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Abstract

Within	a	universal	agent-world	interaction	framework,	based	on	Information	Theory	and	Causal	Bayesian
Networks,	we	demonstrate	how	every	agent	that	needs	to	acquire	relevant	information	in	regard	to	its	strategy
selection	will	automatically	inject	part	of	this	information	back	into	the	environment.	We	introduce	the	concept	of
'Digested	Information'	which	both	quantifies,	and	explains	this	phenomenon.	Based	on	the	properties	of	digested
information,	especially	the	high	density	of	relevant	information	in	other	agents	actions,	we	outline	how	this	could
motivate	the	development	of	low	level	social	interaction	mechanisms,	such	as	the	ability	to	detect	other	agents.

Information	Theory,	Collective	Behaviour,	Inadvertent	Social	Information,	Infotaxis,	Digested	Information,
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	Introduction

To	improve	our	understanding	of	social	interaction	in	a	developmental	context	it	is	important	to	know	what	the
benefit	of	social	interaction	is.	Understanding	the	motivation	behind	social	interaction	is	a	core	issue	in	the
study	of	social	systems.	Once	a	collective	of	individuals	is	observed	to	exhibit	social	interaction,	a	post	hoc
analysis	and	explanation	of	its	advantages	is	often	straightforward.	From	an	evolutionary	or	developmental	point
of	view,	however,	the	challenge	is	often	to	identify	a	path	that	would	lead	towards	such	an	interaction	in	the	first
place.

For	several	social	interactions,	such	as	cooperation,	social	learning	and	imitation,	the	benefits	are	often	obvious,
and	there	are	several	good	accounts	that	identify	and	quantify	the	gain	of	an	agent	(e.g.	in	the	mathematical
framework	of	game	theory	(Maynard	Smith	1982;	Axelrod	1984),	or	in	current	works	that	try	to	evaluate	the
benefits	of	social	interaction	(Gotts	2009;	Gostoli	2008)).	But	those	phenomena	are	already	very	complex,	and
they	normally	involve	several	other	agent	abilities	in	an	implicit	fashion,	such	as:

The	ability	to	differentiate	other	agents	from	the	environment
Directed	attention	towards	other	agents
Understanding	of	own	actions	and	consequences
Understanding	of	other	agents	action	and	consequences

A	naive	explanation	would	be	to	assume	that	all	those	mechanisms	needed	for	complex	social	interaction
developed	in	one	big	step,	motivated	by	the	final	results	and	its	benefits.	But	this	is	in	conflict	with	the	common
step-by-step	idea	of	evolution	whereby	development	is	explained	via	localized	incremental	improvements,	all	of
which	need	to	selected	for	in	order	to	prevail.	It	becomes	especially	unfeasible	in	our	case,	because	the	benefits
of	those	mechanisms	are	typically	significantly	delayed.
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Summary

To	counter	the	criticism	of	irreducible	complexity,	we	aimed	at	identifying	possible	motivations	for	an	agent
society	to	develop	some	of	those	mechanisms	from	localized,	short-term	knowledge	that	do	not	require	the
agent	population	to	have	a	model	of	the	delayed	benefit	of	complex	social	interactions.

For	this	purpose,	we	adopt	a	hypothesis	that	has	been	brought	forward	already	in	early	cybernetics	and	has
been	revived	due	to	new	evidence	(Barlow	1959,2001;Attneave	1959;	Touchette	2004;	Nehaniv	1999,	Laughlin
2001,	Bialek	2001;Polani	2009)	namely	that	organisms	attempt	to	optimize	their	information	processing;	more
precisely,	organisms	attempt	to	maximize	the	information	attained	relevant	to	their	goals	under	the	constraints	of
their	particular	sensorimotor	(and	neural)	equipment.	A	detailed	discussion	is	beyond	the	scope	of	the	present
paper	and	we	refer	to	the	aforementioned	literature	for	details;	however,	we	would	like	to	briefly	mention	two
aspects	which	play	an	important	role	in	our	later	discussions:

1.	 First,	information	acquisition	and	processing	are	found	to	be	very	expensive	in	terms	of	metabolic	costs	-
it	therefore	makes	evolutionary	sense	to	process	as	much	relevant	information	(information	needed	to
achieve	certain	life	goals)	as	possible	for	a	given	organismic	sensorimotor	equipment.	If	the	organism
could	do	with	less	relevant	information,	its	information	processing	equipment	can	be	expected	to	be
selected	against	during	evolution.

2.	 Second,	the	informational	efficiency	of	the	organism	provides	an	immediate	(rather	than	delayed)
gradient	for	the	effectiveness	of	the	organism's	behaviour,	prior	to	any	particular	long-term	payoff.

Point	1	gives	us	an	evolutionary	rationale	for	the	plausibility	of	an	informational	view	of	an	agent's	performance.
However,	even	more	central	for	our	original	goal	is	Point	2;	there	are	indications	that	pure,	immediate
sensorimotor	efficiency	already	provides	powerful	local	gradients	for	adaptation	and	evolution	(Klyubin	2005,
2007,	2008;Prokopenko	2006,	Ay	2008a,	Der	1999,Sporns	2003).	Here	we	will	assume	a	slightly	more	specific
criterion,	namely	that	the	agents	are	interested	in	maximizing	the	relevant	information	about	a	life	goal	(the
location	of	food).	For	this,	the	agents	will	have	the	possibility	to	detect	the	food	directly	or	to	observe	the
behaviour	of	other	agents.	Our	study	will	investigate	whether	and	how	under	these	circumstances	social
interaction	can	emerge	simply	from	the	immediate	drive	to	maximize	relevant	information.

To	implement	a	quantitative	and	consistently	informational	model,	we	will	use	an	approach	based	on	Shannon's
Information	Theory,	Bayesian	Modelling	and	Causal	Bayesian	Networks.	Using	these	principles,	our	agents	will
build	their	behaviours	from	the	starting	point	of	quite	restricted	assumptions;	in	particular,	no	a	priori	social
dynamics	will	be	assumed.	On	top	of	this	universal,	low	assumption	framework	we	will	then	introduce	the
concept	of	"Digested	Information";	this	will	serve	as	an	argument	for	why	the	actions	produced	by	an	agent
without	any	direct	consequences	for	another	agent	might	still	be	interesting	for	the	latter.

We	will	support	these	conceptual	arguments	by	presenting	simulations	that	support	the	plausibility	of	the
previous	argument	by	verifying	its	conclusions;	in	particular,	this	will	also	demonstrate	that	the	information-
theoretic	framework	allows	us	to	quantify	the	concrete	benefit	of	observing	another	agent.

Related	Work

Further	related	work	can	be	found	in	the	area	of	biology,	especially	by	Danchin	( Baude	2008;	Parejo	2008;
Danchin	2004)	who	describes	a	phenomenon	called	"Inadvertent	Social	Information".	Danchin	et.	al.	observe
bees	(and	other	animals)	and	show	that	the	foraging	performance	of	one	group	of	bees	increases,	if	they	are
operating	in	an	area	where	another,	experienced	group	of	bees	if	already	foraging.	Danchin	employs	an	informal
notion	of	information	to	argue	that	the	actions	of	other	animals	provide	useful	information.	This	occurs	without
any	explicit	form	of	communication,	such	as	bee	dances.	Our	present	paper	develops	a	quantitative	framework
in	the	language	of	information	theory	to	give	a	precise	quantitative	characterization	of	the	information	exchanged
in	such	processes.

Danchin	(2004)	also	suggests	that	this	information,	once	it	is	replicated	and	propagated,	could	give	rise	to	an
evolution-like	process;	an	idea	closely	related	to	the	idea	of	"memetics"	(Blackmore	2000;	Dawkins	1990;	Lynch
1999).	If	the	presented	framework	manages	to	formally	describe	the	information	replication	process	in	Danchin's
work,	it	might	then	also	be	a	step	towards	a	better	mathematical	understanding	of	the	memetic	process.

But	currently	our	work	only	tries	to	model	and	the	most	basic	processes	of	social	interaction	within	the
framework	of	information	theory,	employing	the	formal	notion	of	information	based	on	Shannon	(1948).	We	are
not	aware	of	a	fully	information-theoretic	treatment	of	agent-agent	interaction.	But	a	similar	formalisation	to	ours
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can	be	found	in	the	work	of	Klyubin	(2004)	where	he	models	stigmergy,	which	is	the	information	transfer	to
oneself	through	time	by	the	use	of	artifacts	or	the	environment.	Also,	Capdepuy	(2007)	demonstrated	how
coordinated	behavior	could	emerge	from	agents	that	tried	to	maximize	their	"Empowerment"	(Klyubin	2005),
another	formal	information	theoretic	measure	that	maximises	the	channel	capacity	from	one's	actuators	to	one's
sensors.

	Information-Theoretic	Framework

This	chapter	will	introduce	a	universal,	purely	syntactical,	and	agent-centric	Agent-World-Interaction	Framework
that	we	require	for	our	argument.	We	will	demonstrate	how	to	express	our	computer	simulations	in	the	language
of	Causal	Bayesian	Networks	and	furthermore	introduce	essential	notions	we	require	for	our	information-
theoretic	discussion.

The	Causal	Bayesian	Network	framework	will	also	serve	for	the	purpose	of	the	later	quantitative	analysis.	It
unifies	all	pertinent	agent-world	interaction	scenarios	with	respect	to	their	common	properties	and	covers	all	our
simulations.	In	particular,	it	will	give	a	precise	quantitative	meaning	to	the	concept	of	Digested	Information.

For	this	purpose,	we	model	all	aspects	of	our	simulation	which	we	want	to	study	as	a	set	of	random	variables.
For	discrete	states	(as	e.g.	in	our	computer	simulation),	this	is	straightforward,	but	in	principle	it	carries	over	to
continuous	scenarios,	e.g.	from	real-world	scenarios.

In	the	model,	we	distinguish	random	variables	according	to	whether	they	describe	agent	or	non-agent	states.
These	non-agent	variables	will	be	used	to	form	a	compound	random	variable,	which	we	will	simply	call	the
environment	R.	Furthermore	we	divide	the	agent	itself	into	the	sets	of	random	variables,	the	sensors	S,	the
actuators	A	and	the	memory	M.	To	do	so	we	assume	a	model	for	the	causal	connections	between	the	variables.
When	we	construct	an	explicit	model	or	when	the	architecture	of	the	system	under	investigation	is	known,	the
causal	relation	between	environment,	sensors	and	actuators	is	given	per	default.	In	this	paper,	we	operate
under	this	assumption.	In	general,	when	such	a	model	is	not	given	a	priori,	the	causal	structure	can	still	be
inferred	by	interventional	experiments	and,	under	some	circumstances,	also	by	observation	(Pearl	2000;	Spirtes
2001).

In	our	framework,	we	define	the	sensor	S	as	the	minimal	set	of	random	variables	(of	the	agent)	which	causally
shield	the	agent's	remaining	random	variables	from	the	environment	variables	R.	So,	there	is	no	causal	path	in
the	Causal	Bayesian	Network	from	any	part	of	R	to	the	variables	of	the	agent	that	does	not	pass	through	S	(see
also	Ay	2008b).	Likewise,	the	Actuators	A	will	be	defined	as	the	minimal	set	of	variables	that	causally	shield	the
environment	from	the	agent.	The	remaining	variables	of	the	agent	are	internal	states	which	we	will	interpret	as
the	agent's	memory.	In	the	following,	we	treat	each	of	those	three	sets	as	a	single	random	variable	each.	The
resulting	network	is	depicted	in	Fig.	1.
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Figure	1.	A	Causal	Bayesian	Network	visualizing	our	general	Agent-World-Interaction
Framework	in	time.	The	dashed	line	shows	the	divide	between	the	agent	and	the

environment	R.	The	sensors	S	take	in	information,	and	are	causally	dependent	on	the
environment.	The	actuators	A	inject	information	into	the	environment.	M	is	used	to

preserve	information	through	time	within	the	agent.	Note	that	the	arrows	crossing	the
dashed	line	are	not	under	the	control	of	the	agent;	they	are	defined	by	the	relation

between	the	agent	and	the	world,	and	thereby	externally	determined.

The	agent's	ability	to	make	decisions	is	modeled	by	the	fact	that	it	can	alter	the	causal	relations	between	the
variables	within	the	agent;	which	in	our	case	is	essentially	the	relation	between	sensors,	memory	and	actuators.
Note	that	the	agent's	ability	to	interact	with	the	environment	is	limited	by	the	bandwidth	of	the	sensors	and
actuators,	and	all	information	in	and	out	of	the	agent	has	to	pass	through	those	variables.	For	our	current
purpose,	this	is	going	to	be	our	definition	of	an	agent.

One	should	note	that,	assuming	the	validity	of	a	probabilistic	model	of	the	system	and	assuming	that	sensors
and	actuators	are	split	in	the	way	denoted	by	Fig.	1,	this	model	is	universal.	For	a	concrete	setting,	possible
technical	difficulties	could	arise	from	the	random	variables	being	continuous,	or	the	precise	causal	structure	not
being	known	(e.g.	in	a	real-world	scenario	where	the	structural	knowledge	is	incomplete).	These	technical
difficulties	(which	will	be	dealt	with	in	future	work),	will,	however,	not	affect	the	scenarios	studied	here.

Importantly,	note	also	that	the	model	is	purely	"syntactical"	( Nehaniv	1999);	i.e.	there	is	no	external	meaning
assigned	to	the	states	of	the	random	variables.	It	allows	us	to	inspect	decision	making	from	an	agent-centric
perspective,	where	it	is	only	possible	for	the	agent	to	use	its	sensors,	actuator	and	internal	states,	without
further	knowledge	of	the	environment.	This	is	akin	to	the	situation	a	new	mind	finds	itself	in,	once	it	starts	to
inhabit	a	body,	but	has	no	idea	about	how	that	body	is	formed,	or	interacts	with	the	environment	(Philipona
2003).

Information	Theory

Information	Theory	(Shannon	1948;	Cover	1991)	can	be	used	to	study	the	properties	of	random	variables.	If	a
random	variable	X	can	assume	the	states	x,	and	P(X=x)	is	the	probability	for	X	to	assume	the	specific	state	x,
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we	can	define	a	measure	H(X)	called	entropy	as:

(1)

This	is	often	describe	as	the	uncertainty	about	the	outcome	of	X,	or	the	average	expected	surprise,	or	else	the
information	gained	if	one	was	to	observe	the	state	of	X,	without	having	prior	knowledge	about	X.	The	entropy
has	a	number	of	important	properties.	Among	other,	the	a	priori	uncertainty	(i.e.	entropy)	is	larger	if	the
outcomes	are	more	evenly	distributed	than	if	the	outcomes	are	more	concentrated	on	a	particular	value	-	in
other	words,	concentrated	values	are	easier	to	predict	than	if	uniformly	spread	ones.

Consider	two	jointly	distributed	random	variables,	X	and	Y;	then	we	can	calculate	the	conditional	entropy	of	X
given	a	particular	outcome	Y=y	as:

(2)

This	can	also	be	generalized	to	the	entropy	of	X,	given	Y	in	general,	averaged	over	all	possible	outcomes	of	Y:

(3)

This	is	the	entropy	of	X	that	remains	if	Y	is	known.	Consider	here	H(X)	and	H(X|Y),	the	entropy	of	X	 before	and
after	we	learn	the	state	of	Y.	Thus,	their	difference	is	the	amount	of	information	we	can	learn	about	X	by
knowing	Y.	Subtracting	one	from	the	other,	we	get	a	value	called	mutual	information:

(4)

The	mutual	information	is	symmetrical	(Cover	1991)	and	measures,	in	bits,	the	amount	of	information	one
random	variable	contains	about	another	(and	vice	versa,	by	symmetry).	This	quantity	will	be	of	central
importance	in	the	following	argument.

	Digested	Information

In	this	section	we	will	introduce	the	concept	of	digested	information.	It	forms	an	extension	of	the	concept	of
relevant	information	(Polani	2001)	to	multiple	agents	observing	each	others'	actions.	Relevant	information	is	a
formalism	to	quantify	the	minimum	amount	of	Shannon	information	that	an	agent	requires	to	decide	which	action
to	carry	out	in	order	to	perform	optimally.	A	more	general	definition	used	in	the	literature	(e.g.Polani	2006)
defines	it	as	the	minimal	information	needed	to	attain	a	certain	(not	necessary	optimal)	performance	level.
Together	with	the	information	bottleneck	formalism	(Tishby	1999),	one	can	utilize	relevant	information	to	identify
which	features	in	the	system	are	used	by	an	agent	to	carry	out	a	decision.	This	indicates	that,	whatever	goal	an
agent	aims	to	achieve,	some	part	of	the	information	about	the	goal	is	going	to	be	"encoded"	in	the	actions	it
carries	out.	This	will	be	the	starting	point	for	our	argument	that	it	would	be	beneficial	for	an	agent	to	observe	the
actions	of	another.

At	this	point,	we	would	like	to	reiterate	that	we	are	operating	in	a	framework	where	there	is	no	a	priori	meaning	to
an	agent's	sensor	inputs,	where	the	other	agents'	actions	have	no	direct	consequences	for	us,	and	where	the
agents	are	not	even	able	to	differentiate	between	other	agents	and	the	rest	of	the	environment.	The	goal	is	to
show	that,	even	in	this	very	universal,	low-level	and	limited-assumption	agent-world	interaction	model	there	is	a
concrete	benefit	in	observing	other	agents,	and	therefore	a	motivation	to	develop	facilities	for	identification	of
agents,	directing	you	attention	towards	them	and	understanding	their	actions.

Relevant	Information

Assume	that	there	is	an	agent	that	interacts	with	its	environment	by	perceiving	a	sensor	input	from	a	set	of
sensor	input	states,	and	selecting	an	action	from	a	set	of	output	actions.	Furthermore,	assume	that	the	actions
of	the	agent	are	connected	to	some	unspecified	form	of	utility	function	(for	example	survival	probability,	or
fitness)	that	determines	the	different	payoffs,	depending	on	the	agent's	action	and	the	state	of	the	environment.
In	this	case,	for	every	state	of	the	environment,	there	exists	a	set	of	actions	which	result	in	the	highest	expected
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utility;	we	will	call	a	collection	of	such	actions	for	each	state	of	the	world	an	optimal	strategy.

Relevant	Information	is	defined	(Polani	2001)	as	the	(minimal)	amount	of	information	the	agent	needs	to	acquire
to	be	able	to	choose	its	optimal	strategy.	This	can	be	measured	as	the	minimum	of	mutual	information	between
the	environment	and	the	optimal	action,	see	Fig.	2	for	some	examples.

Figure	2.	This	figure	depicts	the	relation	between	action	and	utility,	given	a	certain	world
state.	In	world	1	the	relevant	information	can	be	computed	as	two	bits.	The	optimal

strategy	chooses	a	different	action	for	every	state	of	the	world;	therefore	it	has	to	obtain
two	bits	of	information	to	determine	what	state	the	world	is	in.	World	2	is	an	example	of	a
scenario	where	there	is	no	relevant	information.	The	actions	of	the	agent	do	not	matter,
and	it	needs	to	know	nothing	to	make	the	best	choice.	World	4	has	a	relevant	information
of	only	1	bit.	One	optimal	strategy	here	would	still	be	to	choose	a	different	action	for	every
state,	but	there	is	also	another	strategy	that	just	relies	on	finding	out	if	the	world	is	in	the
first	two	or	last	two	states.	Since	we	look	for	the	minimum	mutual	information	across	all

strategies,	the	agent	only	needs	to	obtain	one	bit.	World	3	demonstrates	that	a	suboptimal
pay-off	level	can	be	reached	with	less	relevant	information.	Using	the	same	strategy	as	in
World	4,	the	agents	obtains	an	average	payoff	of	1.5,	but	if	the	agents	would	obtain	two

bits	of	information	he	could	achieve	an	average	pay-off	of	two.

But	the	mutual	information	cannot	only	be	interpreted	as	the	amount	of	information	the	agent	has	to	obtain;	it
also	is	the	amount	of	information	the	agent	has	to	encode	in	its	actions	to	gain	the	actual	benefit	of	the	relevant
information.	The	agent	has	to	act	on	its	information.	And	since	the	mutual	information	is	symmetric,	this	can	also
be	seen	as	the	amount	of	information	an	observer	could	get	about	the	environment	by	observing	the	agents
actions.	Therefore,	an	agent	should,	in	its	own	interest,	encode	relevant	information	about	the	environment	in	its
own	actions.

By	extension,	it	is	also	possible	to	calculate	the	amount	of	information	needed	to	obtain	a	certain	payoff	level,	by
calculating	the	minimum	relevant	information	of	all	strategies	that	reach	at	least	that	level	of	expected	payoff
(Polani	2006).	It	became	evident	that	an	increase	in	the	payoff	level	of	a	given	action	strategy	always	required
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more	or	the	same	amount	of	information.	This	means	an	agent	that	increases	the	payoff	level	of	its	strategy	also
increases	the	amount	of	encoded	information,	or	at	least	keeps	it	the	same.	It	also	gives	agents,	per	definition	of
relevant	information,	an	incentive	to	increase	their	relevant	information,	since	it	is	a	by-product	of	increasing
their	performance.

The	agent's	actions	typically	have	a	much	smaller	state	space	than	the	rest	of	the	environment,	and	hence	a
much	smaller	bandwidth.	This	means	in	particular	that	the	agent	has	to	compress	the	relevant	information	from
the	environment	into	its	bandwidth-limited	actions,	thereby	creating	an	"Information	Bottleneck"	(Tishby	1999).
This	indicates	that	the	agent's	actions	could	contain	a	much	higher	"concentration"	of	relevant	information	than
other	parts	of	the	environment.	We	will	investigate	this	question	later	in	a	precise	quantitative	sense.

Benefits	for	Observing	another	Agent

We	will	now	consider	a	scenario	with	several	similar	agents;	similar	in	a	sense	that	they	have	a	similar
embodiment	and	utility,	and	they	therefore	need	to	obtain	"similar"	relevant	information	from	the	environment	to
pick	their	strategies.

If	we	consider	one	agent's	actions	to	be	part	of	the	environment	of	another	agent,	then,	via	the	argument	from
last	subsection,	these	actions	contain	information	not	only	relevant	to	the	first	agent,	but	also	to	the	observing
agent.	This	information,	which	we	call	digested	information,	is	beneficial	because:

1.	 Agents	encode,	by	virtue	of	their	own	drive,	relevant	information	in	their	actions
2.	 The	better	they	do,	the	more	likely	they	are	to	encode	more	information
3.	 The	actions	of	an	agent	might	exhibit	a	higher	density	of	relevant	information	than	other	parts	of	the

environment
4.	 These	actions	might,	in	addition,	provide	information	that	is	not	available	to	the	agent	otherwise

The	first	three	points	follow	from	the	earlier	arguments.	The	last,	however,	is	motivated	by	the	idea	that	an	agent
can	retain	some	information.	Once	an	agent	is	spatially	or	temporally	removed	from	that	information	source,	it
might	still	be	able	to	act	upon	it,	and	thereby	propagate	this	information	as	to	give	other	agents	the	chance	to
acquire	this	information,	which	would	otherwise	not	be	available	in	that	place	or	time.

	Nonsocial	Agent	Simulation

To	illustrate	and	verify	the	concept	of	digested	information	we	created	a	scenario	called	"Fishworld".	In	the
following	experiment	we	aim	to	verify	that	the	information	in	the	agent`s	actions	has	the	special	properties	we
discussed	in	the	earlier	section	on	digested	information.

Fishworld	Model

First	we	created	a	model	where	an	agent	has	a	simple	information-obtaining	task.	This	model	will	serve	as	a
baseline	for	our	question	asking	how	the	performance	of	that	agent	could	be	enhanced	by	observing	other
agents.

The	model	considers	an	agent	situated	in	a	grid	world	of	size	n	×	m	with	periodical	boundaries	in	which	there	is
one	single	food	location.	The	agent's	location,	and	the	location	of	the	food	are	randomly	generated	at	the	start	of
the	simulation,	and	the	goal	of	the	agent	is	to	determine	the	location	of	the	food	source,	in	the	shortest	time
possible.	At	each	time	step	the	agent	can	execute	a	move	action	which	moves	it	one	cell	up,	down,	left	or	right.
The	agent	then	gets	new	sensor	inputs;	it	is	not	able	to	see	the	state	of	the	world	in	all	cells	not	more	than	2
cells	away	from	it	and	perceives	whether	those	cells	are	empty	or	contain	a	food	source.	After	the	observation,
the	agent	then	decides	where	to	move	next.	This	behavior	is	repeated	until	the	agent	finds	the	food.
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Figure	3.	A	sample	gridworld	of	the	size	13	×	13.	A	indicates	the	position	of	the	agent,	F
the	position	of	the	food	source.	The	yellow	area	is	the	cells	visible	to	the	agent	A,	and	the

x	shows	the	cells	it	can	move	to	in	the	next	turn.

The	agents	determine	their	actions	by	using	an	internal	memory	which	stores	information	about	the	world,	in
fact,	this	internal	memory	acts	as	a	Bayesian	model	for	the	location	of	the	food	source.	More	precisely,	the
internal	memory	is	an	array	that	has	the	same	number	of	cells	as	the	world.	Each	memory	cell	is	associated
with	a	cell	in	the	world.	Those	cells	store	the	probability	for	a	cell	to	contain	food,	given	the	past	experience	of
the	agent.

Initially,	all	cells	have	the	same	probability	of	1/n	×	m.	However,	as	the	agent	moves	around,	it	discovers	that
some	cells	are	empty	or	contain	food.	The	distribution	of	probabilities	is	adjusted	by	setting	either	the	probability
of	a	cell	to	zero	in	the	case	that	there	is	no	food	in	it,	or	to	one	in	case	the	cell	contains	food.	In	all	cases	the
probabilities	over	the	cells	are	normalized,	to	ensure	that	the	sum	of	probabilities	is	always	one.	The	remaining
uncertainty	about	the	location	of	the	food	source	position	is	reflected	by	the	probability	distribution	and	can	be
measured	in	terms	of	entropy	H(F),	where	F	is	a	random	variable	encoding	the	expected	position	of	the	food.	As
indicated	before,	the	entropy	computes	to:

(5)

Infotaxis	Search

To	generate	the	agent's	behavior,	we	adopt	a	greedy	information-gain	maximization	algorithm,	called	"Infotaxis"
(Vergassola	2007).	Infotaxis	was	shown	to	provide	a	biologically	plausible	principle	as	to	how	a	moth	could	use
the	very	sparse	information	provided	by	their	olfactory	sensors	to	determine	the	source	of	pheromones	inside	a
wide	area.	The	main	idea	is	to	act	in	a	way	that	increases	the	expected	gain	in	information	at	each	time	step.
We	adapted	the	infotaxis	approach	for	our	discrete	grid	world	scenario.

To	determine	which	way	to	go,	the	agent	considers	all	its	possible	moves	and	decides	which	move	has	the
highest	expected	reduction	in	remaining	entropy,	according	to	F*,	its	internal	(Bayesian)	model	of	F,	the	random
variable	encoding	the	food	source.	At	each	time	step,	the	calculation	of	the	expected	entropy	reduction	of	F*	is
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done	by	using	the	respectively	current	distribution	of	F*.	Thus,	the	expected	reduction	of	entropy	is	based	on	the
agent's	current	"knowledge"	about	F.

To	formalize	this,	we	first	have	to	define	the	set

(6)

that	contains	the	positions	w	of	all	the	cells	of	the	grid	world.	The	values	i	and	j	are	the	coordinates	of	the
position	on	the	grid	world.	Note	that	the	random	variable	F*	that	encodes	the	food	source	position	from	the
perspective	of	the	agent	uses	W	as	alphabet	for	which	one	has	|	W	|	=	n	⋅	m.	Also,	since	we	are	considering	a
world	with	periodical	boundaries	both	sides	of	the	equation	(	i,	j)	=	(	i	+	n,j	+	m)	denote	the	same	position.
Depending	on	the	position	of	the	agent	wa,	there	is	a	set	S	that	includes	all	the	positions	that	are	visible	to	the
sensor	of	the	agent.	If	the	agent	now	takes	an	action	α	from	a	set	of	possible	actions	starting	from	the	current
position,	one	obtains	a	set	Sα	as	the	new	set	of	sensor	inputs	after	the	move.	To	calculate	the	expected	entropy
reduction	ΔH(α)	depending	on	the	action	α,	two	main	cases	have	to	be	considered.	In	the	first	case	the	actual
location	of	the	food	source	f	∈W	would	be	in	Sα	,	the	sensor	range	after	the	action	was	taken	by	the	agent.	The
agents	assumes	that	this	occurs	with	the	probability	of

(7)

in	reference	to	our	internal	variable	F*.	In	that	case	our	current	uncertainty	would	be	reduced	to	zero,	so	the
reduction	in	entropy	would	be	H(F*)	.

The	other	case	assumes	that	the	location	f	of	the	food	source	is	not	in	 Sα	.	This	occurs	with	a	probability	of	1-
P(F	∈	Sα	).	In	that	case	we	have	to	calculate	an	updated	probability	distribution	of	F*,	which	we	will	call	 F*α.
According	to	Bayes'	rule,	we	will	set	all	P(	F*α	=	f) 	=	0	for	all	 f	∈	S	α	and	then	normalize	the	remaining	probability
values	by	dividing	them	by	their	total	sum.

(8)

The	updated	version	of	F*α	can	then	be	used	to	calculate	the	reduction	of	entropy	in	the	second	case,	which	is
the	difference	H(F	)	-	H(F*α)	If	we	put	all	this	together	the	expected	reduction	of	entropy	is:

(9)

So	at	every	step	the	agent	selects	the	action	a	that	maximizes	ΔH(a).	If	several	directions	have	the	same
expected	entropy	reduction	the	agent	selects	one	of	them	at	random.

Results	of	Infotaxis

As	a	measure	of	performance	we	record	the	time	it	took	the	agents	to	locate	the	food	source.	On	average,	the
agents	with	the	infotaxis	behavior	outperform	agents	that	chose	their	direction	at	random	by	a	significant	factor.
For	a	25	x	25	world,	the	average	search	time	for	the	location	of	food,	measured	over	50000	trials,	is	around	76
turns	for	infotaxis	agents,	and	around	450	turns	for	random	walk	agents.
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Figure	4.	The	distribution	of	time	it	take	the	agent	to	locate	the	food	source	with	an
infotaxis	search.	The	actual	numbers	correspond	to	occurrences	in	50000	trial	runs.	The
distribution	approximates	the	theoretical	optimum,	with	a	rough	4%	chance	to	find	the	food

in	round	1,	and	an	even	distribution	of	searchtime	between	the	first	120	rounds.

This	compares	well	against	the	theoretically	optimal	searchtime	for	a	non-social	strategy	which	we	calculated	as
follows.	A	25	x	25	grid	world	has	625	positions.	The	agent	perceives	25	positions	in	t=0,	therefore	it	has	a
chance	of	25/625=1/25	to	find	the	food	source	in	round	0.	No	matter	how	the	agent	moves,	the	maximum
amount	of	positions	that	could	enter	its	sensor	range	that	were	not	previously	seen	is	5.	So	it	would	take	at	least
120	turns	to	sense	all	positions	and	thus	have	a	probability	of	1	to	find	the	food.	None	of	those	positions	are
more	or	less	likely	to	contain	food,	so	the	order	in	which	they	are	searched	can	be	considered	arbitrary.	By	this
reasoning	we	assume	that	the	probability	to	discover	the	food	source	prior	or	in	round	t	grows	linearly	with	t.
The	two	different	cases	have	the	expected	searchtime	of	0	and	60	respectively,	therefore	the	optimal	search
time	calculates	to:	(0	⋅	1/25)	+	(60	⋅	24/25)	=	57.6.

This	is	not	too	surprising	because	in	this	simple	scenario	infotaxis	behaves	very	similar	to	exhaustive	search.
The	only	difference	we	observed	where	a	few	instances	where	the	agents	take	a	substantially	longer	time	to	find
the	food	source.	Closer	inspections	of	those	runs	show	that	the	agents	sometimes	get	trapped	in	a	local
optimum	of	the	greedy	infotaxis	search.	Since	the	agent	only	considers	the	information	gain	for	its	next	step,	it	is
possible	that	it	ends	up	in	a	situation	where	all	the	cells	it	could	reach	with	one	step	are	already	explored.	In	this
case,	the	next	direction	is	chosen	at	random,	rather	than	to	move	in	a	line	to	the	closest	patch	of	unexplored
territory.	Visual	inspection	of	the	agent's	behavior	indicates	that	in	those	cases	it	is	entirely	possible	for	the
agent	to	perform	a	random	walk	for	quite	some	time	before	finding	an	explorable	area	again.	A	possible	way	to
circumvent	this	for	future	research	would	be	to	give	the	agent	the	ability	to	consider	a	lookahead	of	several
future	steps	in	deciding	on	an	action	in	order	to	give	it	a	more	directed	walk	towards	areas	where	its	internal
model	has	non-vanishing	probabilities.

Relevant	Information	Encoding

We	now	come	to	one	of	the	core	theses	expounded	earlier:	Using	our	information-theoretic	framework,	we	aim
to	verify	the	assumption	about	the	relevant	information	in	the	agent's	action.	We	recorded	the	states	of	A,	the
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actions	of	the	agents,	together	with	F,	the	location	of	the	food	source	relative	to	the	agent.	This	makes	it
possible	to	calculate	the	joint	entropy	H(F,A)	which	can	in	turn	be	used	to	calculate	the	conditional	entropy	as
H(F|A)	=	H(F,	A)	-	H(A).	This	allows	us	to	calculate	the	mutual	information	as	I(F;	A)	=	H(F)	-	H(F|A)	the	value
that	indicates	how	many	bits	of	information	the	action	of	an	agent	contains,	on	average,	about	the	location	of	the
food	source.	The	results	for	the	different	sensor	ranges	can	be	seen	in	Fig.	5.

Figure	5.	This	graph	shows	how	the	mutual	information	increases	with	the	agent's
performance.	The	different	points	indicate	agents	with	different	sensor	ranges.	A	higher
range	leads	to	a	decrease	in	average	search	time,	which	corresponds	to	an	increase	in
performance	and	an	increase	in	mutual	information.	The	mutual	information	is	calculated
with	statistics	recorded	over	10,000	trials,	and	the	searchtime	is	the	average	over	the

agents'	results	in	those	trials.

If	we	compare	the	information	gained	from	the	action	of	an	agent	with	sensor	range	of	2	(≈	0.1 	bits)	,	to	the
information	gained	from	observing	a	single	cell	(≈	0.01	bits),	then	the	information	from	the	agent	is	significantly
higher.	This	is	true,	even	if	we	take	into	account	that	the	cell	only	has	two	states,	while	the	agent's	actions	have
four	states,	and	hence	twice	the	bandwidth	of	the	cell.

This	shows	that	the	observation	of	an	agent's	actions	yields	relevant	information,	and	considerably	more	so	than
the	observation	of	a	cell.	This	should	give	an	agent	which	aims	to	obtain	"Relevant	Information"	of	a	similar	type
(i.e.	relating	to	a	similar	goal,	such	as	food)	and	which	has	a	limited	processing	capacity,	an	incentive	to
discriminate	towards	information	from	other	agents	rather	than	from	empty	cells.

Furthermore,	if	we	vary	the	sensor	range	of	the	agents	in	the	earlier	experiment,	we	can	create	agents	which
perform	better	because	they	have	access	to	more	information	at	the	same	time.	As	Fig.5	shows,	the	increase	in
range,	and	the	ensuing	increase	in	performance	also	increases	the	amount	of	relevant	information	encoded	by
the	agent.	In	this	case,	an	agent	that	performs	better	also	encodes	more	relevant	information.

	Social	Agent	Simulation

If	we	look	at	the	non-social	agent	model	as	a	baseline,	we	can	now	try	to	answer	the	next	question:	what	benefit
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could	an	agent	gain	from	observing	other	agents	as	compared	to	observing	some	other	part	of	the	environment?
We	have	already	established	that	other	agents	encode	and	concentrate	the	relevant	information	from	the
environment	in	their	actions,	now	we	want	to	show	that	it	is	possible	to	extract	and	use	this	information.	Since
the	calculation	shows	that	the	non-social	agent	cannot	do	much	better	with	the	information	it	currently	perceives,
it	has	to	acquire	new	sources	of	information.	So	we	will	also	investigate	whether	our	hypothesis	is	true	and	the
agents	are	able	to	display	relevant	information	in	their	actions	which	is	not	available	otherwise.

Consider	now	a	scenario	where	the	world	does	not	only	contain	one	single	agent	and	a	food	source,	but	also
several	other	agents	who	have	a	similar	set	of	goals	as	our	agent.	The	extended	version	of	the	Fishworld	model
populates	the	grid	world	with	several	agents	at	the	start	of	the	simulation.	All	of	the	agents	try	to	find	the	same
food	source.	Also,	in	addition	to	the	current	two	sensor	states,	corresponding	to	a	cell	being	empty	or	containing
a	food	source,	the	sensors	of	the	agents	can	now	assume	new	states	that	indicate	that	another	agent	moved
into	the	corresponding	cell	and	which	direction	it	came	from.	So	the	four	new	states	are	{agent	that	moved	in
from	the	north,	…	south,	…	east,	…	west}.	So,	if	an	agent	senses	another	agent	within	its	sensor	range,	it	will
be	able	to	perceive	the	direction	it	entered	the	cell	from;	the	agent	is	able	to	see	the	last	move	of	that	other
agent.

Since	we	now	want	to	evaluate	what	an	agent	could	possibly	learn	from	the	other	agent's	actions	we	had	the
agents	update	their	own	internal	model	F*	of	the	food	source	F	depending	on	the	other	agent's	actions.	This
adjustment	of	probabilities	can	be	comfortably	integrated	into	our	existing	infotaxis	search.

Note	that	for	the	described	simulation	all	agents	are	equipped	with	those	new	"social"	abilities	and	all	of	them
use	the	other	agents'	actions	to	update	their	internal	world	models.	But	they	only	use	this	ability	if	they
accidentally	encounter	another	agent.	They	do	not	deliberately	seek	out	other	agents.

Bayesian	Update

Let	F*	be	our	current	internal	probability	assumption	of	the	location	of	the	food	source,	and	a	the	states	of	the
random	variable	A	that	encodes	the	last	move	action	of	another	agent	we	are	observing.	We	can	then	use
Bayes'	Theorem	to	update	the	probability	distribution	of	F*.	What	we	are	interested	in	is	the	probability	of	the
food	source	to	be	in	a	specific	location	given	the	evidence	of	another	agent's	action	and	position	P(F=w|A=a).
According	to	Bayes'	Theorem	this	could	be	calculated	for	every	cell	f	of	the	environment	as:

(10)

P(F*=f)	the	a	priori	probability,	is	the	internal	memory	of	the	agent	mapping	the	probability	distribution	of
F,	as	gained	by	their	own	experience	so	far.
P(A	=	α)	is	the	probability	that	the	agent	takes	the	move	action	a.	Since	the	grid	world	is	symmetrical	to
rotation	the	empirical	probability	should	be	initially	close	to	1/4	for	every	action	α	∈	{	north,	west,	south,
east}.	Measurements	in	our	single	agent	simulation	confirm	this.	This	is	a	normalization	factor	so	the
overall	sum	of	probabilities	is	still	one.
P(A	=	α|F	=	f)	is	the	probability	of	another	agent	performing	action	a	if	the	food	is	in	position	f.	Note	that
the	position	f	in	this	case	is	calculated	in	relation	to	the	position	of	the	observed	agent.	So	the	question
we	are	asking	is	for	example	"If	the	food	is	known	to	be	3	cells	north	of	the	agent	what	is	the	probability
of	the	agent	performing	move	action	a".	We	then	record	all	the	cases	in	the	past	where	an	agent	has
been	observed	3	cells	south	of	a	food	source	and	the	action	it	took.

To	obtain	those	statistics	for	the	computer	simulation	we	observed	50000	non-social	infotaxis	agents	searching
for	the	food.	Note	that	the	agents	we	used	were	non-social	and	thus	"blind"	to	the	actions	of	other	agents.	They
behaved	as	described	in	the	"Non-social	Agent	Model"	part	of	this	report.	So	even	though	all	the	agents	in	the
simulation	now	have	the	ability	to	sense	other	agents	and	update	their	internal	world	models	they	still	calculate
their	Bayesian	update	under	the	assumption	that	all	others	were	non-social	agents.	We	used	the	data	obtained
from	those	agents	to	create	a	statistic	to	calculate	the	probabilities	for	P(A=a)	and	P(A=a|F=f).
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Figure	6.	Graph	showing	P(F|A=north),	the	distribution	of	F,	the	food	source	position,
given	a	specific	agent	movement	(in	this	case	north).	The	data	was	obtained	from	10000
single	agent	simulations.	The	position	of	the	agent	is	in	the	center	of	the	graph.	Note	that
there	is	a	peak	north	of	the	agent,	meaning	that	it	is	more	likely	for	the	food	source	to	be
directly	north	of	the	agent	when	it	moves	north.	Conversely,	it	is	very	unlikely	for	the	food

source	to	be	in	the	southern	sensor	range	while	the	agent	moves	north.

After	the	agent	updates	F*,	it	resumes	the	infotaxis	behaviour	described	in	the	non-social	agent	model.

For	our	current	simulation	all	agents	were	equipped	with	the	new	mechanism,	but	only	the	performance	of	one
single	agent,	chosen	at	random,	was	measured.	All	agents	started	their	search	at	the	same	time	and	were
initialized	with	no	knowledge	about	the	world.	Agents	that	had	successfully	located	the	food	stopped	moving	and
were	no	longer	perceivable	by	other	agents.	This	was	done	to	increase	the	challenge	since	it	would	have	been
trivial	for	another	agent	to	infer	from	seeing	another	non-moving	agent	that	the	food	must	be	within	sensor
range	of	that	agent.	As	a	result,	the	agents	could	not	see	any	agents	which	knew	where	the	food	was.

Results

In	such	a	simulation,	populated	by	10	agents,	the	average	searchtime	over	10	000	trials	was	around	65	rounds
for	the	social	agents,	as	compared	to	around	76	turns	for	the	non-social	infotaxis	fishes.	Since	we	did	not
include	any	collision	detection,	or	any	other	means	for	the	agents	to	interfere	with	each	other,	the	searchtime	for
the	non-social	agents	remains	unchanged	in	regard	to	the	amount	of	other	agents	in	the	simulation.

In	the	social	agent	simulation	a	further	increase	of	the	number	of	agents	reduces	the	average	searchtime
further,	down	to	a	minimum	of	48.9	turns	for	95	social	agents,	as	seen	in	Fig.	7.	An	increase	in	the	number	of
agents	then	leads	to	a	slow	rise	of	the	average	searchtime	again.
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Figure	7.	The	average	time	to	locate	the	food	(over	10	000	trials	for	each	number	of
agents),	depending	on	the	number	of	other	social	agents	in	the	simulation.	The	line
indicates	the	theoretical	optimal	searchtime	of	57.6	for	a	non-social	agent.	Note	that

several	agent	populations	perform	better	than	that,	and	must	therefore	obtain	additional
information	not	available	to	their	non-social	counterparts.

Prior	calculations	showed	that	an	agent,	who	only	used	its	sensors	to	detect	if	cells	are	empty	or	contain	food,
could	not	be	faster	than	an	average	of	57.6	rounds.	Bigger	agent	populations	beat	this	optimal	non-social
behavior,	and	must	therefore	obtain	useful	information	from	their	observation	of	other	agents;	information	that
would	otherwise	not	be	available	to	them.

A	possible	interpretation	for	the	increase	in	search	time,	once	the	number	of	agent	increase	above	100,	is
similar	to	the	explanation	for	the	large	search	time	of	single	agents.	Visual	inspection	of	the	simulations
indicates	qualitatively	that,	if	an	agent	observes	agents	coming	at	him	from	every	direction	(which	becomes
more	probable	with	a	high	agent	density),	then	it	can	rule	out	the	existence	of	food	in	any	of	these	directions	for
the	next	few	unseen	cells.	This	indicates	to	the	agent	that	there	would	be	no	information	gain	in	any	direction	in
the	next	step	forcing	it	to	choose	the	direction	at	random.	Such	behaviour	is	inefficient	and	becomes	increasingly
more	common	with	more	agents	present	in	the	simulation.

Another	interpretation	for	the	loss	in	performance	might	be	the	increased	proliferation	of	"faulty"	information.
While,	in	our	simulation,	all	the	sensor	data	picked	up	from	the	environment	would	lead	to	the	agent	being	more
"correct",	it	is	possible	that	observing	another	agent	would	alter	the	internal	probability	distribution	so	that	the
agent	believes	the	food	is	less	likely	to	be	in	its	actual	position.	This	is	possible	because	the	agents`	actions	are
only	probabilistically	determined	by	the	food	position;	therefore	there	are	improbable	cases	where	the	agent's
actions	can	mislead	us.

This	in	itself	should	be	unproblematic	for	the	Bayesian	update,	since	it	is	specifically	designed	to	deal	with	those
cases.	But	our	repeated	application	of	Bayesian	update	is	only	correct,	if	the	observed	events	are	marginally
independent.	In	our	simulation	all	agents	use	Bayesian	update,	so	it	is	possible	for	them	to	create	a	feedback
loop	where	an	unlikely	event	leads	other	agents	to	assume	an	unlikely	probability	distribution	which	in	turn	leads
to	more	unlikely	actions	being	performed	by	those	agents.	This	could	then	lead	to	a	proliferation	of	"faulty"
information	which	in	turn	would	lead	to	a	decrease	in	agent	performance.	It	seems	plausible	that	such	a
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scenario	is	more	likely	with	a	higher	number	of	agents	present.	But,	as	of	now,	we	believe	further	investigation	is
necessary	to	determine	the	exact	nature	of	this	effect.

	Conclusion

Concluding,	the	simulation	supports	the	claims	of	our	"Digested	Information"	argument.	The	observed	agents,
motivated	only	by	their	own	benefit	and	without	any	explicit	interest	in	communication,	ended	up	encoding
relevant	information	in	their	actions.	They	obtained	this	information	from	the	environment	through	their	sensors,
processed	it,	and	injected	it	in	"compressed"	form	back	into	the	environment	through	their	actions.	The	relevant
information	contained	in	those	actions	then	had	a	higher	density	than	any	other	part	of	the	environment.
Furthermore,	an	increase	in	the	efficiency	of	the	agent's	strategy	also	led	to	a	further	increase	in	the	amount	of
encoded	relevant	information.	Those	special	properties	of	another	agent's	actions	offer	a	nice	incentive	for
another	agent	to	develop	the	necessary	abilities	to	differentiate	agents	from	the	environment	and	direct	its
attention	at	them.	Ultimately	(but	not	studied	here),	it	could	even	prove	to	be	useful	to	identify	other	agents
separately,	e.g.	one	would	be	aiming	to	discern	which	agents	are	doing	better	than	others,	and	focus	one's
attention	onto	those.	An	agent	that	would	be	able	to	observe	the	actions	of	other	agents	could	also	use	them	as
information	pre-processors,	and	basically	"outsource"	part	of	its	own	information	processing	to	other	agents.

Our	simulation	also	showed	that,	once	those	abilities	are	acquired,	an	observing	agent	can	use	the	information
obtained	from	observing	another	agent's	action	to	increase	the	performance	of	its	own	strategy.	This
performance	increase	is	so	significant	that	the	"social"	agent	outperforms	every	agent	with	a	non-social	strategy,
due	to	those	agents	limited	information	intake.	Therefore,	the	socially	observing	agent	has	to	acquire
information	that	is	otherwise	unobtainable,	so	it	must	have	been	transported	either	through	time	or	space	by	the
other	agent.	This	property	of	other	agents	makes	them	even	more	useful	as	external	pre-processors	of
information.

A	major	benefit	of	the	introduced	framework	is	the	ability	to	actually	formulate	the	concept	on	a	quantitative
basis.	In	the	given	Fishworld	scenario	we	were	able	to	show	that	the	information	in	the	agents'	actions	is	not
only	better	encoded,	but	that	it	also	uses	the	bandwidth	of	its	respective	variables	at	a	roughly	5	times	more
efficient	level.	Furthermore,	we	can	exactly	quantify	how	much	information	about	the	food	location	is,	on
average,	encoded	in	the	agent's	behaviour.	This	exact	analysis	enables	us	to	both	understand	the	limits	for	the
flow	of	information	and	it	also	makes	it	possible	to	see	exactly	how	much	beneficial	(i.e.	relevant)	information	the
various	information	sources	offer.

Plausibility

As	simple	as	our	current	simulation	model	is,	it	already	contains	all	ingredients	necessary	to	produce	the	effect
we	hypothesized	concerning	the	"Digested	Information"	argument.	The	simplicity	and	minimality	of	the	model
demonstrates	that	it	is	already	sufficient	to	show	the	predicted	effects.	The	argument	given	in	the	section
"Digested	Information"	is	expected	to	be	valid	for	all	models	that	can	be	reduced	to	the	presented	framework	in
that	every	agent	which	needs	to	obtain	information	from	the	world	to	select	an	action	most	beneficial	to	it	will
encode	some	relevant	information	in	its	actions.

In	this	context	it	is	interesting	to	note	that	there	is	some	well	documented	biological	behaviour	for	bees	( Baude
2008)	and	birds	(Parejo	2008)	which	both	encode	information	into	their	actions	without	an	explicit	intent	to
communicate.	Danchin	calls	this	phenomenon	"inadvertent	social	information"	and	describes	several	additional
cases	where	this	behaviour	is	also	suspected	(Danchin	2004).	In	relation	to	that	work,	our	contribution	is	to	offer
an	information-theoretic	explanation	for	this	behaviour,	including	a	method	to	actually	quantify	it.	Of	special
interest	is	the	work	of	Parejo	(2008),	because	it	looks	at	groups	of	birds	that	are	somewhat	similar,	but	not
homogenous.	Since	the	usefulness	of	"Relevant	Information"	is	based	on	the	assumption	of	homogenous
agents,	with	similar	payoff	function,	this	raises	the	interesting	question	on	how	the	"Relevant	Information"
diminishes	once	the	similarity	between	agents	decreases,	and	whether	this	kind	of	agent	similarity	can	actually
been	measured	or	quantified.

Finally,	the	original	behaviour	of	the	agent	in	our	social	Fishworld	model	is	based	on	the	"Infotaxis"	model	of
Vergassola	(2007)	who	already	demonstrated	that	the	actual	behaviour	of	moth	searching	for	a	mate	bears	a
functional	resemblance	to	the	infotaxis	search	principle.	Thus,	even	without	a	detailed	knowledge	about	the
concrete	biological	mechanism	behind	search,	it	is	plausible	to	assume	that	informational	principles	could
actually	drive	search	behaviours	in	biology.
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Interaction

Finally,	we	need	to	discuss	two	further	remaining	questions	in	regard	to	this	work:	whether	above	mechanism
actually	leads	to	a	form	of	social	interaction	where	one	social	agent	reacts	in	regard	to	the	actions	of	another,
and	how	this	model	would	deal	with	the	possibility	of	one	agent	deliberately	trying	to	deceive	another.	Both	are
already	implicitly	covered	by	this	framework	through	the	way	we	define	relevant	information.	Since	it	is	defined
as	the	minimal	information,	on	average,	that	an	agent	has	to	acquire	to	achieve	a	certain	performance	level,	this
is	at	the	same	time	the	information	that	needs	to	be	reflected	in	the	actions.	In	other	words,	it	is	necessary	for
the	agent	to	act	according	to	the	acquired	information.	Acquired	information	that	is	not,	at	least	potentially,	acted
upon	is	useless,	and	a	certain	pay-off	level	can	only	be	reached,	if	the	agent	is	willing	to	act	accordingly,	and
encode	at	least	that	much	information	about	the	environment	in	its	actions.

That	means	that,	for	social	interaction,	if	an	agent	receives	information	about	another	(similar)	agent's	actions,
then	he	has	to	react	to	that	information,	and	thus	to	that	other	agents'	actions	if	it	wants	to	improve	its	own
performance.

Deceit

Currently	our	model	does	not	model	scarcity	of	resources,	since	we	intended	to	demonstrate	that	just
informational	considerations	are	sufficient	to	create	a	motivation	for	interaction,	even	without	considering	a
scenario	where	the	other	agent`s	actions	have	consequences	that	actually	change	the	world.	In	a	scenario
where	resource	scarcity	was	modelled,	it	would	be	difficult	to	separate	the	different	effects.

But	if	there	is	only	a	limited	amount	of	resources	it	might	be	beneficial	for	the	agent	to	mislead	others,	or	at	least
offer	only	a	minimum	of	useful	information.	There	are	two	ways	how	this	could	be	addressed.	If	there	are	several
strategies	with	the	same	pay-off	level,	the	agent	could	choose	one	that	would	reveal	the	least	information	about
the	environment.	This	is	de	facto	the	default	principle	behind	the	calculation	of	relevant	information.	Therefore,
there	is	a	hard	limit	on	how	much	information	an	agent	has	to	display,	to	act	on	a	certain	performance	limit.

Now,	if	the	agent	wants	to	display	even	less	information,	it	has	to	sacrifice	a	certain	amount	of	its	performance
in	regard	to	the	environment.	A	deceit	on	that	level	is	not	possible	without	accepting	a	trade-off	that	moves	away
from	an	optimal	strategy.	Also,	there	might	be	a	minimum	amount	of	information	to	perform	better	than	random
(see	also	Klyubin	2007,	appendix	E	for	an	analogous	calculation	in	a	related	gradient	scenario).	Of	course,	if	the
loss	of	pay-off	by	proliferating	information	to	opponents	is	greater	than	the	loss	of	pay-off	by	committing	to	a
suboptimal	strategy	than	this	might	be	rational.	If	we	include	the	other	agent	as	part	of	the	agent	environment,
this	situation	can	be	seen	as	reframing	the	whole	pay-off	table,	and	in	this	context	a	deceiving	action	would
again	be	optimal.	The	study	of	such	highly	interwoven	situations	in	the	future	promises	further	significant
insights	into	the	role	of	information	in	shaping	the	collective	dynamics	of	agents,	under	otherwise	minimal
assumptions.
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