	Since	these	assumptions	are	not	plausible	from	our
point	of	view,	we	choose	to	consider	a	more	realistic	environment	where	agents	have	incomplete	knowledge	and	limited
interaction	possibilities.

1.3 	The	aim	of	this	paper	is	not	to	prove	the	existence	of	solutions	with	respect	to	a	specific	context	(it	is	certainly	important	but	not
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sufficient	in	practice)	but	to	propose	a	distributed	mechanism	based	on	agent	negotiations	and	which	can	be	used	in	a	more
realistic	context.	Our	objective	is	to	design	the	agent	behavior	and	the	negotiation	settings	to	implement	accordingly	in	order	to
lead	the	negotiation	processes	towards	the	best	solutions.	These	solutions,	which	are	achieved	by	an	adaptive	and	anytime
algorithm,	can	be	considered	as	emergent.

1.4 	This	paper	is	structured	as	follows.	Section	2	presents	the	limitations	of	the	current	studies	on	allocation	problems.	Section	3
defines	some	basic	notions	and	describes	what,	from	our	point	of	view,	is	a	more	realistic	environment.	The	different	parameters
on	which	relies	the	solving	method	we	propose	are	also	presented.	Section	4	introduces	the	simulation	protocol	and	discusses
about	the	evaluation	of	agent	negotiations.	Characteristics	favoring	the	achievement	of	socially	interesting	allocations	are	also
analyzed	with	respect	to	the	utilitarian	and	the	egalitarian	welfare	notions.	Section	7	concludes	this	study	with	a	summary	of	the
most	efficient	negotiation	settings	according	to	different	scenarios.

	Background

2.1

Different	ways	exist	in	the	literature	to	evaluate	the	quality	of	resource	allocations.	One	of	them,	called	social	efficiency,	can	be
measured	owing	to	notions	from	the	social	choice	theory	(Moulin,	1988;	Arrow	et	al.,	2002).	These	notions	evaluate	different
aspects	of	allocations	in	a	global	way,	aggregating	the	satisfaction	of	all	the	agents.	The	average	satisfaction	is	evaluated
according	to	the	utilitarian	welfare.	The	egalitarian	welfare	focuses	on	the	weakest	satisfaction.	The	Nash	product	considers	both
fairness	and	average	satisfaction	while	elitist	societies	only	consider	the	largest	satisfaction.	These	four	welfare	notions	are	the
most	important	and	the	most	widely	used	to	date	(Endriss	et	al.,	2006;	Chevaleyre	et	al.,	2010;	Ramezani	&	Endriss,	2009;
Brams	&	Taylor,	1996)	and	only	those	will	be	considered	in	this	paper	for	this	reason.

2.2 	The	Pareto	efficiency	is	also	an	omnipresent	notion	in	the	literature	(Moulin,	1988;	Arrow	et	al.,	2002).	An	allocation	is	Pareto-
efficient	if	there	does	not	exist	another	allocation	that	would	increase	the	satisfaction	of	an	agent	without	decreasing	the
satisfaction	of	any	other	agent.	This	notion	is	useful	when	agents	are	purely	self-centered.	However,	in	this	paper,	the	objective	is
to	find	the	best	agent	behavior	to	maximize	the	welfare	of	the	agent	society.	Thus,	selfless	agents	are	also	considered.	In	such	a
case,	the	Pareto	efficiency	appears	as	a	less	interesting	notion	and	is	not	considered	in	this	paper.

2.3 	Many	studies	focusing	on	the	different	aspects	of	allocation	problems	evaluate	the	allocations	using	the	welfare	notions
mentioned	above.	For	instance,	Sandholm,	(Sandholm,	1998)	establishes	essential	theoretical	results	for	allocation	problems	in
utilitarian	societies.	He	classifies	the	different	kinds	of	transaction	and	he	also	demonstrates	the	existence	of	transaction
sequences	leading	to	optimal	solutions	depending	on	the	kinds	of	transaction	allowed	during	negotiations.	Other	studies	extend
this	theoretical	work	like	(Endriss	et	al.,	2006;	Chevaleyre	et	al.,	2010).	They	consider	different	welfare	functions	and	design
various	scenarios	according	to	many	representations	of	agents	preferences.	They	establish	convergence	results	on	negotiation
processes	according	to	these	scenarios.	Complexity	of	allocation	problems	is	investigated	as	well.	The	computational	complexity
is	analyzed	to	check	the	sufficiency	of	transactions	involving	one	resource	at	a	time	in	given	cases	(Dunne	et	al.,	2005;	Dunne	&
Chevaleyre,	2008).	These	papers	characterize	solutions,	studying	the	desirable	properties	according	to	different	scenarios.
However,	these	studies	do	not	focus	on	the	mechanism	required	in	practice	to	achieve	a	solution	maximizing	the	welfare	of	a
society.	These	studies	are	based	on	omniscient	agents	that	can	negotiate	without	restrictions.	Only	self-centered	agents	are
considered	and	collaboration	is	meaningless.

2.4 	In	(Chevaleyre	et	al.,	2007),	authors	study	the	allocation	of	goods	to	eliminate	envy	within	a	population.	They	establish
convergence	and	complexity	results	on	graph	allocation	problems.	The	authors	do	not	consider	the	agent	behaviour	to	implement
in	order	to	achieve	optimal	solutions	in	practice.	Task	allocation	problems	are	also	studied	when	communication	abilities	between
agents	are	restricted	(de	Weerdt	et	al.,	2007).	The	authors	only	consider	the	utilitarian	perspective	of	the	problem	and	propose
some	exponential	algorithms.	Simulations	are	performed	on	random	graphs	of	different	kinds	(small-world,	scale-free,	...).	Some
authors	focus	on	topological	issues,	where	the	behaviour	and	the	performance	of	complex	systems	are	studied	according	to
topological	characteristics	(Dekker,	2007)).	Instead	of	studying	allocation	problems	in	a	generic	way,	some	authors	focus	on	a
specific	game,	e.g.	the	ultimatum	game,	and	study	the	evolution	of	fairness	on	complex	networks	(Xianyu,	2010).	Some	studies
focus	on	dynamic	populations.	For	instance,	(Zoethout	et	al.,	2010)	studies	the	impact	of	a	newcomer	on	the	efficiency	and	the
performance	according	to	different	scenarios.	The	authors	use	different	performance	indicators	that	can	be	compared	to	social
measures.	The	time	performance	of	the	slowest	agent	corresponds	to	an	egalitarian	metric	whereas	the	sum	of	the	individual
performances	of	all	the	agents	(the	labour	cost)	corresponds	to	an	utilitarian	point	of	view.	In	this	paper,	the	environment	is	static:
the	size	of	the	artificial	society	and	the	total	number	of	resources	do	not	vary.

	Multiagent	resource	allocation	problem

3.1 	In	this	section,	resource	allocation	problems	are	defined	and	characterized	according	to	several	crucial	parameters.	We	describe
our	claim	for	a	more	realistic	environment	and	we	discuss	about	its	importance	and	its	impact	on	the	efficiency	of	solving
techniques.	Different	elements	on	which	our	agent-based	solving	method	relies	are	finally	described	(Nongaillard	et	al.,	2008).	All
the	concepts	are	defined	in	such	a	way	that	their	distributed	implementation	is	facilitated.
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Basic	notions

3.2 	Allocation	problems	are	usually	defined	based	on	a	population	of	agents	and	on	a	set	of	resources.	The	agents	express	their
preferences	on	all	the	resources	and	have	a	bundle	containing	their	own	resources.	The	aim	of	resource	allocation	problems	is	to
find	an	allocation,	i.e.	an	assignment	of	the	set	of	resources	between	the	agents	of	the	population,	maximizing	(or	minimizing)	a
given	objective.

3.3 	Several	parameters	affect	the	properties	of	an	allocation	problem.	Even	a	slight	difference	between	the	characteristics	of	two
allocation	problems	can	have	a	fundamental	impact	on	the	way	these	problems	can	be	solved	efficiently.	One	of	these	crucial
parameters	is	the	nature	of	the	resources	considered.	It	affects	directly	the	properties	of	resource	allocations.

3.4 	In	this	paper,	resources	are	assumed	atomic,	not	shareable	and	unique.	Since	resources	are	assumed	atomic,	agents	cannot
divide	them	in	order	to	trade	only	a	part.	For	instance,	a	book	is	an	atomic	resource:	trading	it	page	by	page	is	impossible.
Resources	are	not	shareable	which	means	the	satisfaction	of	an	agent	only	depends	on	the	resources	in	its	bundle,	i.e.	resources
that	belong	to	another	agent	cannot	be	considered	in	the	evaluation	of	the	satisfaction	of	the	agent.	Finally,	resources	are	unique
and	tagged	with	a	unique	identification	number.	Such	an	environment	is	called	single-unit	(in	contrast	with	a	multi-unit
environment	where	several	similar	resources	cannot	be	distinguished).	For	instance,	let	us	consider	a	box	of	8	eggs.	It	is	possible
either	to	consider	the	whole	box	as	an	atomic	resource	or	to	consider	each	egg	as	a	resource.	In	the	latter	case,	owning	the	first
egg	of	the	box	is	not	equivalent	to	owning	the	last	one.	Both	cases	correspond	to	two	different	resource	allocations.

3.5 	According	to	these	characteristics,	a	resource	allocation	can	be	defined	more	formally	as	follows:

Definition	1	(Allocation)			Given	a	set	 	of	m	resources	and	a	population	 	of	n	agents,	a	resource	allocation	A	is	an	ordered
list	of	n	resource	bundles	Ri⊆ 	describing	the	resources	owned	by	each	agent	i:

A	=	[R1,...,	Rn],								1,...,	n∈ ,				A∈ .

where	 	is	the	set	of	all	possible	allocations.	A	resource	allocation	also	satisfies	the	following	properties:

Ri	=	 ,				 Ri	=	∅,				and				A(i)	=	Ri,	i∈ .

In	other	words,	an	allocation	is	constituted	by	the	ordered	list	of	the	agent	bundles.	Moreover	all	the	resources	must	be	allocated
to	the	agents	and	a	resource	can	only	belong	to	one	agent	at	a	time.

3.6 	As	described	in	Section	1,	this	paper	focuses	on	distributed	methods	based	on	agent	negotiations	according	to	a	more	realistic
context.	We	assume	the	knowledge	of	an	agent	is	incomplete:	an	agent	only	knows	its	preferences,	its	bundle	of	resources	and	a
list	of	neighbors	(agents	with	which	interactions	are	possible).	This	way,	each	agent	is	able	to	negotiate	with	the	restricted
number	of	agents	formed	by	its	neighborhood.	The	agents	also	negotiate	according	to	a	given	policy:	the	transactions	they	use
for	trading	resources	belong	to	a	given	set.	A	negotiation	problem	can	thus	be	defined	more	formally	as	follows:

Definition	2	(Negotiation	problem)			A	negotiation	problem	is	a	tuple	
〈 , ,	Δ, 〉,	where	 	=	{1,...,	n}	is	a	finite	population	of	n	agents,	 	=	{r1,...,	rm}	is	a	finite	set	of	m	resources,	Δ	is	a	set

containing	the	kinds	of	transaction	allowed	during	the	negotiations,	and	 	is	the	contact	graph.

3.7 	Restrictions	on	the	communications	between	agents	are	modeled	by	a	contact	graph	 	where	the	nodes	represent	the	agents

and	the	edges	represent	the	interaction	possibilities	between	the	agents	so	that	two	agents	linked	in	the	graph	can	negotiate
together.	Note	that	in	practice	this	graph	is	distributed	among	the	agents	of	population	 	as	agent	neighborhoods.

Definition	3	(Contact	graph)			A	contact	graph	is	an	undirected	graph	 	=	( , ).	Two	agents	can	communicate	if	an	edge

from	 	between	them	exists.	Note	that	this	relation	is	symmetric.

3.8 	An	agent	can	be	defined	in	a	generic	way	by	a	resource	bundle,	a	valuation	function	describing	its	preferences,	a	list	of	agents
(also	called	neighbors)	with	which	it	is	able	to	communicate,	a	behavior	describing	how	it	negotiates	with	others	and	an
acceptability	criterion	related	to	its	decision-making.

Definition	4	(Agent)			An	agent		i∈ 	is	a	tuple	〈Ri,	vi,	Bi,	Ci,	Ni〉,	where	Ri	is	the	set	of	mi	resources	the	agent	owns,	vi	is	the
valuation	function	(the	agent	preferences),	Ni	is	the	list	of	ni	neighbors,	Bi	defines	the	agent	behavior	according	to	which	the	agent
negotiates,	and	Ci	is	its	acceptability	criterion	on	which	is	based	its	decisions.
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Example	1			Figure	1	illustrates	a	negotiation	problem	based	on	a	population	of	6	agents	and	a	set	of	9	resources	(	 	=	{1,...,
6},	 	=	{r1,...,	r9}).

These	resources	are	initially	allocated	to	the	agents.	Each	agent	owns	a	resource	bundle	and	their	aggregation	constitutes	the
initial	resource	allocation,	which	can	be	extracted	from	Figure	1	as	follows:

A	=	 {r3}	{r1,	r4,	r5}	{r6,	r9}	{r7,	r8}	{}	{r2} .

According	to	allocation	A,	agent	1	only	owns	r3	while	agent	2	owns	3	resources	r1,	r4	and	r5.	No	resource	belongs	to	agent	5,
etc...

The	contact	graph	describes	the	interaction	possibilities	of	the	agents.	Two	agents	can	only	communicate	if	they	are	directly
linked.	According	to	the	topology	of	the	contact	graph	described	in	Figure	1,	we	can	say	that	agent	4	is	able	to	negotiate	with
agents	2	and	6	while	agent	3	can	only	communicate	with	agent	1.

Figure	1:An	example	of	negotiation	problem

Considering	a	centralized	technique,	the	resources	and	the	agent	preferences	are	gathered	in	a	central	entity	which	determines
an	optimal	resource	distribution	performed	afterwards.	However,	considering	a	distributed	method	based	on	agent	negotiations,
the	solving	process	proceeds	as	follows.	An	agent	is	selected	to	be	the	initiator,	agent	1	for	instance.	It	negotiates	in	its
neighborhood	by	first	selecting	one	neighbor,	agent	2	for	instance,	and	then	negotiating	with	it	according	to	its	behavior.	They
both	locally	determine	that	the	exchange	of	resources	r3	and	r5	is	acceptable,	with	respect	to	their	own	criterion.	This	transaction
is	performed	and	the	resource	allocation	evolves.	A	new	initiator	is	selected	and	the	process	continues	until	no	more	acceptable
transaction	can	be	determined.

3.9 	Many	applications	can	be	modeled	using	such	a	representation.	For	instance,	home	exchange	websites	which	appear	on	the
Internet.	Each	customer/agent	enters	the	system	with	one	resource:	its	house.	They	want	to	exchange	their	house	for	another
one	during	a	given	time	period	(for	holidays	for	example).	The	contact	graph	can	be	built	out	of	the	customers	requirements.	The
objective	of	such	an	application	is	to	satisfy	a	maximum	number	of	customers	without	neglecting	any	of	them	(every	customer
who	lend	their	house	must	find	another	one	in	return).	The	next	section	is	dedicated	to	another	crucial	model	parameter:	the
evaluation	of	an	allocation	from	a	local	and	a	global	point	of	view.	The	importance	and	the	impact	of	using	a	contact	graph	is	also
discussed.

Individual	and	collective	welfare
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3.10 	The	satisfaction	of	an	agent	depends	directly	on	its	personal	resources.	It	can	be	evaluated	by	a	valuation	function	considering
different	parameters	more	or	less	important	to	the	agent.

3.11 	In	many	studies	in	the	literature,	the	individual	welfare	of	an	agent	(i.e.	its	satisfaction)	only	depends	on	its	utility	(Endriss	et	al.,
2006;	Chevaleyre	et	al.,	2010;	Sandholm,	1998).	In	such	studies,	money	is	introduced	during	the	transactions.	Indeed,
transactions	are	performed	if	and	only	if	they	satisfy	all	the	conditions	imposed	by	all	the	agents	involved	in	the	transaction.
Money	can	be	used	to	compensate	a	disadvantageous	transaction	leading	to	a	loss	of	utility	for	example.	One	constraint	only
controls	the	use	of	money:	it	prevents	the	creation	of	money	during	a	transaction.	In	other	words,	the	amount	of	money	given	by
an	agent	(negative	value)	corresponds	to	the	exact	amount	of	money	received	by	the	other	agent	(positive	value).	The	sum	of
compensatory	payments	of	a	transaction	must	be	null.	This	argument	seems	consistent	and	reasonable.	However,	it	is	not
sufficient	and	it	leads	to	unrealistic	situations	since	the	agent	wallet	is	not	bounded.	An	agent	is	considered	as	rich	as	required	to
compensate	any	disadvantageous	transaction.	Infinite	compensatory	payments	do	not	represent	a	plausible	assumption	in	most
applications.	Instead	of	allowing	infinite	compensatory	payments,	we	choose	not	to	consider	money	and	to	restrict	the	valuation
function	to	a	utility	function	in	this	paper.

3.12 	Various	representations	of	agent	preferences	exist	in	the	literature	(Doyle,	2004;	Mas-Colell	et	al.,	1995).	In	this	paper,	agents
express	their	preferences	using	a	cardinal	quantitative	representation:	an	additive	utility	function.

Definition	5	(Utility	function)			An	agent	evaluates	its	individual	welfare	using	an	additive	utility	function	ui	:	2 → .	When	agent	

i∈ 	owns	a	set	of	resources	Ri⊆ ,	its	utility	is	evaluated	as	follows:

ui(Ri)	=	 ui(r),								i∈ ,				Ri⊆ .

Example	2			Let	us	illustrate	the	evaluation	of	the	individual	welfare	using	a	simple	example,	based	on	a	population	of	3	agents
	=	{1,	2,	3}	and	a	set	of	6	resources	 	=	{r1,...,	r6}.	The	agents	preferences	are	described	in	Table	1.	According	to	this	table,

agent	1	associates	with	resource	r2	the	utility	value:	u1(r2)	=	7.

Table	1:	Individual	Welfare	–	Agent	preferences

ui(rj)
Resource	Set	

r1 r2 r3 r4 r5 r6

Population	

1 10 7 10 9 2 1

2 6 10 3 4 8 6

3 1 2 1 2 1 3

If	the	initial	resource	allocation	is	A	=	[{r4}{r1,	r2,	r6}{r3,	r5}],	then	the	utility	of	all	the	agents	can	be	easily	computed	as	follows:

u1(R1) =	u1({r4})	=	u1(r4)	=	9 			
u2(R2) =	u2({r1,	r2,	r6})	=	u2(r1)	+	u1(r2)	+	u2(r6)	=	6	+	10	+	6	=	22 			
u3(R3) =	u3({r3,	r5})	=	u3(r3)	+	u3(r5)	=	1	+	1	=	2 			

3.13 	The	individual	welfare	is	the	evaluation	of	an	allocation	from	an	agent	point	of	view	thanks	to	its	utility	function.	The	quality	of	an
allocation	must	be	evaluated	from	a	global	point	of	view.	In	this	purpose,	notions	from	the	social	choice	theory	are	usually	used
(Moulin,	1988;	Arrow	et	al.,	2002).	These	notions	aggregate	the	satisfaction	of	all	agents	in	the	population	to	evaluate	an
allocation.	In	this	paper,	we	focus	on	the	four	most	important	notions.

3.14 	The	most	widely	used	notion	is	the	utilitarian	welfare,	which	optimizes	the	average	satisfaction	in	a	population.

Definition	6	(Utilitarian	welfare)			The	utilitarian	welfare	of	a	resource	allocation	A	corresponds	to	the	sum	of	individual	welfare.

swu(A)	=	 ui(Ri),								A∈ .

3.15 	The	egalitarian	welfare	of	an	allocation	corresponds	to	the	individual	welfare	of	the	poorest	agent	in	the	population.	Its
maximization	tends	to	reduce	inequalities	in	the	societies.
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Definition	7	(Egalitarian	welfare)			The	egalitarian	welfare	of	an	allocation	A	corresponds	to	the	individual	welfare	of	the	poorest
agent.

swe(A)	=	 ui(Ri),								A∈ .

3.16 	The	Nash	product	considers	the	average	individual	welfare	and	the	inequalities	within	an	agent	population.	This	notion	can	be
viewed	as	a	compromise	between	the	utilitarian	and	the	egalitarian	welfare.	This	notion	is	independent	of	utility	scales	and	it	also
normalizes	the	agents	utility.	However	this	notion	becomes	meaningless	if	non-positive	values	are	used.

Definition	8	(Nash	product)			The	Nash	product	of	an	allocation	A	corresponds	to	the	product	of	individual	welfare.

swn(A)	=	 ui(Ri),								A∈ .

3.17 	Finally,	the	elitist	welfare	only	considers	the	welfare	of	the	richest	agent	in	the	population.	This	notion	can	be	useful	in	the	context
of	artificial	societies	for	instance,	where	agents	have	a	common	objective.	This	objective	must	be	fulfilled	irrespective	of	the	agent
which	achieves	it.

Definition	9	(Elitist	welfare)			The	elitist	welfare	of	an	allocation	A	corresponds	to	the	individual	welfare	of	the	richest	agent	in	the
population.

swe (A)	=	 ui(Ri),								A∈ .

3.18 	All	the	basic	notions	having	been	presented,	we	can	use	them	to	discuss	the	importance	of	the	social	graph	in	the	next	section.

Importance	of	the	contact	graph

3.19 	Since	only	few	studies	consider	restrictions	on	agent	interactions,	it	is	legitimate	to	investigate	the	importance	of	such	a
parameter.	Indeed,	negotiation	processes,	which	lead	to	optimal	solutions	according	to	complete	communication	possibilities	(i.e.,
based	on	complete	social	graphs),	may	only	lead	to	solutions	far	from	the	optimum	when	communications	are	restricted.

Proposition	1	(Social	graph	impact)			Independently	of	the	objective	function	considered,	a	restricted	social	graph	may	prevent	the
achievement	of	optimal	resource	allocations.

Proof.	Let	us	prove	this	proposition	by	a	counter-example	based	on	a	population	 	=	{1,	2,	3}	and	a	set	of	resources	 	=	{r1,
r2,	r3}.	The	objective	is	to	maximize	the	Nash	welfare.	All	the	agents	are	assumed	self-interested	(they	only	accept	transactions
increasing	their	own	individual	welfare).	The	agent	preferences	are	described	in	Table	2	while	the	contact	graph,	which	describes
the	interaction	possibilities,	is	represented	in	Figure	2.

Table	2:	Contact	graph	impact	–	Agent
preferences

ui(rj)

Resource	Set

r1 r2 r3

Population	

1 3 1 9

2 1 4 1

3 10 2 3

According	to	the	topology	of	this	social	graph,	agent	2	can	communicate	with	agents	1	and	3,	while	they	can	only	communicate

with	agent	2	but	not	together.	The	initial	resource	allocation	is	A	=	 {r1}{r2}{r3} 	and	is	associated	with	swn(A)	=	36.
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Figure	2:Example	of	a	restricted	contact	graph	with	3	agents

Two	resource	swaps	(one-for-one	resource	replacement)	only	are	possible.	Agents	1	and	2	can	exchange	r1	and	r2	or	agents	2
and	3	can	exchange	respectively	r2	and	r3.	Both	cases	lead	to	a	decrease	of	the	utility	of	at	least	one	participant.	Thus,	no
acceptable	exchange	is	possible	here.

However,	allocation	A	is	not	an	optimal	solution.	Indeed,	the	swap	of	r1	and	r3	by	agents	1	and	3	would	lead	to	a	better	allocation

A'	=	 {r3}{r2}{r1} ,	which	is	associated	with	swn(A')	=	360.	Hence,	due	to	the	topology	of	the	social	graph	restricting	the

interaction	possibilities,	the	negotiation	process	cannot	achieve	an	optimal	solution.	

3.20 	Considering	the	social	graph	also	has	an	indirect	influence	on	negotiation	processes.	While	it	may	not	be	important	to	consider
the	order	in	which	the	agents	negotiate	when	the	social	graph	is	complete,	this	order	becomes	essential	when	communications
between	agents	are	restricted.	Indeed,	if	restrictions	on	agent	communications	are	not	considered,	resources	can	always	be
traded	with	all	other	agents.

Proposition	2	(Negotiation	order)			Independently	of	the	objective	function	considered,	the	order	in	which	agents	negotiate	with
each	other	may	prevent	the	achievement	of	optimal	resource	allocations.

Proof.	The	proposition	can	be	proved	by	a	counter-example.	Let	us	consider	a	population	 	=	{1,	2,	3}	of	selfish	agents	and	a
set	of	resources	 	=	{r1,	r2,	r3}.	The	objective	is	still	to	maximize	the	Nash	welfare.	The	agent	preferences	are	described	in
Table	3	and	the	contact	graph	is	illustrated	in	Figure	2.	The	initial	resource	allocation	is	A=[{r1}{r2}{r3}]	with	swn(A)	=	6.

Table	3:	Negotiation	order	–	Agent
preferences

ui(rj)

Resource	Set

r1 r2 r3

Population	

1 2 10 4

2 5 3 9

3 2 7 1

Let	us	now	assume	that	agent	2	initiates	a	negotiation.	According	to	the	topology,	two	partners	are	possible.	Depending	on	the
choice	of	the	initiator,	the	negotiation	process	may	end	on	a	sub-optimal	allocation.	Indeed,	if	agent	2	negotiates	first	with
agent	1,	the	allocation	achieved	is	A'	=	[{r2}{r1}{r3}]	with	swn(A')	=	50.	However,	if	agent	3	is	chosen	first,	the	allocation	achieved	is

A''	=	 {r1}{r3}{r2} 	with	swn(A'')	=	126.

Hence,	the	order	of	negotiation	becomes	an	important	parameter	to	consider	when	the	interaction	possibilities	are	restricted.	

3.21 	In	this	section,	we	have	shown	the	importance	of	considering	restricted	communication	abilities,	as	it	occurs	in	many
applications.	These	restrictions	represent	more	plausible	assumptions	but	they	also	have	important	consequences	for	the
negotiation	efficiency.	The	topological	characteristics	may	prevent	the	achievement	of	optimal	solutions.	Moreover,	the	order	in
which	agents	negotiate	may	also	lead	negotiation	processes	to	sub-optimal	allocations.	In	spite	of	their	respective	impact,	these
two	parameters	have	not	been	considered	so	far.	The	context	of	many	former	studies	can	be	considered	as	ideal	while	ours	is
more	realistic.

3.22 	A	negotiation	process	between	agents	changes	an	initial	resource	allocation	to	an	optimal	one	using	local	transactions.	Agents
only	accept	transactions	that	satisfy	their	acceptability	criterion.	When	no	agent	is	able	to	find	an	acceptable	transaction	with
respect	to	its	behavior	then	the	negotiation	process	is	considered	as	over.	The	next	section	describes	the	transactions	and	the
different	acceptability	criteria.
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Δ	=	{〈1,	0〉}	⇒	#δij	=	10 			

Δ	=	{〈1,	1〉}	⇒	#δij	=	199 			

Δ	=	{〈x,	y〉|	x≤2,	y≤2}	⇒	 #δij	=	40500 			

Transactions	and	acceptability	criterion

3.23 	During	a	negotiation	process,	the	resource	allocation	evolves	step	by	step	by	means	of	local	transactions	between	agents.	The
resource	traffic	is	generated	by	these	transactions	as	they	move	resources	successively	from	the	bundles	of	one	agent	to
another.	Transactions	can	be	classified	in	two	main	families	(Sandholm,	1998):	multilateral	transactions	where	many	agents	can
be	involved	simultaneously	and	bilateral	transactions	where	only	two	agents	at	a	time	can	trade	resources.	Although	a	few	studies
are	dedicated	on	multilateral	transactions	(Endriss	&	Maudet,	2005),	no	algorithm	exists	to	determine	them	in	a	scalable	way.
Consequently,	only	bilateral	transactions	are	considered	in	this	paper.

3.24 	Two	agents	at	a	time	are	involved	in	bilateral	transactions:	an	initiator	and	its	partner.	Bilateral	transactions	can	be	characterized
by	the	number	of	resources	that	both	participants	can	propose.	Thus,	it	can	be	defined	in	a	generic	way	as	follows:

Definition	10	(Bilateral	transactions)			A	bilateral	transaction	between	two	agents	i,	j∈ ,	denoted	by	δij,	is	initiated	by	agent	i	and

involves	a	partner	agent	j.	It	is	a	pair	δij〈u,	v〉	=	(ρi,	ρj),	where	the	initiator	i	offers	a	set	ρi	of	u	resources	and	its	partner	j	offers	a
set	ρj	of	v	resources.

A	transaction	δ	transforms	an	initial	allocation	A	into	a	new	allocation	A'.	Different	notations	exist	in	the	literature	to	express	such
an	evolution	using	the	state	of	the	system	before	and	after	the	transaction,	like	δ	=	(A,	A')	for	instance.	All	bilateral	transactions
classified	in	(Sandholm,	1998)	can	be	represented	using	the	model	presented	in	Definition	10.	For	instance,	a	〈1,	0〉-transaction
corresponds	to	a	gift	(also	called	O-contract):	the	initiator	gives	a	unique	resource	without	counterpart.

3.25 	The	complexity	of	a	negotiation	between	two	agents	is	significantly	affected	by	the	maximum	number	of	resources	the	agents
are	willing	to	offer.

Proposition	3	(Bilateral	complexity)			The	number	of	possible	bilateral	transactions	between	two	agents	i,	j∈ 	where	exactly	u
and	v	resources	can	be	respectively	offered	is:

#δij	=	 × .

3.26 	The	kinds	of	transaction	allowed	during	a	negotiation,	denoted	by	Δ,	define	a	negotiation	policy.	For	instance,	the	agents	may
also	be	allowed	to	offer	resources	in	a	transaction	up	to	a	specified	amount.	Let	us	call	''up	to	〈2,	2〉''	the	negotiation	policy
according	to	which	the	agents	can	offer	either	nothing,	one	or	two	resources.	The	kinds	of	transaction	allowed	can	be	written
explicitly	as:

"up	to	{〈2,	2〉}"⇔Δ	=	{〈x,	y〉|	x≤2,	y≤2}

Proposition	4	(Complexity	of	Negotiation	policy)			If	the	two	agents	i,	j∈ 	are	allowed	to	offer	up	to	u'	and	v'	resources	(	u'≤mi,
v'≤mj)	then	the	number	of	possible	bilateral	transactions	between	them	is:

#δij	=	 	-	1.

Proof.	A	negotiation	policy	is	defined	based	on	the	number	of	resources	an	agent	can	offer.	If	an	agent	can	offer	up	to	three

resources	then	it	can	offer	any	subset	of	his	bundle	containing	at	most	three	resources.	 	represents	the	possible	number	of

offers	containing	exactly	k	resources	that	agent	i	can	propose	(according	to	the	number	of	resources	it	owns	mi).	The	total	number
of	offers	an	agent	can	propose	can	be	computed	by	a	simple	summation	of	such	terms.	Once	the	number	of	offers	has	been

computed	for	each	agent,	determining	the	possible	number	of	transactions	between	them	is	trivial.	

Example	3			For	instance,	let	us	consider	two	agents	i,	j∈ 	involved	in	a	negotiation	initiated	by	agent	i.	These	agents	own
bundles	of	respectively	10	and	20	resources.	Let	us	determine	the	possible	number	of	transactions	according	to	different
negotiation	policies.

When	only	gifts	from	the	initiator	are	allowed,	10	transactions	are	possible	since	the	agent	owns	10	resources	only.	When	swaps
only	are	allowed,	both	participants	offer	one	unique	resource.	Thus,	200	different	transactions	are	possible.	However,	when
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participants	can	offer	up	to	two	resources	from	their	bundle,	the	number	of	possible	transactions	explodes	up	to	40,500.
According	to	the	kinds	of	transaction	allowed,	a	negotiation	can	quickly	become	unscalable.	Restricting	the	cardinality	of	the
allowed	transactions	is	thus	essential	to	guarantee	the	scalability	of	the	solving	method.

3.27 	In	a	distributed	environment	where	agents	have	only	access	to	local	information,	the	finiteness	of	the	solving	process	is
essential.	It	can	be	guaranteed	by	the	use	of	a	proper	acceptability	criterion,	enabling	the	agents	to	locally	determine	the
profitability	of	a	transaction.	When	no	agent	is	able	to	find	an	acceptable	transaction	in	its	neighborhood,	the	negotiation	process
stops.	The	most	widely	used	criterion	is	the	individual	rationality	(Camerer,	2003;	Sandholm,	1998;	Montet	&	Serra,	2003).	Since
no	compensatory	payment	is	allowed,	a	rational	agent	only	accepts	transactions	that	increase	its	individual	welfare.	This	notion
can	be	defined	as	follows:

Definition	11	(Individually	rational	agent)			A	rational	agent	accepts	only	transactions	δ	which	change	an	initial	allocation	A	into
another	one	A'	while	increasing	its	individual	welfare:

ui(Ri')	>	ui(Ri),								i∈ .

In	(Endriss	et	al.,	2006),	the	notion	of	cooperative	rationality	has	been	introduced.	The	authors	proved	that	any	sequence	of
cooperative	rational	transactions	leads	to	Pareto	optimal	allocations.	However,	Pareto	optimal	allocations	can	be	far	from	socially
optimal	allocations.	Moreover,	the	notion	of	cooperative	rationality	cannot	be	used	easily	in	practice.	Indeed,	a	weak	inequality
may	lead	to	a	cycle	of	transactions	between	equivalent	allocations,	which	can	prevent	the	convergence	of	the	negotiations.	Thus,
the	negotiation	processes	between	cooperative	rational	agents	may	not	be	finite.

3.28 	The	individual	rationality	guarantees	that	the	welfare	of	each	agent	is	increased	by	each	transaction.	However,	from	the	point	of
view	of	the	society,	negotiations	between	individually	rational	agents	may	also	lead	to	severely	sub-optimal	allocations.	As	a
consequence,	a	different	acceptability	criterion	should	be	used	to	achieve	better	allocations	society-wise.	We	propose	the	notion
of	social	agents	which	are	willing	to	accept	transactions	that	decrease	their	individual	welfare	as	long	as	they	favor	the	welfare	of
the	whole	society.

Definition	12	(Social	agent)			A	social	agent	only	accepts	transactions	δ(A)	=	A'	that	do	not	penalize	the	whole	society.

sw(A)≥sw(A'),								A,	A'∈ .

3.29 	This	definition	is	close	to	the	definition	of	individually	rational	agents	in	(Endriss	et	al.,	2006)	when	compensatory	payments	are
allowed.	However,	the	different	context	leads	to	drastic	changes	in	its	practical	use.	Firstly,	this	criterion	is	based	on	global
knowledge	which	is	not	available	at	the	agent	level	(the	resource	allocation).	Secondly,	the	use	of	a	weak	inequality	may	lead	to
infinite	negotiation	processes	like	in	the	case	of	collaborative	rationality	described	previously.

3.30 	The	formal	definition	of	this	social	acceptability	criterion	is	based	on	global	information.	However,	we	assume	that	the	knowledge
of	the	agents	is	restricted	to	their	own	preferences,	their	own	bundle	or	information	that	can	be	collected	during	a	negotiation
(from	related	agents	involved	in	the	current	transaction	only).	That	way,	an	agent	is	neither	aware	of	the	current	resource
assignment	nor	of	the	population	size	and	the	preferences	of	the	other	agents.	Consequently,	an	agent	does	not	have	enough
information	to	determine	the	social	welfare	value,	although	computing	the	social	welfare	value	is	not	essential.	Indeed,	an	agent
merely	needs	to	know	whether	the	transaction	increases	or	decreases	the	social	welfare	value.	The	expression	of	the	social
acceptability	criterion	can	be	restricted	to	the	transaction	participants.	Of	course,	the	formula	of	the	acceptability	criterion	must	be
adapted	with	respect	to	the	social	notion	considered,	as	described	in	the	next	paragraphs.	These	restricted	criteria	are	strict
inequalities	in	order	to	guarantee	the	finiteness	of	the	negotiation	processes.

Utilitarian	sociability

3.31 	Social	agents	accept	transactions	that	do	not	harm	the	society,	even	if	they	decrease	their	individual	welfare.	Let	us	adapt	the

generic	formula	to	the	specific	case	of	utilitarian	societies	(Nongaillard	et	al.,	2008).	An	utilitarian	transaction	δij	=	(ρi,	ρj),	which

transforms	A	in	A'(A,	A'∈ ),	must	satisfy	the	following	condition:

swu(A) < 	 swu(A') 			

ui(Ri)	+	uj(Rj)	+	 uk(Rk) < 	 ui(Ri')	+	uj(Rj')	+	 uk(Rk') 			

ui(Ri)	+	uj(Rj) < 	 ui(Ri')	+	uj(Rj') 			
ui(Ri)	+	uj(Rj) < 	 ui(Ri)	+	ui(ρj)	-	ui(ρi)	+	uj(Rj)	+	uj(ρi)	-	uj(ρj) 			

ui(ρi)	+	uj(ρj) < 	 ui(ρj)	+	uj(ρi) 			
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In	other	words,	if	the	partner	associates	a	larger	utility	value	with	the	resources	offered	than	the	initiator,	then	the	transaction	is
profitable	to	the	society.	Each	utilitarian	transaction	leads	to	a	strict	increase	of	the	welfare	of	the	society	(if	utility	values	are	not
null).	Note	that	the	utilitarian	interpretation	of	the	social	acceptability	criterion	is	only	based	on	the	resources	offered.	The	initial
individual	welfare	of	the	participants	does	not	affect	the	acceptability	of	a	transaction.

Egalitarian	sociability

3.32 	In	the	case	of	an	egalitarian	society,	transactions	reduce	inequalities	between	agents.	A	fair	transaction	δij	=	(ρi,	ρj),	which

transforms	A	in	A'(A,	A'∈ ),	must	satisfy	the	following	conditions:

swe(A) ≤ 	 swe(A') 			

uk(Rk) ≤ 	 uk(Rk') 			

ui(Ri),	uj(Rj) < 	 ui(Ri'),	ui(Rj') 			

The	poorest	agent	after	a	fair	transaction	must	be	richer	than	the	poorest	agent	before	the	transaction.	When	the	egalitarian
welfare	is	considered,	an	increase	of	the	welfare	value	cannot	be	guaranteed.	Indeed,	depending	whether	or	not	the	poorest
agent	is	involved	in	the	transaction,	the	egalitarian	welfare	value	may	not	be	increased.	If	the	poorest	agent	is	not	involved,	its
utility	value,	which	corresponds	to	the	egalitarian	welfare	value,	does	not	vary	since	its	resource	bundle	is	not	modified.	Thus,	the
egalitarian	welfare	value	only	changes	if	the	poorest	agent	of	the	population	is	involved.	In	contrast	to	the	utilitarian	acceptability
criterion,	which	only	depends	on	the	traded	resources,	the	egalitarian	interpretation	is	based	on	the	sets	of	traded	resources	as
well	as	on	the	initial	individual	welfare	of	each	participant.	According	to	such	a	criterion,	a	very	rich	agent	may	accept	to	decrease
its	own	utility	for	the	benefit	of	the	whole	society.	In	the	case	where	the	poorest	agent	is	not	involved	in	a	transaction,	the
egalitarian	criterion	favors	the	resource	traffic.

Nash	sociability

3.33 	The	Nash	welfare	can	be	viewed	as	a	compromise	between	the	utilitarian	and	the	egalitarian	notions.	The	Nash	interpretation	of
the	social	acceptability	criterion	also	combines	the	characteristics	of	both	notions	(Nongaillard	et	al.,	2010;	Nongaillard	et	al.,
2009).	A	Nash	transaction	δij	=	(ρi,	ρj),	which	transforms	A	in	A'(A,	A'∈ ),	must	satisfy	the	following	condition:

swn(A) < 	 swn(A') 			

uk(Rk) < 	 uk(Rk') 			

ui(Ri)uj(Rj) uk(Rk) < 	 ui(Ri')uj(Rj') uk(Rk') 			

ui(Ri)uj(Rj) < 	 ui(Ri')uj(Rj') 			

Each	Nash	transaction	strictly	improves	the	welfare	of	the	society,	like	in	utilitarian	transactions.	Similarly	to	the	egalitarian
interpretation	of	the	social	acceptability	criterion,	the	Nash	criterion	must	be	based	on	traded	resources	as	well	as	on	the
individual	welfare	of	both	participants.

Elitist	negotiations

3.34 	Elitist	agents	accept	transactions	δij	=	(ρi,	ρj),	changing	A	into	A'(A,	A'∈ ),	if	the	following	condition	is	satisfied:

swe (A) < 	 swe (A') 			

uk(Rk) ≤ 	 uk(Rk') 			
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ui(Ri),	uj(Rj)
< 	 ui(Ri'),	ui(Rj')

			

The	richest	of	the	two	participants	after	an	elitist	transaction	must	be	richer	than	the	richest	agent	before	this	transaction.	Similarly
to	the	egalitarian	interpretation,	an	increase	of	the	elitist	welfare	value	cannot	be	guaranteed.	However,	the	restriction	is	not	as
strong	as	the	restriction	imposed	in	the	egalitarian	case.	Indeed,	if	the	poorest	agent	of	the	population	is	not	involved,	the
egalitarian	welfare	value	cannot	vary,	but	according	to	the	elitist	notion,	even	if	the	richest	agent	is	not	involved,	the	welfare	value
can	increase.	Nothing	prevents	for	instance	another	agent	to	become	richer	than	the	agent	that	was	the	richest	before	the
transaction.

Agent	behaviors

3.35 	A	behavior	defines	an	agent	from	an	external	point	of	view:	it	describes	how	an	agent	interacts	with	others,	i.e.	how	they
negotiate.	A	transaction	is	a	combination	of	offers	from	each	participant.	An	agent	initiating	a	negotiation	selects	a	partner	from	its
neighborhood,	makes	and	receives	offers	and	checks	their	acceptability	according	to	its	own	criterion.	If	a	transaction	is
acceptable	for	every	participant,	it	is	performed.	Otherwise,	one	agent	must	modify	its	offer,	in	accordance	with	its	behaviour,	and
the	negotiation	continues.	The	order	in	which	these	actions	are	performed	(if	they	are)	constitutes	a	behavior.

3.36 	Many	behaviors	have	been	implemented	and	tested	but	only	the	most	efficient	(according	to	the	quality	of	the	solutions	achieved)
is	presented	here	(Nongaillard	et	al.,	2008).	Our	experiments	show	that	agents	should	be	able	to	change	their	offers	and
partners.	Such	a	behavior	is	more	time-consuming	than	stubborn	behaviors	(agents	refuse	to	change	their	offers)	but	leads
negotiation	processes	to	higher	social	welfare	values.	The	order	in	which	the	actions	are	performed	according	to	a	behavior	also
affects	the	efficiency	of	the	negotiations.	Three	levels	of	priority	can	be	distinguished:	on	the	partner	selection,	on	initiator	offers
and	on	partner	offers.	Our	experiments	show	that	the	behavior	described	next	is	the	most	efficient.

3.37 	According	to	the	kinds	of	negotiation	policy	allowed,	each	agent	can	offer	up	to	a	maximum	number	of	resources.	Doing	so,	they
generate	a	list	of	the	offers	they	can	make	according	to	their	preferences	and	they	sort	it.	Agents	always	propose	the	least
penalizing	offer	first.	In	this	behavior	called	frivolous	flexible,	described	in	Algorithm	1,	the	offer	and	the	partner	can	be	changed
by	the	initiator	during	a	negotiation.	Each	offer	is	proposed	to	every	neighbor	by	the	initiator	first	of	making	a	concession	and
modifying	the	offer.

3.46 	Note	that	when	the	utilitarian	welfare	is	considered,	the	three	priorities	do	not	affect	the	results.	Indeed,	different	negotiation
processes	will	lead	to	equivalent	solutions.	However,	when	other	welfare	notions	are	considered,	these	priorities,	which	define	the
order	of	the	actions,	can	lead	to	suboptimal	allocations.
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	Simulation	results

4.1 	This	section	starts	with	detailing	how	negotiation	processes	are	evaluated,	presenting	the	metrics	used	and	their	role.	Then,	the
experimental	protocol	is	described	to	present	what	simulations	have	been	performed.	Only	simulations	related	to	utilitarian	and
egalitarian	societies	are	analyzed	in	the	next	sections.

Evaluation	metrics

4.2 	In	this	experimental	study,	different	aspects	of	negotiation	processes	are	evaluated	by	to	three	main	parameters.

4.3 	The	first	parameter	is	the	transaction	cardinality.	Identifying	an	acceptable	bilateral	transaction	may	become	a	complex	and
expensive	task	if	large	numbers	of	resources	can	be	traded	at	once,	as	described	in	Section	3.4.	In	order	to	favor	the	scalability
of	our	method,	restrictions	on	the	transaction	cardinality	are	essential.	However,	such	restrictions	may	affect	the	efficiency	of
negotiation	processes.	The	aim	is	to	determine	if	the	use	of	large	transactions	is	necessary	to	achieve	socially	interesting
allocations.

4.4 	The	second	parameter	we	use	to	evaluate	negotiation	processes	is	the	social	efficiency.	Although	resource	allocation	problems
can	be	solved	using	a	centralized	framework,	a	solution	provided	by	such	a	technique	merely	allocates	the	resources	optimally,
without	considering	the	transaction	sequence	required	to	achieve	it.	Such	approaches	cannot	handle	restricted	graphs	in	a
scalable	way.	An	omniscient	central	entity	gathers	every	information,	from	bundles	to	agents	preferences,	in	order	to	determine
the	optimal	outcome.	Social	welfare	values	provided	by	such	centralized	techniques	can	be	used	as	references	to	evaluate	the
absolute	efficiency	of	our	distributed	mechanism.	The	centralized	techniques	used	to	estimate	the	optimal	value	are	described	at
the	beginning	of	each	result	section.

4.5 	The	topological	characteristics	of	a	contact	graph	have	a	direct	impact	on	the	efficiency	of	negotiation	processes.	For	this
reason,	contact	graphs	from	different	classes	are	considered	in	order	to	evaluate	the	negotiation	processes	on	representative
graphs.	We	focus	on	a	specific	parameter:	the	mean	connectivity.	The	mean	connectivity	corresponds	to	the	average	number	of
neighbors	per	agent	and	therefore	represents	the	density	of	the	contact	graph.	The	aim	is	here	to	determine	the	size	of	the
neighborhood	required	to	achieve	socially	efficient	allocations.

Simulation	protocol

4.6 	Having	defined	how	negotiation	processes	are	evaluated,	let	us	now	describe	how	the	simulations	are	performed.

4.7 	Each	experiment	is	set	up	as	follows.	An	artificial	society	is	composed	of	50	agents	(n	=	50)	and	250	resources	(m	=	250)	spread
between	them.	Two	types	of	structured	graph	(complete	and	grid)	and	two	types	of	random	graph	(Erdős-Rényi	1959)	and	small
world	(Albert	&	Barabási	2002)	are	considered.	First	of	starting	the	experiment,	a	large	number	of	scenarios	are	generated:	10
graphs	of	each	class	and	10	sets	of	agent	preferences.	Then,	100	simulations	are	performed	from	different	initial	allocations	for
each	scenario	(couple	preference	+	graph).	Two	acceptability	criteria	are	considered	during	the	simulations:	the	individual
rationality	and	the	sociability.	Four	negotiation	policies	are	considered	in	each	case:	two	allowing	only	one	type	of	transaction
(gifts	and	swaps)	and	two	allowing	several	types	of	transaction	(''up	to	〈1,	1〉''	and	''up	to	〈2,	2〉'').	Since	gifts	cannot	be	individually
rational,	some	negotiation	policies	do	not	exist	in	societies	of	individually	rational	agents.

4.8 	The	resources	are	initially	distributed	randomly.	The	preferences	are	also	generated	randomly	in	the	range	{1..m}.	For
experiments	focusing	on	connectivity,	only	Erdős-Rényi	graphs	are	used	and	the	probability	p	for	a	link	to	exist	between	two
agents	varies	from	0.05	to	1.	During	a	negotiation	process,	the	initiator	agent	is	randomly	chosen	and	the	speech	turn	is	uniformly
distributed:	no	agent	can	talk	twice	before	all	the	others	talked	at	least	once.	When	no	one	is	able	to	find	an	acceptable
transaction,	the	negotiation	process	ends.

4.9 	The	size	of	the	scenarios	(50	agents	and	250	resources)	used	for	the	simulations	may	seem	light	in	contrast	with	the	claimed
scalability	of	our	approach.	Yet,	only	a	few	studies	in	the	literature	include	experiments,	most	of	them	being	purely	theoretical.
Among	the	experimental	studies,	the	number	of	agents	is	often	restricted	to	less	than	10,	with	a	maximum	of	20	resources
(Estivie	et	al.,	2006;	Ramezani	&	Endriss,	2009;	Chevaleyre	et	al.,	2007;	Andersson	&	Sandholm,	1998),	which	is	far	beyond	our
parameters.	Also,	we	choose	to	evaluate	the	social	efficiency.	In	this	purpose,	the	optimal	social	value,	which	is	estimated	owing
to	centralized	techniques,	is	used	as	a	reference	for	comparisons.	The	complexity	of	allocation	problems	is	exponential	with
respect	to	the	population	size	and	to	the	size	of	the	resources	set.	Besides,	the	estimation	of	the	optimal	value	according	to	these
centralized	techniques	is	very	time-consuming.	For	this	reason,	the	comparison	with	the	estimation	of	the	optimal	results	is	the
main	limiting	factor	to	the	size	of	our	experiments.

	Utilitarian	negotiations
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Impact	of	the	transaction	cardinality
5.1 	Figure	3	shows	the	impact	of	the	transaction	cardinality	on	negotiation	processes	within	utilitarian	societies.	It	represents	the

evolution	of	the	utilitarian	welfare	value	in	function	of	the	computation	time.	The	efficiency	of	different	negotiation	policies,
classified	with	respect	to	the	maximum	number	of	resources	proposed	by	the	agents,	can	also	be	compared.	The	best
negotiation	policy	leads	to	the	largest	social	welfare	value	in	a	minimum	time.

Figure	3:	Impact	of	the	transaction	cardinality	on	utilitarian	negotiations

Figure	3	shows	that,	independently	of	the	cardinality	of	the	allowed	transactions,	all	negotiation	processes	converge	towards	very
close	utilitarian	welfare	values	whereas	the	computation	time	required	for	the	convergence	quite	varies.	The	negotiation	policy
based	on	gifts	(	〈1,	0〉	transactions)	leads	to	a	faster	convergence	towards	the	largest	welfare	value.	Larger	bilateral	transactions
do	not	allow	the	achievement	of	higher	utilitarian	allocations	although	they	are	more	time	consuming.	Negotiation	processes
based	either	on	gifts	(	〈0,	1〉	transactions),	swaps	(	〈1,	1〉	transactions)	or	both	end	after	about	1	second	while	10	seconds	are
required	in	the	case	of	the	negotiation	policy	''up	to	〈3,	3〉''	for	instance.	Negotiation	processes	based	on	swaps	end	on	socially
weaker	allocations.	Since	the	initial	resource	distribution	cannot	be	modified,	negotiation	processes	based	on	swaps	end	on
weaker	local	optima.	The	improvement	of	the	welfare	value	is	quicker	when	agents	negotiate	either	using	''up	to	〈1,	1〉''	or	〈1,	1〉
transactions.	It	can	represent	an	interesting	alternative	if	a	good	approximation	is	required	in	a	short	time.	However,	it	strongly
depends	on	the	mean	number	of	resource	per	agent.	In	these	experiments,	agents	own	an	average	of	5	resources	in	their	bundle
but	larger	resource	bundles	affect	the	convergence	speed.	Indeed,	larger	resource	bundles	mean	a	higher	number	of	possible
transactions	between	each	pair	of	agents,	and	thus	lead	to	a	decrease	in	gradient	of	the	corresponding	curves.

Proposition	5	(Utilitarian	bilateral	transaction	decomposition)			Any	bilateral	transaction	satisfying	the	utilitarian	criterion	can	be
decomposed	into	a	sequence	of	utilitarian	gifts	leading	at	least	to	a	socially	equivalent	allocation.

Proof.	Let	us	consider	a	bilateral	transaction	between	two	agents	i,	j∈ 	changing	the	initial	allocation	A	into	A'.	It	can	be
formulated	by	definition	as	follows:

δij〈X,	0〉	=	(ρi,∅)	is	social				⇒				swu(A)	<	swu(A'). 			

Two	cases	can	occur.

All	the	resources	offered	by	the	initiator	are	more	valued	by	the	partner.

∀r∈ρi,	ui(r)	<	uj(r)				⇒				∀r∈ρi,	δij〈1,	0〉	=	(r,∅)	is	social. 			

In	such	a	case,	the	decomposition	of	the	initial	transaction	δij〈X,	0〉	=	(ρi,∅)	into	a	sequence	of	social	〈1,	0〉-transactions
leading	to	the	same	allocation	is	trivial.
The	initiator	values	(at	least)	one	resource	from	its	offer	more	than	the	partner	involved.	In	such	a	case,	the	transaction
cannot	be	split	into	a	sequence	of	utilitarian	gifts.	However,	this	transaction	is	suboptimal.	There	exists	a	transaction	of
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lesser	cardinality	leading	to	a	socially	more	interesting	allocation	A''.

∃r∈ρi,	ui(r)	<	uj(r)				⇒				 δi
j〈X	-	1,	0〉	=	(ρi	 	{r},∅)	is	social. 			

	 and	swu(A'')	>	swu(A')	>	swu(A). 			

Indeed,	removing	from	the	initiator's	offer	all	the	resources	less	valued	by	the	partner	constitutes	a	new	transaction
leading	to	a	socially	greater	allocation	A''.

swu(A'') =	swu(A)	-	 ui(r')	+	 uj(r') 			

	 =	swu(A')	+	ui(r)	-	uj(r) 			
	 >	swu(A') 			

This	removing	condition	can	be	applied	as	long	as	offered	resources,	less	valued	by	the	partner,	appear	in	the	initiator's	offer.
The	new	transaction	satisfies	the	first	condition	and	can	be	split	in	a	sequence	of	social	gifts.	A	similar	argument	can	be	used
with	〈X,	Y〉-transactions,	which	can	first	be	decomposed	into	a	〈X,	0〉-transaction	and	a	〈Y,	0〉-transaction.	Hence,	all	bilateral
transactions	satisfying	the	utilitarian	criterion	can	be	decomposed	in	a	sequence	of	utilitarian	gifts	either	leading	to	the	same
allocation	(as	many	gifts	as	resources	in	the	initiator's	offer),	or	leading	to	a	socially	greater	allocation	(the	sequence	is	shorter

than	the	size	of	the	initiator's	offer).	

5.2 	Since	the	utilitarian	welfare	value	achieved	is	similar	regardless	of	the	transaction	cardinality,	the	use	of	large	bilateral
transactions	is	not	justified	due	to	important	additional	costs.	Besides,	restrictions	on	the	transaction	cardinality	do	not	harm	the
efficiency	of	negotiation	processes.

Utilitarian	efficiency

5.3 	In	order	to	determine	the	social	efficiency	of	negotiation	processes,	the	optimal	social	value	must	be	computed	according	to	a
centralized	technique.	In	the	context	of	this	study,	the	optimal	utilitarian	welfare	value	can	be	determined	using	Algorithm	2.

5.4 	Table	4	presents	the	efficiency	of	negotiation	processes	based	on	different	negotiation	policies,	acceptability	criteria	and	classes
of	contact	graph.	This	table	shows	the	proportion	of	the	optimal	welfare	value	that	can	be	achieved	(the	greater	the	proportion,	the
more	efficient	the	negotiation	process).

Table	4:	Utilitarian	efficiency	(%)	according	to	the	class	of	graphs

Graph
Social

Negotiation	policy

Rational Social

〈1,	1〉 up	to	〈2,	2〉 〈1,	0〉 〈1,	1〉 up	to	〈1,	1〉 up	to	〈2,	2〉

Full 96.6 97.0 100 98.3 100 100

Grid 79.0 81.3 86.2 85.3 86.1 86.1
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Erdős-Rényi 94.8 95.0 98.9 97.1 98.9 98.9

Small	world 80.8 84.8 91.4 90.0 90.2 90.3

5.5 	When	considering	complete	graphs,	different	negotiation	policies	always	lead	to	optimal	resource	allocations.	The	transactions
of	weakest	cardinality,	which	achieve	optimal	allocations,	are	social	〈1,	0〉	transactions	(social	gifts).	Any	negotiation	policy	that
includes	social	gifts,	like	''up	to	〈1,	1〉'',	''up	to	〈2,	2〉''	or	''up	to	〈3,	3〉''	also	achieves	socially	optimal	resource	allocations.	However,
their	use	leads	to	important	additional	costs.	The	use	of	social	gifts	is	sufficient	to	achieve	optimal	allocations	when	the	utilitarian
welfare	is	considered.	Table	4	also	shows	that,	independently	of	the	social	graph	class,	rational	negotiation	processes	always
lead	to	socially	weaker	allocations	than	social	negotiation	processes.	The	restrictive	character	of	the	acceptability	criterion	affects
the	resource	circulation	and	consequently	the	quality	of	the	provided	solution.	We	can	observe	that	agents	in	an	artificial	society
must	be	able	to	give	resources	without	counterpart.	Negotiation	policies	that	exclude	such	actions,	i.e.	if	gifts	are	forbidden	or
never	considered	as	acceptable,	lead	to	socially	weaker	results.	Generosity	between	the	agents	of	the	population	is	an	essential
characteristic	to	achieve	an	optimal	allocation	in	utilitarian	societies.

Theorem	6			Within	an	utilitarian	society	where	agents	express	their	preferences	by	means	of	additive	utility	functions,	negotiation
processes	based	on	complete	social	graphs	always	converge	towards	a	global	optimum	using	only	social	〈1,	0〉	transactions.

Proof.	Since	the	contact	graph	is	fully	connected,	any	agent		i∈ 	can	communicate	with	every	other	agent	j∈ 	 	{i}.	If	a

social	〈1,	0〉	transaction	containing	r	can	be	performed	between	agents	i	and	j,	then	uj(r)	>	ui(r)	according	to	the	definition	of	a
social	transaction.	It	is	always	possible	to	create	a	sequence	of	social	〈1,	0〉	transactions	moving	a	resource	into	the	bundle	of	an
agent	that	associates	the	largest	utility	value	with	it.	Applying	this	process	to	each	resource,	the	resulting	allocation	is	always	a

global	optimum.	

5.6 	The	more	restrictions	on	a	contact	graph,	the	less	efficient	the	negotiations.	The	combination	of	a	restricted	graph	like	a	grid	and
the	use	of	rational	swaps,	which	significantly	restrict	the	transaction	possibilities	(since	initial	resource	distributions	cannot	be
modified),	leads	to	the	worst	social	efficiency:	Only	79%	of	the	optimal	welfare	value	can	be	achieved.	When	grids	are
considered,	social	negotiation	processes	achieve	up	to	86.2%	of	the	optimum.	The	weak	mean	connectivity	handicaps	the
resource	traffic	and	hence	the	achievement	of	socially	efficient	allocations.	Negotiation	processes	lead	to	allocations	associated
with	up	to	98.9%	of	the	optimal	welfare	value	when	Erdős-Rényi	graphs	(p	=	0.5)	are	considered.	Only	91.4%	of	the	optimum	is
achieved	when	small-worlds	are	considered.	In	an	Erdős-Rényi	graph,	the	probability	for	an	edge	to	link	any	pair	of	nodes	is
always	the	same,	while	in	small-worlds,	the	probability	to	link	one	agent	is	proportional	to	the	number	of	agents	in	its
neighborhood.	Many	agents	only	have	one	neighbor	and	the	resource	traffic	is	unequally	distributed.	Therefore,	bottlenecks	(i.e.
agents	that	block	the	resource	circulation)	may	appear.	Swaps	are	the	least	efficient	transactions,	but	the	difference	is	generally
small.	Since	the	number	of	resources	per	agent	cannot	vary,	the	resource	circulation	is	very	limited.

Influence	of	the	social	graph	connectivity

5.7 	The	topology	of	the	contact	graph	affects	the	resource	traffic	as	well	as	the	negotiation	efficiency.	Large	agent	neighborhoods
correspond	to	dense	contact	graphs	which	facilitate	the	circulation	of	the	resources.	Figure	4	shows	the	impact	of	the	mean
connectivity	on	the	negotiation	processes	efficiency.	It	represents	the	evolution	of	the	utilitarian	welfare	value	in	function	of	the
computation	time.	Only	social	gifts	are	allowed	between	agents.
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Figure	4:	Impact	of	the	graph	connectivity	on	utilitarian	negotiations

This	figure	shows	that	a	weak	probability	(which	corresponds	to	small	agent	neighborhoods)	leads	utilitarian	welfare	values	to	be
far	from	the	optimum.	For	instance,	when	p	=	0.05	the	negotiations	stop	after	about	0.5	second	although	ending	on	allocations
socially	far	from	the	optimum.	The	gradual	increase	of	the	probability	p	leads	to	longer	transaction	sequences,	to	the	achievement
of	greater	utilitarian	welfare	values	and	to	more	time-consuming	negotiations.	Larger	neighborhoods	facilitate	the	resource
circulation	by	offering	a	larger	number	of	possible	transactions	to	all	the	agents.	The	impact	becomes	really	significant	when	p	<
0.3.	Above	this	value,	the	resource	circulation	is	sufficient	to	achieve	socially	interesting	allocations,	yet	below	this	threshold
social	graphs	are	too	restricted	and	the	flexibility	of	the	social	acceptability	criterion	cannot	compensate	the	restrictiveness	of	the
graph	topologies.

	Egalitarian	negotiations

Influence	of	the	transaction	cardinality
6.1 	Figure	5	shows	the	influence	of	the	transaction	cardinality	on	the	evolution	of	the	egalitarian	welfare	value	during	the	negotiation

processes.

Figure	5:	Impact	of	the	transaction	cardinality	on	fair	negotiations

6.2 	Figure	5	shows	first	that	egalitarian	negotiations	are	much	more	time-consuming	compared	to	utilitarian	negotiations.	It	also
shows	that	three	negotiation	policies	lead	to	similar	welfare	value	but	different	convergence	times,	while	two	other	negotiation
policies	achieve	weaker	results.	Indeed,	the	negotiation	policies	''up	to	〈1,	1〉'',	''up	to	〈2,	2〉''	and	''up	to	〈3,	3〉''	achieve	similar
social	values	but	are	respectively	more	and	more	time	consuming.	The	negotiation	policy	''up	to	〈1,	1〉'',	which	is	included	in	the
two	others,	is	the	simplest	policy	associated	with	the	best	efficiency.	The	other	negotiation	policies	lead	to	useless	additional
costs	that	do	not	improve	the	fairness	of	the	artificial	society.	Several	floors	can	be	observed	in	the	evolution	of	the	egalitarian
welfare	value.	These	floors	characterize	specific	negotiation	periods	during	which	the	poorest	agent	of	the	population	is	not
involved	in	the	performed	transactions,	as	described	previously	in	Section	3.4.2.	Negotiation	processes	based	on	social	gifts	end
quickly.	However,	provided	solutions	are	associated	to	social	values	far	from	the	values	achieved	by	larger	bilateral	transactions.
Negotiation	processes	based	on	social	〈1,	1〉	transactions	(social	swaps)	require	a	large	number	of	performed	transactions,	which
barely	improves	the	social	welfare	value	and	ends	on	socially	very	weak	allocations.	Since	such	processes	are	time	consuming
and	inefficient,	the	exclusive	use	of	swaps	should	be	avoided.	Using	a	set	of	allowed	transactions	larger	than	Δ	=	{〈1,	0〉,〈1,	1〉}	is

http://jasss.soc.surrey.ac.uk/14/3/5.html 16 08/10/2015



pointless	since	it	leads	to	additional	costs	without	any	significant	improvement	on	the	solution	quality.	The	set	of	allowed
transactions	must	be	larger	when	fair	artificial	societies	are	considered	than	in	the	case	of	utilitarian	population.

Egalitarian	efficiency

6.3 	In	order	to	determine	the	social	efficiency	of	negotiation	processes,	the	optimal	egalitarian	value	must	be	computed	relying	on	a
centralized	technique.	However,	there	does	not	exist	a	simple	algorithm	like	in	the	case	of	utilitarian	societies.	Egalitarian
resource	allocation	problems	can	be	formulated	by	means	of	a	mathematical	model	and	solved	using	a	linear	program	solver	for
instance.	Our	model	is	based	on	Boolean	variables	describing	the	ownership	of	a	resource	by	an	agent:	xir	=	1	if	resource	r
belongs	to	agent	i,	xir	=	0	otherwise.	Egalitarian	resource	allocation	problems	can	thus	be	written	as	follows:

sweopt	=	

The	objective	is	the	maximization	of	the	poorest	agent	welfare.	Two	consistency	constraints	are	also	defined.	The	first	ensures
that	each	resource	is	allocated	to	a	single	agent	while	the	second	specifies	that	all	resources	are	atomic,	unique	and	not
shareable.	Such	a	technique	can	estimate	the	optimal	egalitarian	value	but	is	very	time-consuming.

6.4 	Table	5	shows	the	impact	of	the	graph	topology	on	the	egalitarian	negotiation	efficiency.

Table	5:Egalitarian	negotiation	efficiency	(%)	according	to	the	class	of	graphs

Graph
Social

Negotiation	policy

Rational Social

〈1,	1〉 up	to	〈2,	2〉 〈1,	0〉 〈1,	1〉 up	to	〈1,	1〉 up	to	〈2,	2〉

Full 19.3 20.8 78.5 24.1 99.9 99.9

Grid 13.9 14.6 66.2 23.6 80.2 80.6

Erdős-Rényi 17.4 20.2 77.3 23.8 96.1 96.6

Small	world 13.1 13.9 63.8 23.4 78.1 78.2

Table	5	shows	that	generally,	negotiations	among	rational	agents	achieve	unfair	allocations.	Indeed,	independently	of	the	kinds	of
allowed	transactions	and	of	the	social	graph	topology,	rational	negotiation	processes	end	far	from	the	optimal	welfare	value.	Only
20%	of	the	optimal	welfare	value	is	achieved	in	the	best	cases.	The	individual	rationality,	which	is	widely	used	in	the	literature,	is
not	an	efficient	acceptability	criterion.	Even	on	complete	graphs,	no	social	negotiation	policy	can	guarantee	the	achievement	of
egalitarian	optima.	Whereas	social	gifts	are	well	adapted	to	the	solution	of	utilitarian	problems,	they	do	not	suit	the	negotiations
within	egalitarian	societies.	Only	78.5%	of	the	optimum	can	be	achieved	in	the	best	cases.	Indeed,	after	a	finite	number	of
transactions,	agents	can	not	give	a	resource	without	becoming	poorer	than	their	partners	were	initially.	The	exclusive	use	of	gifts
is	then	not	sufficient	to	lead	negotiations	to	socially	efficient	resource	allocations.	Negotiations	based	only	on	social	swaps	lead	to
severely	sub-optimal	resource	allocations	with	an	efficiency	of	24.1%	on	complete	social	graphs	in	the	best	case.	Such	a	weak
efficiency	is	mainly	due	to	the	inherent	constraints	of	swap	transactions.	Since	the	resource	distribution	cannot	be	modified,	a
poor	agent	who	only	has	few	resources	initially	penalizes	a	lot	the	egalitarian	negotiation	process.	When	both	gifts	and	swaps	are
allowed,	the	negotiation	efficiency	is	really	close	to	the	optimum.	Larger	bilateral	transactions	bring	a	small	improvement	on	the
fairness	among	agents	but	are	much	more	expensive	to	determine.

Theorem	7			Within	an	egalitarian	society	where	agents	express	their	preferences	by	means	of	additive	utility	functions,	bilateral
transactions	cannot	guarantee	the	achievement	of	an	egalitarian	optimum,	independently	of	the	social	graph	considered.

Proof.	Let	us	consider	a	counter-example,	based	on	a	population	of	three	agents	 	=	{1,	2,	3}	and	a	set	of	three	available
resources	 	=	{r1,	r2,	r3}.	The	agent	preferences	are	described	in	Table	6.
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Table	6:Insufficiency	of	bilateral
transactions	in	egalitarian	negotiations	–

Agent	preferences

ui(rj)

Resource	Set

r1 r2 r3

Population	

1 2 1 5

2 5 2 1

3 1 5 2

The	complete	social	graph	is	described	in	Figure	6	with	the	initial	resource	allocation	A	=	[{r1}{r2}{r3}].

Figure	6:Deadlock	in	egalitarian	negotiations

This	figure	also	describes	the	only	egalitarian	transaction	that	would	be	acceptable.	No	sequence	of	acceptable	bilateral
transactions	can	lead	to	an	optimal	resource	allocation.	Six	gifts	are	possible	but	none	can	be	performed	since	they	are	not
social.	Indeed,	if	an	agent	gives	a	resource,	its	bundle	becomes	empty	and	the	egalitarian	welfare	value	becomes	null.	Three
swaps	are	possible,	but	for	each	the	welfare	value	decreases,	which	means	that	the	transaction	is	not	acceptable.	Hence,	even	if
the	multiagent	system	is	completely	connected,	the	optimal	solution	cannot	be	achieved	using	only	bilateral	transactions.	Only	a
multilateral	transaction	corresponding	to	three	simultaneous	gifts	is	acceptable	as	described	in	Figure	6.	Since	bilateral
transactions	are	not	sufficient	when	negotiations	are	based	on	a	complete	social	graph,	they	are	also	not	sufficient	when	the
social	graph	is	restricted.	In	such	cases,	less	transactions	are	possible	and	unacceptable	transactions	on	a	complete	social	graph
are	still	unacceptable	on	a	restricted	social	graph.

6.6 	Graphs	of	weaker	mean	connectivity	like	grids	lead	negotiation	processes	to	socially	weaker	allocations.	In	the	case	of	small
worlds,	many	agents	only	have	a	few	neighbors,	which	may	penalize	egalitarian	negotiations.	Indeed,	if	such	agents	cannot
identify	an	acceptable	transaction	with	their	unique	neighbor,	some	resources	may	be	trapped	in	their	bundle.

Impact	of	the	contact	graph	connectivity

6.7 	Figure	7	presents	the	impact	of	the	mean	connectivity	on	negotiations	within	egalitarian	societies.
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Figure	7:	Impact	of	the	graph	connectivity	on	egalitarian	negotiations
Similarly	to	utilitarian	negotiations,	this	figure	shows	that	a	high	probability	(corresponding	to	a	dense	social	graph)	leads	to
longer	sequences	of	transactions	during	negotiation	processes,	moreover	achieving	a	higher	welfare	value.	Larger
neighborhoods	facilitate	the	resource	circulation	by	offering	larger	numbers	of	possible	transactions	to	all	agents.	The	impact	of
the	connectivity	is	important	provided	the	probability	p	of	generating	edges	is	very	low.	Like	in	negotiations	on	utilitarian	societies,
the	impact	of	the	connectivity	is	not	linear:	it	becomes	really	significant	below	p≤0.5.	Societies	require	a	denser	contact	graph	to
achieve	interesting	allocations	when	fairness	is	considered.

	Conclusion

7.1 	A	large	variety	of	applications	can	be	modeled	as	resource	reallocation	problems.	Yet,	studies	investigating	such	problems	do
not	always	consider	an	adequately	realistic	context.	Considering	that	neither	omniscient	agents	nor	unrestricted	interaction
possibilities	represent	a	realistic	environment,	the	knowledge	of	the	agents	in	our	approach	is	limited	to	local	information	and	their
possible	interaction	is	defined	by	a	contact	graph.	Compensatory	payments	are	also	prohibited	in	order	to	avoid	infinite	agent
wallet.

7.2 	We	also	consider	that	centralized	techniques	are	not	best	suited	for	searching	transaction	sequences	leading	to	an	optimal
allocation.	Therefore,	we	focus	in	this	paper	on	distributing	solving	methods	based	on	agent	negotiations.	We	seek	to	define	the
optimal	behavior	maximizing	the	welfare	of	the	whole	society.	To	that	end,	we	propose	the	agent	behavior	and	the	negotiation
policy	allowing	the	achievement	of	socially	optimal	allocations	according	to	different	welfare	functions.	The	finiteness	of	the
negotiation	processes	is	guaranteed	by	an	acceptability	criterion	enabling	the	agents	to	determine	the	profitability	of	a	transaction
on	a	local	basis.	In	this	paper,	we	show	that	negotiations	between	individually	rational	agents	do	not	lead	to	socially	interesting
allocations.	We	propose	a	new	criterion,	sociability,	that	certifies	that	agents	accept	any	transaction	that	do	not	harm	the	society.
The	expression	of	this	social	acceptability	criterion	is	detailed	according	to	the	four	main	welfare	notions.	The	agent	behavior
required	to	achieve	socially	interesting	state	in	agent	societies	is	also	described.

7.3 	We	choose	to	evaluate	different	aspects	of	negotiation	processes	in	a	large	number	of	simulations.	The	efficiency	of	the
negotiation	settings	is	quantified	by	means	of	a	comparison	with	optimal	solutions	estimated	by	centralized	techniques.	We	also
evaluate	the	impact	of	the	transaction	cardinality,	of	the	graph	connectivity	and	the	quality	of	provided	solutions.	We	show	that	the
use	of	large	bilateral	transactions	is	not	essential	to	achieve	optimal	allocations.	Indeed,	it	does	not	lead	to	significant
improvements	of	the	solution	but	to	an	important	increase	of	the	computational	costs.	Bilateral	transactions	of	restricted
cardinality	are	sufficient	to	achieve	socially	interesting	allocations.

7.4 	The	most	efficient	negotiation	policies	are	summarized	in	Table	7	according	to	the	social	welfare	notion	considered.

Utilitarian
societies:	A	negotiation	policy	based	on	social	gifts	is	sufficient	to	achieve	optimal	allocations	when	complete	contact	graphs	are

considered.	This	negotiation	policy	also	leads	to	the	best	results	on	restricted	graphs	(structured	and	random	graphs).	
Egalitarian
societies:	The	use	of

bilateral	transactions	cannot	guarantee	the	achievement	of	optimal	allocations,	even	on	complete	contact	graphs.	However,	a
negotiation	policy	based	on	social	gifts	and	social	swaps	is	sufficient	to	achieve	socially	efficient	allocations.
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Table	7:Summary	of	efficient	negotiation	policies	according	to	different	scenarios

Contact	graph
Class

Welfare	notions

Utilitarian Egalitarian

Complete optimal
social	〈1,	0〉	transactions

suboptimal	(99%)
social	〈1,	0〉	transactions

Restricted suboptimal
social	''up	to	〈1,	1〉''	transactions

suboptimal
social	''up	to	〈1,	1〉''	transactions

7.5 	Unsurprisingly,	we	find	that	the	topology	of	the	contact	graphs	has	a	significant	impact	on	the	efficiency	of	the	negotiation
processes,	yet	lessened	when	utilitarian	societies	are	considered.	A	very	weak	mean	connectivity	will	drastically	affect	the
efficiency	whereas	an	irregular	topology	will	not.	In	fair	artificial	societies,	a	more	important	connectivity	is	required	to	achieve	fair
allocations.	Regular	topologies	also	lead	to	better	results	because	isolated	agents	trap	resources	easily,	affecting	the	efficiency	of
the	negotiations.
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