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Abstract

Most	works	on	norms	have	investigated	how	norms	are	regulated	using	institutional	mechanisms.	Very	few	works	have	focused	on	how	an	agent	may	infer	the	norms	of	a	society
without	the	norm	being	explicitly	given	to	the	agent.	This	paper	describes	a	mechanism	for	identifying	one	type	of	norm,	an	obligation	norm.	The	Obligation	Norm	Inference	(ONI)
algorithm	described	in	this	paper	makes	use	of	an	association	rule	mining	approach	to	identify	obligation	norms.	Using	agent	based	simulation	of	a	virtual	restaurant	we	demonstrate
how	an	agent	can	identify	the	tipping	norm.	The	experiments	that	we	have	conducted	demonstrate	that	an	agent	in	the	system	is	able	to	add,	remove	and	modify	norms	dynamically.
An	agent	can	also	flexibly	modify	the	parameters	of	the	system	based	on	whether	it	is	successful	in	identifying	a	norm.
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	Introduction

Most	works	on	norms	in	normative	multi-agent	systems	have	concentrated	on	how	norms	regulate	behaviour	(e.g. López	y	López	2003;Boman	1999;Vázquez-Salceda	2003).	These
works	assume	that	the	agent	somehow	knows	(a	priori)	what	the	norms	of	a	society	are.	For	example,	an	agent	may	have	obtained	the	norm	from	a	leader	(Boman	1999)	or	through
an	institution	that	prescribes	what	the	norms	of	the	society	should	be	(Vázquez-Salceda	2003).

Only	a	few	researchers	have	dealt	with	how	an	agent	may	infer	what	the	norms	of	a	newly	joined	society	are	( Andrighetto	et	al.	2007,	Savarimuthu	et	al.	2009 ,	2010).	Recognizing	the
norms	of	a	society	is	beneficial	to	an	agent.	This	process	enables	the	agent	to	know	what	the	normative	expectation	of	a	society	is.	As	the	agent	joins	and	leaves	different	agent
societies,	this	capability	is	essential	for	the	agent	to	modify	its	expectations	of	behaviour,	depending	upon	the	society	of	which	it	is	a	part.	As	the	environment	changes,	the	capability
of	recognizing	a	new	norm	helps	an	agent	to	derive	new	ways	of	achieving	its	intended	goals.	Such	a	norm	identification	mechanism	can	be	useful	for	software	agents	that	need	to
adapt	to	a	changing	environment.	In	open	agent	systems,	instead	of	possessing	predetermined	notions	of	what	the	norms	are,	agents	can	infer	and	identify	norms	through	observing
patterns	of	interactions	and	their	consequences.	For	example,	a	new	agent	joining	a	virtual	environment	such	as	Second	Life	(Rymaszewski	et	al.	2006)	may	have	to	infer	norms	when
joining	a	society	as	each	society	may	have	different	norms.	It	has	been	noted	that	having	social	norms	centrally	imposed	by	the	land	owners	in	Second	Life	is	ineffective	and	there	is	a
need	for	the	establishment	of	community	driven	norms	(Stoup,	2008).	When	a	community	of	agents	determines	what	the	norms	should	be,	the	norms	can	evolve	over	time.	So,	a	new
agent	joining	the	society	should	have	the	ability	to	recognize	the	changes	to	the	norms.	Identifying	norms	are	also	important	because	knowing	the	norms	will	help	the	agent	not	to	lose
utility	as	the	agent	can	apply	the	norms	when	situations	warrant	it.	Otherwise,	the	agent	may	be	sanctioned	for	not	following	the	norms.

This	work	aims	to	answer	the	question	of	how	agents	infer	norms	in	a	multi-agent	society.	To	that	end,	the	work	described	in	this	paper	makes	use	of	the	norm	identification
architecture	(	Savarimuthu	et	al.	2010 )	we	have	proposed	previously.	The	architecture	is	based	on	observation	of	interactions	between	agents	and	also	recognizing	signalling	actions
(sanctions	and	rewards).	We	have	demonstrated	how	an	agent	can	identify	prohibition	norms.	In	this	work	we	present	how	an	autonomous	agent	is	able	to	identify	obligation	norms	in
a	society	using	the	Obligation	Norm	Inference	(ONI)	algorithm.	When	compared	to	identifying	prohibition	norms,	identifying	obligation	norms	is	difficult	because	with	a	prohibition	norm
it	is	the	occurrence	of	a	particular	event	(or	a	sequence	of	events)	that	is	the	reason	for	a	sanction	to	occur	(e.g.	dropping	a	litter	is	the	reason	for	a	sanction	in	a	park).	In	obligation
norms,	it	is	the	absence	of	an	event	that	is	the	cause	of	a	sanction	(e.g.	a	waiter	in	a	restaurant	may	sanction	a	customer	for	not	tipping).	It	is	difficult	to	detect	the	missing	event	(or	a
sequence	of	events)	that	is	responsible	for	a	sanction	to	occur.	The	ONI	algorithm	presented	in	this	paper	can	be	used	to	identify	obligation	norms	in	a	society.	Using	a	restaurant
example,	we	show	how	an	agent	makes	use	of	the	norm	identification	framework	to	identify	an	obligation	norm	-	the	norm	of	tipping.

The	paper	is	organized	as	follows.	Section	2	provides	a	background	on	norms	and	normative	multi-agent	systems	(NorMAS).	Section	3	provides	an	overview	of	the	norm	identification
framework.	Section	4	describes	the	Obligation	Norm	Inference	(ONI)	algorithm	and	how	the	components	of	the	framework	are	used	in	the	context	of	a	restaurant	scenario.	Section	5
describes	the	experiments	that	we	have	conducted	and	the	results	obtained.	Section	6	provides	a	discussion	on	the	work	that	has	been	achieved	and	the	issues	that	need	to	be
addressed	in	the	future.	Concluding	remarks	are	presented	in	Section	7.

	Background

In	this	section,	we	first	provide	a	brief	background	on	the	role	of	norms	in	human	societies.	Second,	we	discuss	the	work	on	norms	in	the	field	of	Normative	Multi-agent	Systems
(NorMAS)	and	the	relevance	of	our	work	in	this	area.

Norms	in	human	societies

Due	to	multi-disciplinary	interest	in	norms,	several	definitions	for	norms	exist.	Ullmann-Margalit	( 1977)	describes	a	social	norm	as	a	prescribed	guide	for	conduct	or	action	which	is
generally	complied	with	by	the	members	of	the	society.	She	states	that	norms	are	the	resultant	of	complex	patterns	of	behaviour	of	a	large	number	of	people	over	a	protracted	period
of	time.	Elster	(1989)	notes	the	following	about	social	norms.	" For	norms	to	be	social,	they	must	be	shared	by	other	people	and	partly	sustained	by	their	approval	and	disapproval.
They	are	sustained	by	the	feelings	of	embarrassment,	anxiety,	guilt	and	shame	that	a	person	suffers	at	the	prospect	of	violating	them.	A	person	obeying	a	norm	may	also	be	propelled
by	positive	emotions	like	anger	and	indignation	…	social	norms	have	a	grip	on	the	mind	that	is	due	to	the	strong	emotions	they	can	trigger".

Based	on	the	definitions	provided	by	various	researchers,	we	note	that	the	pragmatic	aspects	surrounding	a	social	norm	include	the	following:

Normative	expectation	of	a	behavioural	regularity:	There	is	a	general	agreement	within	the	society	that	a	behaviour	is	expected	on	the	part	of	an	agent	(or	actor)	by	others	in	a
society,	in	a	given	circumstance.
Norm	enforcement	mechanism:	When	an	agent	does	not	follow	a	norm,	it	could	be	subjected	to	a	sanction.	The	sanction	could	include	monetary	or	physical	punishment	in	the
real	world	which	can	trigger	emotions	(embarrassment,	guilt,	etc.)	or	direct	loss	of	utility.	Other	kind	of	sanctions	could	include	agents	not	being	willing	to	interact	with	an	agent
that	violated	the	norm	or	the	decrease	of	its	reputation	score.
Norm	spreading	mechanism:	Having	obtained	a	norm,	an	agent	may	spread	the	norm	to	other	agents	in	the	society.	Examples	of	norm	spreading	mechanisms	include	the
notion	of	advice	from	powerful	leaders,	imitation	and	learning	on	the	part	of	an	agent.

Many	social	scientists	have	studied	why	norms	are	adhered	to.	Some	of	the	reasons	for	norm	adherence	include	a)	fear	of	authority	or	power	( Axelrod	1986;Jones	and	Sergot	1996 ),
b)	rational	appeal	of	the	norms	(i.e.	they	promote	self	interest)	(Akerlof	1976;Becker	1978)	c)	emotions	such	as	shame,	guilt	and	embarrassment	that	arise	because	of	non-adherence
(Elster	1989;Staller	and	Petta	2001 ;Scheve	et	al.	2006)	and	d)	willingness	to	follow	the	crowd	( Epstein	2001).

Normative	multi-agent	systems

The	definition	of	normative	multi-agent	systems	given	by	the	researchers	involved	in	the	NorMAS	2007	workshop	is	as	follows	( Boella	et	al.	2008 ).	A	normative	multi-agent	system	is	a
multi-agent	system	organized	by	means	of	mechanisms	to	represent,	communicate,	distribute,	detect,	create,	modify	and	enforce	norms,	and	mechanisms	to	deliberate	about	norms
and	detect	norm	violation	and	fulfillment.	Researchers	in	multi-agent	systems	have	studied	how	the	concept	of	norms	can	be	applied	to	artificial	agents.	Norms	are	of	interest	to	multi-
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agent	system	(MAS)	researchers	as	they	help	in	sustaining	social	order	and	increase	the	predictability	of	behaviour	in	the	society.	Researchers	have	shown	that	norms	improve
cooperation	and	collaboration	(Shoham	and	Tennenholtz	1992;Walker	and	Wooldridge	1995).	Epstein	has	shown	that	norms	reduce	the	amount	of	computation	required	to	make	a
decision	(Epstein	2001).	However,	software	agents	may	tend	to	deviate	from	norms	due	to	their	autonomy.	So,	the	study	of	norms	has	become	important	to	MAS	researchers	as	they
can	build	robust	multi-agent	systems	using	the	concept	of	norms	and	also	experiment	on	how	norms	may	evolve	and	adapt	in	response	to	environmental	changes.

Research	in	normative	multi-agent	systems	can	be	categorized	into	two	branches.	The	first	branch	focuses	on	normative	system	architectures,	norm	representations,	norm	adherence
and	the	associated	punitive	or	incentive	measures.	López	y	López	and	Marquez	(2004)	have	designed	an	architecture	for	normative	BDI	agents.	Boella	&	van	der	Torre	( 2006)	have
proposed	a	distributed	architecture	for	normative	agents.	For	an	overview	and	comparison	of	different	architectures	refer	to	Neumann's	article	(2010).	Many	researchers	have	used
deontic	logic	to	define	and	represent	norms	(García-Camino	et	al.	2006 ;Boella	and	van	der	Torre	2006 ).	Several	researchers	have	worked	on	mechanisms	for	norm	compliance	and
enforcement	(López	y	López	et	al.	2002 ;Aldewereld	et	al.	2006 ;Axelrod	1986).	A	recent	development	is	the	research	on	emotion-based	mechanisms	for	norm	enforcement	( Staller	and
Petta	2001;Scheve	et	al.	2006).	Conte	and	Castelfranchi	( 1999)	have	worked	on	an	integrated	view	of	norms.	Their	work	tries	to	bridge	the	gap	between	the	prescriptive	view	of	norms
and	the	emergence	of	conventions	from	mere	regularities	using	the	cognitive	abilities	of	an	agent.

The	second	branch	of	research	is	related	to	emergence	of	norms.	Several	researchers	have	worked	on	both	prescriptive	(top-down)	and	emergent	(bottom-up)	approaches	to	norms.	In
a	top-down	approach	an	authoritative	leader	or	a	normative	advisor	prescribes	what	the	norm	of	the	society	should	be	(Verhagen	2001).	In	the	bottom-up	approach,	the	agents	come
up	with	a	norm	through	learning	mechanisms	(Shoham	and	Tennenholtz	1992;Sen	and	Airiau	2007).	Researchers	have	used	sanctioning	mechanisms	( Axelrod	1986)	and	reputation
mechanisms	(Castelfranchi	et	al.	1998 )	for	enforcing	norms.	An	overview	of	different	mechanisms	used	by	researchers	for	the	research	on	norms	is	provided	by	Savarimuthu	and
Cranefield	(2009).

The	work	reported	in	this	paper	falls	under	the	bottom-up	approach	to	the	study	of	norms.	Many	researchers	in	this	approach	have	experimented	with	game-theoretical	models	for
norm	emergence	(Axelrod	1986;Shoham	and	Tennenholtz	1992).	Agents	using	these	models	learn	to	choose	a	strategy	that	maximizes	utility.	The	agents	in	these	works	do	not
possess	the	notion	of	"normative	expectation".	Many	research	works	assume	that	norms	exist	in	the	society	and	the	focus	is	on	how	the	norms	can	be	regulated	in	an	institutional
setting	such	as	electronic	institutions	(Arcos	et	al.	2005).

Very	few	have	investigated	how	an	agent	comes	to	know	the	norms	of	the	society	( Andrighetto	et	al.	2007;Savarimuthu	et	al.	2009 ).	Researchers	involved	in	the	EMIL	project
(Andrighetto	et	al.	2007)	are	working	on	a	cognitive	architecture	for	norm	emergence.	They	aim	to	deliver	a	simulation-based	theory	of	norm	innovation,	where	norm	innovation	is
defined	as	the	two-way	dynamics	of	an	inter-agent	process	and	an	intra-agent	process.	The	inter-agent	process	results	in	the	emergence	of	norms	where	the	micro	interactions
produce	macro	behaviour	(norms).	The	intra-agent	process	refers	to	what	goes	inside	an	agent's	mind	so	that	it	can	recognize	what	the	norms	of	the	society	are.	This	approach	uses
cognitive	agents	that	examine	interactions	between	agents	and	are	able	to	recognize	what	the	norms	could	be.	The	work	reported	here	differs	from	the	work	done	in	EMIL	project	in
two	ways.	Firstly,	in	our	architecture	we	have	chosen	"reaction"	or	"signalling"	(positive	and	negative)	to	be	a	top-level	construct	for	identifying	potential	norms	when	the	norm	of	a
society	is	being	shaped.	We	note	that	a	sanction	not	only	may	imply	a	monetary	punishment,	it	could	also	be	an	action	that	could	invoke	emotions	(such	as	an	agent	yelling	at	another
might	invoke	shame	or	embarrassment	on	another	agent),	which	can	help	in	norm	spreading.	Agents	can	recognize	such	actions	based	on	their	previous	experience.	Secondly,
based	on	association	rule	mining	(Ceglar	and	Roddick	2006),	a	data	mining	technique,	we	propose	an	algorithm	for	norm	inference,	called	the	Obligation	Norm	Inference	(ONI)
algorithm,	which	can	be	adapted	by	an	autonomous	agent	for	flexible	norm	identification.	To	the	best	of	our	knowledge,	we	are	the	first	to	use	a	data	mining	approach	for	recognizing
norms	in	an	agent	society.

	Overview	of	the	norm	identification	architecture

In	this	section	we	provide	an	overview	of	the	norm	identification	framework	(called	the	norm	engine)	proposed	previously	by	Savarimuthu	et	al.	( 2010)	for	an	agent	to	infer	norms	in
the	agent	society	in	which	it	is	situated.	Social	learning	theory	(Bandura	1977)	suggests	that	new	behaviour	can	be	learnt	through	the	observation	of	punishment	and	rewards.	It	has
been	noted	that	social	monitoring	(i.e.	the	observation	of	agent	actions)	(Conte	and	Dignum	2001 )	and	social	learning	(Conte	and	Paolucci	2001 )	can	be	used	to	identify	norms	in	the
society.	An	agent	employing	the	architecture	makes	use	of	social	monitoring	and	learning	to	infer	norms	(Savarimuthu	et	al.	2010 ).

Figure	1	shows	the	internal	agent	architecture	for	norm	identification.	An	agent	employing	this	architecture	follows	a	four-step	process.
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Figure	1.	Architecture	of	the	norm	identification	framework	of	an	agent

Step	1:	An	agent	perceives	the	events	in	the	environment	in	which	it	is	situated.

Step	2:	When	an	agent	perceives	an	event,	it	stores	the	event	in	its	belief	base.	The	events	observed	by	an	observer	are	of	two	types:	regular	events	and	signalling	events.	In	the
context	of	a	restaurant,	a	regular	event	is	an	event	such	as	an	agent	ordering	an	item.	"Special	events"	are	signalling	events	that	agents	understand	to	be	either	encouraging	or
discouraging	certain	behaviour.	For	example	when	an	agent	orders	a	particular	item	but	does	not	pay	in	accordance	with	a	norm	of	the	society,	the	agent	can	be	sanctioned	by	the
restaurant	manager	or	the	waiter.	When	the	client	is	obliged	to	pay	for	the	items	ordered	before	leaving	the	restaurant,	the	waiter	may	shame	the	client	by	yelling	or	can	even	report
this	to	authorities	such	as	the	police.	Let	us	assume	that	the	signal	in	this	context	is	the	occurrence	of	the	shaming	event	which	is	a	form	of	a	sanction.	The	framework	assumes	that
an	agent	has	the	ability	to	recognize	signalling	events	based	on	its	previous	experience.	Another	example	of	a	norm	in	this	context	is	that	a	restaurant	may	have	a	social	norm	that	the
customers	are	expected	to	tip	the	waiter	before	departing	the	restaurant.	A	customer	may	be	sanctioned	by	the	waiter	agent.	The	sanction	here	could	be	a	yell	or	shout	action.

Step	3:	When	a	special	event	occurs,	the	agent	stores	the	special	event	in	the	special	events	base.	It	should	be	noted	that	all	events	are	stored	in	an	agent's	belief	base	but	only
special	events	are	stored	in	the	special	events	base.

Step	4:	If	the	perceived	event	is	a	special	event,	an	agent	checks	if	there	exists	a	norm	in	its	personal	norm	( 	p-norm)	base	or	the	group	norm	( 	g-norm)	base.	An	agent	may	possess
some	p-norms	based	on	its	past	experience	or	preference.	A	 p-norm	is	the	personal	value	of	an	agent.	For	example	an	agent	may	consider	that	every	agent	should	tip	after	having	a
meal	in	the	restaurant.	A	p-norm	may	vary	across	agents,	since	a	society	may	be	made	up	agents	with	different	backgrounds	and	experiences.	A	 g-norm	is	a	group	norm	that	an
agent	infers,	based	on	its	personal	interactions	as	well	as	the	interactions	it	observes	in	the	society.	An	agent	infers	g-norms	using	the	norm	inference	component	of	the	framework.

The	norm	inference	component	is	the	main	component	of	this	architecture	which	employs	sequence	mining	approach	to	identify	norms	(discussed	in	detail	in	Section	4).	When	a
special	event	occurs	an	agent	may	decide	to	invoke	its	norm	inference	component	to	identify	whether	a	previously	unknown	norm	may	have	resulted	in	the	occurrence	of	the	special
event.	In	the	context	of	the	restaurant	scenario,	an	agent	observing	a	sanctioning	event	may	invoke	its	norm	inference	component	to	find	out	what	events	that	had	happened	in	the
past	(or	that	had	not	happened	in	the	past)	may	have	triggered	the	occurrence	of	the	special	event.	The	invocation	of	the	norm	inference	component	may	result	in	the	identification	of
a	g-norm,	in	which	case	it	is	added	to	the	 g-norm	base.

An	agent,	being	an	autonomous	entity,	can	also	decide	not	to	invoke	its	norm	inference	component	for	every	occurrence	of	a	special	event	but	may	decide	to	invoke	it	periodically.
When	it	invokes	the	norm	inference	component,	it	may	find	a	new	g-norm	which	it	adds	to	its	g-norm	base.	If	it	does	not	find	a 	g-norm,	the	agent	may	change	some	of	its	norm
inference	parameters	and	repeat	the	process	again	in	order	to	find	a	g-norm	or	may	wait	to	collect	more	information.

At	regular	intervals	of	time	an	agent	re-evaluates	the	g-norms	it	currently	has,	to	check	whether	those	norms	hold.	When	it	finds	that	a	 g-norm	does	not	apply,	it	removes	the	norm
from	the	g-norm	base.	The	operational	details	of	the	norm	inference	component	are	explained	in	Section	4.3.	What	an	agent	does	with	the	norms	once	it	has	inferred	the	norms	is	out
of	the	scope	of	this	paper.

When	it	finds	that	a	g-norm	does	not	apply	(e.g.	if	it	does	not	find	any	evidence	of	sanctions),	it	deletes	the	norm	from	the	 g-norm	base.

	Obligation	norm	identification

In	this	section	we	explain	how	obligation	norms	can	be	identified	using	the	obligation	norm	inference	(ONI)	algorithm	proposed	here.	First,	we	describe	the	domain	in	which	an
obligation	norm	is	identified.	Second,	we	describe	how	the	events	are	stored	by	an	agent.	Third,	we	describe	how	the	ONI	algorithm	can	be	used	by	an	agent	to	infer	norms.

Restaurant	scenario

Let	us	assume	that	agents	are	situated	in	a	restaurant	in	a	virtual	environment	(e.g.	Second	Life).	A	new	agent	coming	to	a	restaurant	may	not	be	aware	of	the	protocol	associated
with	ordering	and	paying	for	food	items	and	the	associated	norms.	For	example,	the	protocol	of	a	restaurant	might	be	to	first	order	and	pay	for	the	food	before	consuming	the	food
while	the	protocol	of	another	restaurant	may	be	that	the	agent	can	consume	the	food	and	pay	the	bill	at	the	end.	A	norm	associated	with	the	restaurants	could	be	that	the	agent	is
expected	to	pay	a	tip	after	paying	the	bill	or	pay	a	tip	along	with	the	bill.	This	may	vary	from	one	culture	to	another.	For	example,	in	the	USA	it	is	expected	to	pay	a	tip	while	in	New
Zealand	a	tip	is	not	expected.	Depending	upon	one's	location,	failure	to	follow	the	norms	may	result	in	a	sanction.	In	this	paper	we	explain	how	an	agent	can	identify	the	norms	and
the	protocols	in	a	particular	context	(i.e.	the	restaurant	scenario).

Event	storage	components

Let	us	assume	that	an	agent	is	situated	in	a	restaurant	where	multiple	agents	come	to	the	restaurant,	consume	food	and	move	out	of	the	restaurant.	Let	us	also	assume	that	a	new
agent	is	not	aware	of	the	norms	or	the	protocols	of	the	restaurant.	In	this	architecture	an	agent	would	first	observe	the	interactions	that	occur	between	the	agents	in	the	society.	The
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interactions	could	be	of	two	types.	The	first	type	of	interaction	is	the	one	in	which	the	agent	itself	is	involved	and	is	called	a	personnel	interaction	(e.g.	eating).	The	second	type	of
interaction	is	an	interaction	between	other	agents	that	is	observed	by	an	observer	agent,	referred	to	as	an	observed	interaction.	The	agent	records	these	interactions	(as	events)	in	its
belief	base.	An	agent	in	the	society	can	assume	one	or	more	of	the	following	three	roles:	a	participant	(P)	that	is	involved	in	a	personal	interaction,	an	observer	(O)	and	a	signaller	(S).
The	participants	are	the	waiter	agent	and	the	customer	agent.	The	signaller	is	a	waiter	agent.

In	the	restaurant	scenario,	the	agent	is	aware	of	the	actions	performed	by	an	agent,	which	are	the	arrival	of	an	agent	( arrive),	ordering	an	item	(order),	eating	the	ordered	food	(eat),
paying	for	the	ordered	food	(pay),	tipping	the	waiter	( tip)	and	departing	the	restaurant	(depart).	The	agent	also	has	the	ability	to	recognize	a	signalling	action	such	as	 yell	orshame	[1].
Signalling	events	can	either	be	positive	(rewards)	or	negative	(sanctions).	In	this	work	we	focus	on	the	negative	signals	(i.e.	sanctions)

Let	us	assume	that	a	new	agent	(an	observer)	is	situated	in	the	restaurant.	The	observer	records	interactions	that	occur	in	the	restaurant.	Let	us	assume	that	a	sanctioning	event
occurs.	Even	though	an	observer	may	know	that	a	sanctioning	event	has	occurred,	it	may	not	know	the	exact	reason	for	sanctioning	(i.e.	it	may	not	know	the	norm	because	it	only
observes	a	sequence	of	actions	and	the	agent	does	not	know	which	of	the	events	that	happened	in	the	past	or	the	absence	of	which	event(s)	triggered	the	sanction).	It	will	infer
norms	using	the	norm	inference	mechanism.

An	event	that	is	perceived	by	an	agent	consists	of	an	event	index,	an	observed	action,	and	the	agent(s)	participating	in	that	event.	For	example	an	agent	observing	an	agent	A	arriving
at	the	restaurant	will	represent	this	as	happens	(1,arrive,A).	This	implies	the	observer	believes	that	the	first	event	was	generated	by	agent	A	which	arrives	in	the	restaurant.

A	sample	representation	of	events	observed	by	an	agent	is	given	in	Figure	2.	An	agent	situated	in	an	environment	can	sense	these	actions	through	observation	or	through	action	logs
that	may	be	available[2].

Figure	2.	Representation	of	events

An	agent	records	these	events	in	its	belief	base.	Event	7	is	a	sanctioning	event,	where	agent	W	sanctions	agent	A.	The	reason	for	the	sanction	is	that	agent	A	failed	to	tip	agent	W.
For	an	observer	it	may	not	be	possible	to	know	the	reason	for	this	sanction	unless	it	was	specified	a	priori	by	the	agent's	designer.	In	open	agent	societies,	the	norms	of	the	society
may	not	be	known	to	an	agent	ahead	of	time.	Additionally,	the	norms	may	evolve	over	time.	In	order	to	infer	a	norm	of	the	society	the	agent	will	make	use	of	the	norm	inference
mechanism	proposed	here.

The	agents	have	a	filtering	mechanism,	which	identifies	signalling	events	and	stores	them	in	the	special	events	base.	It	should	be	noted	that	special	events,	such	as	 yell	and	shame,
are	categorized	by	an	agent	as	sanctioning	events	and	they	are	stored	in	the	special	events	base	as	a	sanction	event.

Norm	inference	component

An	agent	may	choose	to	invoke	its	norm	inference	component	based	on	its	preference.	For	example,	it	can	invoke	the	component	every	time	it	perceives	a	signalling	action,	or	it	may
invoke	this	component	periodically.

The	norm	inference	component	of	an	agent	is	made	up	of	two	sub-components.	The	first	sub-component	makes	use	of	the	Obligation	Norm	Inference	(ONI)	algorithm	to	generate
candidate	obligation	norms.	Candidate	obligation	norms	are	the	norms	that	an	agent	identifies	as	potential	candidates	that	may	become	the	norms	in	a	society.	The	second	sub-
component	is	the	norm	verification	component,	which	verifies	whether	a	candidate	norm	can	be	identified	as	a	norm	in	the	society.

This	sub-section	is	organized	as	follows.	Firstly	we	explain	the	parameters	of	the	ONI	algorithm.	Secondly	we	describe	the	internal	details	of	the	ONI	algorithm	using	the	restaurant
example.

Definitions	of	parameters	used	in	the	algorithm

The	parameters	that	are	used	in	the	Obligation	Norm	Inference	algorithm	are	explained	below.

History	Length	(HL):	An	agent	keeps	a	history	of	the	observed	interactions	for	certain	window	of	time.	This	period	of	time	is	represented	by	the	History	Length	(HL)	parameter.	For
example,	if	HL	is	set	to	20,	an	agent	will	keep	the	last	20	events	it	observes	in	it	its	memory.	An	agent	constructs	an	event	episode	(EE)	based	on	events	that	are	stored	in	its	history.
Construction	of	event	episodes	is	described	in	the	next	sub-section.

Event	Sequences	(ES):	An	event	sequence	is	the	record	of	actions	that	an	agent	observes	in	the	history.	For	example	the	event	sequence	observed	by	an	agent	where	HL=8	is	given
in	Figure	2.

Special	Events	Set	(SES):	An	agent	has	a	set	of	events	it	identifies	to	be	special.	These	events	are	the	signalling	events.	For	example,	the	special	event	set	can	contain	events	such
as	yell	(SES	=	{	yell,	shame	}).	An	agent	also	has	the	capability	to	categorize	events	into	two	types,	sanctions	and	rewards.	For	example	the	actions	mentioned	above	can	be
identified	as	sanctions.

Unique	Events	Set	(UES):	This	set	contains	the	number	of	distinct	events	that	occur	within	a	period	of	time.	For	example,	a	unique	events	set	for	the	example	given	in	Figure	2
contains	the	following	events[3],	UES	=	{ 	arrive,	order,	eat,	pay,	tip,	sanction,	wait,	depart 	}.

Occurrence	Probability	(OP):	The	occurrence	probability	of	an	event	E	is	given	by	the	following	formula.

OP(E) = Number of occurrences of E/Total number of events in ES

Window	size	(WS):	When	an	agent	wants	to	infer	norms,	it	looks	into	its	history	for	a	certain	number	of	recent	events	preceding	a	sanction.	For	example,	if	the	WS	is	set	to	3,	an
agent	creates	an	event	episode	(EE)	with	the	last	three	events	that	were	exchanged	between	agents	involved	in	the	interaction	(e.g.	a	pair	of	agents:	the	customer	and	the	waiter)	that
precede	a	sanction.	It	should	be	noted	that	an	EE	is	a	subsequence[4]	of	ES.

Norm	Identification	Threshold	(NIT):	When	coming	up	with	candidate	norms,	an	agent	may	not	be	interested	in	events	that	have	a	lower	probability	of	being	a	norm.	For	example,	if	an
agent	sets	NIT	to	be	50	(in	a	scale	from	0	to	100),	it	indicates	it	is	interested	in	finding	all	sub-episodes[5]	of	an	event	episode	that	have	at	least	a	50%	chance	of	being	a	candidate
norm.	The	algorithm	uses	the	NIT	on	two	occasions.	As	the	values	of	NIT	for	each	of	the	occasions	can	be	varied	by	an	agent,	there	are	two	variables	used	which	are	NITa,	and	NITb.

Norm	Inference	Frequency	(NIF):	An	agent	invokes	the	component	periodically.	The	agent	has	a	parameter	called	the	norm	inference	frequency	(NIF)	that	specifies	the	time	interval
between	two	invocations	of	the	norm	inference	component.

Obligation	Norm	Inference	(ONI)	algorithm

In	this	section	we	describe	the	Obligation	Norm	Inference	(ONI)	algorithm.
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Overview	of	the	algorithm

There	are	four	main	steps	involved	in	the	Obligation	Norm	Inference	algorithm	(see	Algorithm	1).	First,	event	episodes	of	a	certain	length	are	extracted	from	event	sequences	that	an
agent	observes.	These	event	episodes	are	stored	in	the	event	episode	list	(EEL).	Second,	based	on	the	events	in	the	special	event	set	(e.g.	sanctioning	events),	the	event	episodes	in
EEL	are	separated	into	two	lists.	The	first	list,	called	the	Special	Event	Episode	List	(SEEL)	contains	all	event	episodes	that	contain	at	least	one	sanctioning	event.	The	second	list,
called	the	Normal	Event	Episode	List	(NEEL)	contains	all	event	episodes	that	do	not	contain	sanctioning	events.	Third,	using	SEEL,	all	sub-episodes	which	have	occurrence
probabilities	greater	than	or	equal	to	NITa	are	extracted	and	stored	in	the	Norm-Related	Event	Episode	List	(NREEL)	based	on	a	modified	version	of	the	WINEPI	algorithm
(Savarimuthu	et	al.	2010).	The	modification	was	to	include	the	identification	of	sequences	that	are	resultant	products	of	permutation	with	repetition	(discussed	in	Section	4.31).	Fourth,
for	each	event	episode	in	NREEL,	all	supersequences	are	extracted	from	NEEL	and	stored	in	a	temporary	list	called	tempEEList.	Based	on	the	supersequences	stored	in	tempEEList,
the	modified	version	of	the	WINEPI	algorithm	can	identify	all	permutations	of	supersequences	with	occurrence	probabilities	greater	than	or	equal	to	NITb.	These	are	stored	in	the
Candidate	Obligation	Norm	List	(CONL).	These	four	steps	are	explained	in	detail	in	the	following	sub-sections.	Note	that	a	table	containing	all	acronyms	used	in	this	paper	and	their
expansions	are	given	in	the	Appendix.

Algorithm	1.	Obligation	Norm	Inference	algorithm	(main	algorithm)

Creating	event	episodes

An	agent	records	other	agents'	actions	in	its	belief	base.	We	call	the	sequence	of	events	that	were	recorded	in	the	belief	base	event	sequences	(ES).	Let	us	assume	that	there	are
four	agents	A,	B,	C	and	W	in	the	restaurant	as	given	in	Figure	2.	A	and	B	are	customers	while	W	is	the	waiter	agent.	Let	us	assume	that	agent	C	is	the	observer.	Agent	A	arrives	first
and	shortly	afterwards	agent	B	arrives.	Agent	A	orders	food	from	agent	W.	Agent	A	eats	and	then	pays.	Agent	A	then	departs.	Agent	A	is	sanctioned	by	W.	Agent	B	orders	food	from
agent	W.

An	agent	has	a	certain	history	length	(HL).	An	agent	at	any	point	of	time	stores	the	history	of	observed	interactions	for	the	length	equal	to	HL.	When	the	norm	inference	component	is
invoked,	the	agent	extracts,	from	the	recorded	history	(event	sequences	(ES))	the	events	that	involved	a	pair	of	agents.	We	call	the	retrieved	event	sequence	the	event	episode	(EE).
A	sample	event	episode	from	the	viewpoint	of	an	observer	(agent	C)	is	given	below.	The	set	on	the	left	hand	side	of	the	colon	indicates	that	the	agents	involved	in	the	interaction	are	A
and	W.	To	the	right	of	the	colon	is	the	event	episode.	A	hyphen	separates	one	event	from	the	next.

{A,W} : (happens(3, order, A,W) — happens(4, eat,A )— happens(5, pay, A,W)
— happens(6, depart,A) — happens(7, sanction,W,A))

Based	on	what	an	agent	observes	(e.g.	the	event	sequence	given	in	Figure	2),	the	observer	may	assume	that	something	that	agent	A	did	in	the	past	may	have	caused	the	sanction.	It
could	also	be	the	failure	of	agent	A	to	perform	(a)	certain	action(s)	that	might	have	caused	a	sanction.	In	this	work	we	concentrate	on	the	latter[6].	Agent	C	then	extracts	the	sequence
of	events	(the	event	episode)	that	involved	A	and	W	based	on	the	event	sequence	stored	in	its	history.	To	simplify	the	notation,	only	the	first	letter	of	each	event	will	be	mentioned	from
here	on	(e.g.	p	for	pay)	and	also	the	agent	names	are	omitted.	As	the	sequence	caters	for	temporal	ordering	of	events,	the	event	ids	are	omitted.	Thus	the	event	episode	for
interactions	between	agents	A	and	W	shown	above	will	be	represented	as

{A,W} : o — e — p — d — s

Figure	3	shows	a	sample	event	episode	list	(EEL)	that	contains	ten	events	involving	a	pair	of	agents	that	are	observed	by	another	agent	where	HL=6.	Note	that	the	Unique	Event	Set
(UES)	in	this	case	includes	events	a,	o,	e,	p,	t,	d,	w	and	s	which	stand	for	arrive,	order,	eat,	pay,	tip,	depart,	wait	and	sanction	respectively.

Figure	3.	Event	episode	list	(EEL)

Creating	special	and	normal	event	episode	lists

Note	that	some	event	episodes	in	EEL	have	sanctions	as	one	of	the	events.	The	agent	identifies	the	sanction	events	from	the	special	events	set	(SES).	Using	EEL,	an	agent	creates
two	lists	for	further	processing,	one	with	event	episodes	that	contain	a	sanctioning	event	and	the	other	containing	event	episodes	without	sanctions.	The	list	that	contains	event
episodes	with	sanctioning	events	is	called	the	special	event	episode	list	(SEEL).	The	other	list	is	called	the	normal	event	episode	list	(NEEL).

The	SEEL	obtained	from	our	example	EEL	is	given	in	the	left	in	Figure	4.	NEEL	has	the	remaining	episodes	that	do	not	contain	a	sanctioning	action	(shown	in	the	right	of	Figure	4).
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Figure	4.	SEEL	(left)	and	NEEL	(right)

Generating	the	norm-related	event	list	(NREEL)

From	the	SEEL,	an	agent	can	identify	events	that	have	the	potential	to	be	associated	with	sanctions.	For	example,	from	the	SEEL	shown	in	the	left	of	Figure	4,	the	agent	may	infer
that	the	sub-episodes	p-d,	p,	or	d	could	be	the	reason	for	a	sanction	as	they	occur	in	all	the	event	episodes	in	SEEL.	In	the	case	of	prohibition	norms	the	events	that	precede	a
sanction	can	be	potentially	linked	to	sanction	due	to	causality.	In	the	case	of	obligation	norms,	it	is	the	absence	of	an	event	or	a	sequence	of	events	that	might	be	the	cause	of	the
sanction.	In	both	these	types	of	norms,	the	agent	has	to	identify	the	sequences	of	events	that	occur	frequently	before	the	occurrence	of	a	sanctioning	action.	In	the	case	of	a
prohibition	norm,	the	frequency	of	occurrence	may	correlate	with	norm	identification.	In	the	case	of	an	obligation	norm,	the	agent	first	has	to	find	the	frequently	occurring	sequence(s),
which	are	then	stored	in	the	norm-related	event	list	(NREEL).	Let	us	refer	to	an	event	episode	in	NREEL	as	α.	Second,	an	agent	has	to	identify	all	the	supersequences	of	α	in	NEEL
with	an	occurrence	probability	greater	than	or	equal	to	NITa,	which	are	added	to	the	candidate	obligation	norm	list	(CONL).	The	construction	of	NREEL	is	discussed	in	this	sub-section
and	the	construction	of	CONL	is	discussed	in	the	next	sub-section.

In	order	to	identify	these	norm-related	events	the	agent	uses	the	Candidate	Norm	Identification	(CNI)	algorithm	(Savarimuthu	et	al.	2010)	a	modified	version	of	the	WINEPI	algorithm
(Mannila	et	al.	1997)	which	is	based	on	association	rule	mining.	Association	rule	mining	( Ceglar	and	Roddick	2006)	is	one	of	the	well	known	fields	of	data	mining	where	relationships
between	items	in	a	database	are	discovered.	For	example,	interesting	rules	such	as	80%	of	people	who	bought	diapers	also	bought	beers	can	be	identified	from	a	database.	Some
well	known	algorithms	in	the	data	mining	field	can	be	used	for	mining	frequently	occurring	episodes	(i.e.	mining	association	rules)	(Agrawal	and	Srikant	1994;Mannila	et	al.	1997).	A
limitation	of	the	well-known	Apriori	algorithm	(Agrawal	and	Srikant	1994)	is	that	it	considers	combinations	of	events	but	not	permutations	(e.g.	it	does	not	distinguish	between	event
sequences	p-d	and	d-p).	WINEPI	(Mannila	et	al.,	1997)	addresses	this	issue,	but	it	lacks	support	for	identifying	sequences	that	are	resultants	of	permutations	with	repetition.	For
example,	from	sub-episodes	of	length	one,	e.g.	p	and	d,	the	algorithm	can	generate	sub-episodes	of	length	two	which	are	 p-d	and	d-p,	but	not	p-p	and	d-d.	Permutations	with
repetition	are	important	because	there	could	be	a	norm	which	sanctions	an	agent	from	performing	the	same	action	twice.	The	modification,	reported	previously	(Savarimuthu	et	al.
2010),	can	identify	candidate	norms	that	are	obtained	by	considering	"permutations	with	repetition"	when	constructing	sub-episodes.

Based	on	the	SEEL,	an	agent	can	generate	the	NREEL.	Figure	5	shows	the	SEEL	on	the	left	of	the	arrow	and	the	NREEL	generated	from	the	SEEL	on	the	right	of	the	arrow	when
NITa	is	set	to	0.	The	occurrence	probability	of	an	event	episode	in	NREEL	is	given	in	square	brackets.	When	NITa	is	set	to	0,	all	possible	subsequences	of	event	episodes	in	the
SEEL	are	generated.	When	NITa	is	set	to	100	the	algorithm	identifies	the	following	norm-related	event	episode	list	{	p-d,	p,	d 	}.	An	agent,	being	an	autonomous	entity,	can	vary	the
NITa	parameter	to	identify	the	norm-related	events.	Note	that	if	an	event	episode	is	frequent	then	all	its	subsequences	are	also	frequent.	For	example	if	p-d	appears	100%	of	the	time
(i.e.	the	occurrence	probability	is	1),	all	its	subsequences	also	appear	100%	of	the	time.

Figure	5.	SEEL	(left)	and	NREEL	(right)

Generating	the	candidate	obligation	norm	list	(CONL)

The	pseudocode	for	generating	CONL	is	given	in	Algorithm	2.	In	order	to	identify	the	obligation	norms,	the	agent	has	to	identify	those	supersequences	in	NEEL	that	contain	the	event
episodes	in	NREEL.	These	supersequences	are	stored	in	a	list	(tempEEList	in	this	case).
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Algorithm	2.	Pseudocode	to	create	the	candidate	obligation	norm	list	(CONL)

Based	on	the	supersequences	stored	in	tempEEList,	the	Candidate	Norm	Inference	(CNI)	algorithm	(Savarimuthu	et	al.	2010 )	can	identify	all	permutations	of	supersequences	whose
occurrence	probabilities	are	greater	than	or	equal	to	NITb.	Such	supersequences	are	stored	in	the	candidate	obligation	norm	list	(CONL).	For	example,	let	us	suppose	that	the	event
epsiode	p-d	is	the	only	event	episode	stored	in	the	NREEL.	Figure	6	shows	the	NEEL	on	the	left	of	the	arrow	and	the	tempEEList	that	is	generated	from	the	NEEL	on	the	right.	Note
that	the	NEEL	on	the	left	contains	six	event	episodes	but	tempEEList	contains	two	event	episodes	that	contain	p-d	out	of	six.	These	two	event	episodes	are	supersequences	of	p-d.

Figure	6.	NEEL	(left)	and	tempEEList	(right)

From	tempEEList	the	CONL	can	be	generated.	The	left	hand	side	of	Figure	7	shows	the	tempEEList.	The	right	hand	side	of	Figure	7	contains	all	permutations	of	supersequences	of	 p-
d	that	can	be	obtained	from	tempEEList	and	their	occurrence	probabilities	in	tempEEList	(in	square	brackets).	Assuming	that	NIT b	is	set	to	100,	the	supersequences	that	will	be
identified	as	members	of	CONL	are	p-t-d	and	e-p-t-d.	Both	these	supersequences	have	an	occurrence	probability	of	1.	As	the	occurrence	probabilities	of	 o-e-p-t-d	and	a-o-e-p-t-d	are
less	than	NITb,	these	are	not	included	in	the	CONL.	Note	that	the	modified	WINEPI	algorithm	is	used	twice,	the	first	time	to	obtain	the	NREEL	from	the	SEEL	(not	shown	here)	and
the	second	time	for	obtaining	the	CONL	from	the	NEEL	using	the	NREEL	(line	9	of	Algorithm	2).	For	every	event	episode	in	the	NREEL,	a	new	CONL	is	generated.	Having	compiled	a
set	containing	candidate	obligation	norms,	the	agent	passes	this	information	to	the	norm	verification	component	to	identify	norms.	This	process	is	iterated	until	there	are	no	elements	in
NREEL.	The	norm	verification	process	is	explained	in	the	next	sub-section.

Figure	7.	tempEEList	(left)	and	permutations	of	supersequences	containing	p-d	in	tempEEList
(right)

Norm	verification

In	order	to	find	whether	a	candidate	norm	is	a	norm	of	the	society,	the	agent	asks	another	agent	in	its	proximity.	This	happens	periodically	(e.g.	once	in	every	10	iterations).	An	agent
A	can	ask	another	agent	B,	by	choosing	the	first	candidate	norm	(say	p-t-d)	for	which	it	has	the	highest	occurrence	probability	and	asks	B	if	it	knows	whether	the	obligation	norm	OA,W
(t|p)	is	a	norm	of	the	society	(i.e.	an	agent	is	obliged	to	tip	after	paying	for	the	food	ordered).	If	the	response	is	affirmative,	A	stores	this	norm	in	its	set	of	identified	norms.	If	not,	A
moves	on	to	the	next	candidate	norm	in	its	list.	In	the	case	of	the	running	example,	the	second	candidate	norm	e-p-t-d	is	chosen	to	be	communicated	to	the	other	agent.	It	asks
another	agent	(e.g.	the	agent	that	is	the	closest)	whether	it	thinks	that	the	given	candidate	norm	is	a	norm	of	the	society.	If	it	responds	positively,	the	agent	infers	OA,W	(t|(e	—	p))	to
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be	a	norm.	If	the	response	is	negative,	this	norm	is	stored	in	the	bottom	of	the	candidate	norm	list.	This	process	continues	until	a	norm	is	found	or	no	norm	is	found	from	the	event
episodes	in	the	candidate	norm	list.	Even	in	the	case	of	successfully	identifying	a	candidate	norm,	the	agent	continues	the	process	to	identify	any	co-existing	norms.

Figure	8.	Candidate	norms	(left)	and	identified	norm
(right)

Note	that	an	agent	will	have	two	sets	of	norms:	candidate	norms	and	identified	norms.	Figure	8	shows	the	two	sets	of	norms:	the	candidate	norms	on	the	left	of	the	arrow	and	the
identified	norm	on	the	right.	Once	an	agent	identifies	the	norms	of	the	system	and	finds	that	the	norms	identified	have	been	stable	for	a	certain	period	of	time,	it	can	forgo	using	the
norm	inference	component	for	a	certain	amount	of	time	(based	on	the	norm	inference	frequency	(NIF)).	It	invokes	the	norm	inference	component	periodically	to	check	if	the	norms	of
the	society	have	changed,	in	which	case	it	replaces	the	norms	in	the	identified	list	with	the	new	ones	(or	deletes	the	norms	which	are	no	more	applicable).

Discussion	on	norm	verification

The	reason	for	having	a	norm	verification	procedure	is	that	the	data	mining	approach	isn't	sufficient	to	solve	the	norm	identification	problem	to	the	fullest	extent.	For	example	let	us
assume	that	p-t ,	p	and	t	are	identified	as	candidate	norms	(which	occur	100%	of	the	time).	It	can	be	that	only	one	of	these	is	a	norm	in	the	society.	While	the	data	mining	approach
has	narrowed	down	the	search	space	to	3	possible	choices,	it	does	not	suggest	which	one	of	these	three	is	the	actual	norm	(because	all	the	three	are	equally	significant	from	a	data
mining	perspective).	To	solve	this	problem,	we	have	used	a	social	mechanism	where	agents	ask	other	agents	for	norm	verification.	There	are	two	other	reasons	for	employing	another
agent	as	the	norm	verifier.

First,	an	agent	entering	a	society	may	not	be	interested	to	find	out	all	the	norms	of	a	society	(an	agent	might	give	a	long	list	of	norms	followed	in	the	society).	It	may	be	interested	to
find	the	norms	in	a	particular	context.	An	agent	has	to	first	infer	what	the	context	is	(by	observing	the	interactions)	and	then	it	can	ask	another	agent	in	the	neighborhood	if	its
inference	of	a	norm	is	valid	(e.g.	Am	I	obliged	to	tip	in	this	society?).	In	our	view	this	is	more	effective	(in	terms	of	computation	and	memory	required)	than	asking	another	agent	what
the	norms	in	the	restaurant	are,	as	there	could	be	a	long	list	of	norms	that	apply	and	most	of	those	may	not	be	of	interest	to	an	agent.	As	the	agent	has	gathered	some	evidence	with
regards	to	what	the	norm	could	be,	the	agent	has	not	only	identified	the	context	it	is	in	but	also	can	be	confident	in	asking	for	norm	referral	(i.e.	because	it	can	precisely	formulate	its
query	for	norm	identification	and	also	can	be	confident	in	its	query	which	based	on	inference).

Second,	an	agent	may	not	completely	trust	other	agents	in	an	open	society.	When	an	agent	asks	another	agent	without	norm	inference,	the	other	agent	could	potentially	lie	about	a
norm.	So,	an	agent	may	want	to	make	sure	that	it	identifies	candidate	norms	before	it	asks	for	norm	verification.	This	process	helps	an	agent	from	being	cheated	by	the	referrer	agent
if	it	were	to	ask	what	the	norm	is	as	it	knows	that	one	of	the	candidate	norms	could	potentially	be	a	norm.	Note	that	this	doesn't	solve	the	lying	problem	as	the	referrer	agent	can	lie
when	an	agent	asks	if	something	is	a	norm	in	the	society.	At	the	least,	the	mechanism	allows	the	agent	to	have	a	set	of	candidate	norms.	The	problem	of	lying	can	be	addressed	in
two	ways.	First,	an	agent	could	ask	for	norm	verification	from	many	agents	in	its	neighbourhood.	Second,	an	agent	can	verify	whether	its	candidate	norms	hold	by	undertaking	actions
that	it	observes	to	be	sanctioned	(e.g.	by	violating	the	tipping	norm).	Based	on	the	outcome	of	tests	the	agent	carries	out	it	can	infer	what	the	norms	could	be.	This	is	a	meta-level
norm	testing	mechanism	of	an	agent.	These	mechanisms	can	be	explored	in	the	future.

	Experimental	results

In	this	section	we	first	describe	the	experimental	set-up	in	paragraphs	 5.2	and	5.3.	In	the	rest	of	the	sub-sections	we	describe	the	experiments	that	were	conducted	and	also	discuss
the	results	obtained.

Experimental	set-up

We	model	agents	in	our	virtual	society	in	a	two-dimensional	space.	This	virtual	restaurant	environment	is	shown	in	Figure	9.	The	agents	can	enter	the	restaurant	and	occupy	one	of
the	chairs	at	a	table.	Each	table	has	six	chairs.	Each	agent	has	a	visibility	threshold.	The	visibility	threshold	of	the	agent	is	governed	by	a	Moore	neighbourhood	(Weisstein,	2010)	of
radius	r.	An	agent	can	observe	actions	of	agents	and	the	interactions	that	happen	between	two	agents	within	its	visibility	threshold.	There	are	three	types	of	agents	in	the	simulation.
They	are	non-tipping	customers	(NTC),	tipping	customers	(TC)	and	waiters	(W).	There	are	eight	possible	types	of	actions	defined	in	the	simulation	system:	arrive,	order,	eat,	pay,	tip,
depart,	wait	and	sanction.	The	NTC	agents	can	arrive,	order,	eat,	pay	and	depart.	The	TC	agents	can	arrive,	order,	eat,	pay,	tip	and	depart	while	the	waiter	agents	can	 wait	on	the
customers	and	sanction[7].	The	agents	in	this	environment	move	from	left	to	right.	An	agent	chooses	a	seat	and	occupies	it.	It	can	then	order	food,	eat	and	then	pay	for	the	food.	The
agent	may	tip	the	waiter.	The	agent	may	be	sanctioned	for	not	tipping.	The	agent	can	then	depart	the	restaurant.	The	agents	that	are	at	the	edge	of	the	two	dimensional	space	can
again	re-appear	in	the	opposite	side	(i.e.	a	toroidal	grid	is	implemented).	The	agents	are	represented	as	circles	using	different	colours.	The	NTCs	are	red,	the	TCs	are	green	and	the
Ws	are	blue.	The	id	of	an	agent	and	the	action	it	currently	performs	appear	above	the	circle.	At	any	time	step	an	agent	can	perform	one	action.	When	an	agent	does	the	same	action
over	several	steps	it	is	recorded	as	one	action.	For	example,	if	the	agent	eats	for	10	iterations,	the	eating	action	is	counted	as	one	action[8].	The	same	holds	for	the	arrival	and	the
departure	of	an	agent.	All	the	agents	make	use	of	the	norm	inference	component	to	infer	norms.	The	blue	squares	that	appear	within	the	circles	represent	the	identification	of	a	norm.
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Figure	9.	Snapshot	of	the	simulation

The	simulation	parameters	used	in	all	the	experiments	are	given	in	Table	1.	A	sample	simulation	can	be	viewed	on	the	web [9].	A	basic	version	of	the	simulation	program	written	in
Java	can	be	accessed	from	the	OpenABM	repository[10].

Table	1:	Simulation	parameters

Parameters Values
Grid	size
Total	number	of	agents
Number	of	tipping	customers
Number	of	non-tipping	customers
Number	of	waiters
Visibility	threshold	(V)
History	Length	(HL)
Norm	inference	threshold	-	a	(NITa)
Norm	inference	threshold	-	b	(NITb)
Window	Size	(WS)
Norm	inference	frequency	(NIF)
Number	of	referrals	(Ref)

50*50
50
25
21
4
5-25
5-50
0-100
0-100
1-10
5-50
1-10

Experiment	1	-	Varying	visibility	threshold	(V)	and	history	length	(HL)

In	this	experiment	there	were	50	agents	out	of	which	25	were	tipping	customers	(TC),	21	were	non-tipping	customers	(NTC),	and	4	were	waiter	agents	(W)	who	punished	non-tipping
customers	probabilistically.	The	simulated	environment	was	a	50*50	grid	as	shown	in	Figure	9.

An	agent	has	a	visibility	threshold	which	dictates	how	many	cells	an	agent	can	see.	A	visibility	threshold	of	5	would	mean	that	the	agent	can	see	all	agents	which	are	at	the	maximum
five	cells	away	from	it	on	all	sides.	The	agent	also	has	certain	amount	of	history	regarding	the	actions	performed	by	other	agents.	When	the	history	length	is	five,	an	agent	stores	the
actions	of	all	the	agents	within	its	vicinity	in	the	last	5	iterations.

Figure	10	shows	the	rate	at	which	a	society	identifies	the	obligation	norm	of	tipping	when	the	visibility	and	the	history	lengths	of	agents	are	varied.	In	all	the	graphs	in	Figure	10,	the	x-
axis	shows	the	iteration	number	and	the	y-axis	shows	the	number	of	agents	with	the	tipping	norm.
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Figure	10.	Varying	the	visibility	threshold	and	history	length	of	agents

By	keeping	the	history	length	constant	and	all	the	other	parameters	constant	we	varied	the	visibility	threshold	for	the	agents.	The	top-left	graph	of	Figure	10	shows	the	result	of	varying
the	visibility	threshold.	It	can	be	noted	that	as	the	visibility	of	the	agents	increased,	the	agents	identified	the	norms	faster.	This	is	because	the	agents	were	able	to	collect	more
evidence[11].	This	can	be	observed	in	all	the	graphs	in	Figure	10.

When	the	history	length	of	an	agent	was	increased	the	agents	in	the	society	inferred	the	norms	faster.	When	we	compare	the	results	shown	in	the	top-right	graph	of	Figure	10	with	the
results	shown	in	the	top-left	graph	of	Figure	10,	it	can	be	observed	that	as	the	history	length	increases	the	agents	infer	the	norms	faster.	This	can	be	observed	as	we	move	from	the
top-left	graph	to	the	bottom-right	graph	in	Figure	10.	When	the	history	length	was	small,	the	event	episode	list	may	not	contain	all	the	information	to	infer	a	norm.	But	when	the	history
length	is	increased,	an	agent	will	have	better	evidence	to	infer	the	norms.

Experiment	2	-	Varying	referral	levels

Once	an	agent	has	identified	a	candidate	norm,	it	asks	other	agents	for	norm	identification	within	its	visibility	threshold.	An	agent	can	vary	this	parameter.	It	was	noted	that	as	the
number	of	agents	from	whom	an	agent	asked	for	referral	increased	(see	Figure	11),	the	norm	identification	rate	of	the	agents	in	the	society	increased[12].	The	norm	inference
frequency	in	this	experiment	was	once	every	50	iterations.	Other	parameters	of	this	experiment	were:	NITa	=100,	NITb	=	80,	V=25,	HL=50	and	WS=3.

Figure	11.	Varying	the	number	of	agents	contacted	for	norm	identification

Experiment	3	-	Varying	Norm	Inference	Thresholds	(NIT)

We	have	studied	the	effect	of	changing	the	NIT	thresholds	(a	and	b)	on	the	size	of	NREEL	and	CONL	that	are	generated	by	an	agent.	Figure	12	shows	the	size	of	the	NREEL	when
NITa	is	varied.	When	NITa	is	set	low,	the	size	of	NREEL	generated	by	an	agent	is	large.	This	means	that	an	agent	incurs	a	large	amount	of	computation	cost	to	generate	NREEL.
When	an	agent	sets	NITa	high,	the	size	of	NREEL	is	small.	An	agent,	being	an	adaptive	entity,	can	vary	this	parameter	depending	upon	its	success	in	identifying	a	norm.

Figure	12.	Size	of	NREEL	when	varying	NITa
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We	also	conducted	experiments	to	show	the	impact	of	varying	both	NIT a	and	NITb	on	the	number	of	candidate	norms	generated	(see	Figure	13).	When	NIT a	was	set	to	100	and	NIT b
was	set	to	100,	a	small	set	of	candidate	norms	was	generated	(size	=	9).	When	NITa	was	set	to	100	and	NIT b	was	set	to	50,	35	different	candidate	norms	were	generated.	When	NIT a
was	set	to	50	and	NITb	was	set	to	100,	37	candidate	norms	were	generated.	When	NIT a	was	set	to	50	and	NIT b	was	set	to	50,	57	candidate	norms	were	generated.	If	an	agent	sets
the	NIT	value	high,	the	number	of	candidate	norms	that	is	generated	is	low.	The	number	of	candidate	norms	that	are	generated	has	an	impact	on	the	norm	verification	stage.	The	less
the	number	of	candidate	norms,	less	the	amount	of	time	taken	for	norm	verification.	An	agent	can	change	these	two	parameters	to	adapt	to	the	current	situation.	For	example,	if	an
agent	sets	the	NIT	values	to	be	high	and	it	does	not	find	a	norm	it	can	decrease	the	value	for	the	next	norm	inference	instance.

Figure	13.	Number	of	candidate	norms	generated	when	varying	NITa	and
NITb

Experiment	4	-	Varying	the	Window	Size	(WS)

The	objectives	of	this	experiment	are	two-fold.	They	are	to	show	that

As	WS	increases,	the	accuracy	of	norm	identification	increases	(i.e.	the	number	of	false	positives	decreases	and	the	number	of	candidate	norms	generated	decreases)
As	WS	is	varied,	different	normative	protocols	associated	with	the	norms	can	be	identified.

Accuracy	of	norm	identification

By	keeping	other	parameters	constant	we	varied	the	Window	Size	(WS)	of	norm	identification.	The	results	of	varying	an	agent's	WS	for	20	norm	inference	instances [13]	is	given	in
Figure	14.	The	success	rate	in	identifying	three	different	categories	of	norms	are	also	given	in	Figure	14.	These	three	categories	are	1)	the	only	candidate	norm	identified	is	the	tipping
norm	2)	tipping	is	identified	as	one	of	the	candidate	norms	and	3)	the	tipping	norm	is	not	found	or	no	norm	is	found).	When	WS	is	set	to	1,	the	agent	identified	the	tipping	norm	to	be
the	only	candidate	norm	5%	of	the	time.	65%	of	the	time,	it	identified	the	tipping	norm	as	one	of	the	candidate	norms.	In	other	words,	the	agent	also	had	identified	other	candidate
norms.	These	other	candidate	norms	are	false	positives	which	are	pruned	during	the	norm	verification	stage.	Remaining	30%	of	the	time,	the	agent	either	did	not	identify	any	norms	or
did	not	identify	tipping	as	one	of	the	norms.

As	WS	is	increased,	the	accuracy	of	norm	identification	increases	(i.e.	the	success	of	the	agent	in	identifying	tipping	as	the	only	norm	increases).	When	WS=2,	the	agent	identifies
tipping	to	be	the	only	norm	30%	of	the	time.	When	WS=3,	the	agent	identifies	it	55%	of	the	time	and	when	WS	is	set	to	5	it	identifies	it	85%	of	the	time.	It	should	be	noted	that	as	WS
increases,	the	false	positives	decrease.

Figure	14.	Impact	of	varying	the	Window	Size	(WS)	on	norm	identification

When	WS	increases,	the	agent's	load	in	norm	verification	decreases	(shown	in	Figure	15).	When	WS=1,	about	four	candidate	norms	were	generated	in	each	norm	inference	cycle.
When	WS=2,	on	average,	more	than	two	candidate	norms	were	generated	in	each	cycle	and	when	WS	is	set	to	three,	fewer	than	2	norms	were	generated	in	each	iteration.	When	WS
was	set	to	5,	one	norm	was	generated	in	each	iteration.	When	the	number	of	candidate	norms	generated	is	less,	the	amount	of	norm	verification	that	needs	to	be	done	is	less	which
results	in	a	reduction	of	communication	between	the	agents.
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Figure	15.	Average	number	of	candidate	norms	generated	per	norm	inference
instance

There	is	no	further	improvement	in	the	success	of	tipping	norm	identification	when	moving	from	WS=5	to	WS=10	because	the	domain	model	supports	a	maximum	of	five	different
events	that	occur	before	a	sanction	(i.e.	a-o-e-p-d ).	If	the	domain	model	is	changed,	the	WS	will	need	to	be	changed	accordingly.

Identifying	normative	protocols

We	define	normative	protocols	to	be	the	order	of	the	occurrence	of	events	(protocols)	associated	with	a	norm.	For	example,	the	protocol	 a-o-e-p-t-d	defines	the	sequence	that
normally	an	agent	arrives,	occupies	a	seat	and	orders	food,	eats,	pays,	tips	and	then	departs.	The	focus	of	this	experiment	is	to	demonstrate	that	an	agent,	by	changing	the	WS,	can
have	a	partial	or	complete	view	of	what	the	normative	protocol	might	be.	For	example,	when	WS	is	set	to	1,	the	agent	identifies	only	one	event	that	precedes	the	sanctioning	event.
Hence,	the	size	of	the	normative	protocol	identified	will	be	two[14].	If	WS	is	set	to	five,	the	size	of	the	normative	protocol	that	can	be	identified	can	vary	from	two	to	six [15].	Figure	16
shows	the	normative	protocols	generated	by	an	agent	over	20	norm	inference	instances.

Figure	16.	Normative	protocols	generated	by	an	agent	for	varying	window	sizes

From	Figure	16,	it	can	be	observed	that	when	WS	is	one,	the	agent	identified	PT [16]	as	the	protocol,	about	90%	of	the	time.	When	WS	was	set	to	three,	it	identified,	EPTD	to	be	the
normative	protocol	about	88%	of	the	time.	When	WS	was	set	to	five	and	ten,	EPTD	and	AOEPTD	were	the	top	two	normative	protocols	that	were	identified.	It	should	be	noted	that	as
WS	increases,	the	size	of	the	normative	protocol	identified	increases.	Also,	the	normative	protocols	identified	for	lower	values	of	WS	are	subsets	of	the	normative	protocols	identified
using	higher	values	of	WS.

This	experiment	shows	that	an	agent	not	only	infers	norms	but	also	the	associated	normative	protocol.	An	agent's	view	of	the	normative	protocol	depends	on	the	WS	value	of	that
agent.	Note	that,	given	a	protocol,	an	agent	can	easily	identify	the	norm	associated	with	that	protocol.	For	example,	assuming	that	an	agent	knows	the	protocol	in	a	restaurant	is	a-o-
e-p-d	(e.g.	if	this	is	given	to	the	agent	by	the	designer),	an	agent	can	easily	identify	 a-o-e-p-t-d	as	the	normative	protocol	based	on	observations	of	events.	In	our	case,	the	normative
protocol	is	inferred	by	the	agent,	without	the	protocol	being	given	to	the	agent	explicitly.

The	norm	and	the	protocol	are	inferred	through	the	norm	identification	mechanism.	If	the	normative	protocol	were	to	be	 a-o-p-e-t-d	in	a	restaurant	(i.e.	pay	before	eating	and	then	tip),
our	approach	will	be	able	to	identify	the	norm	and	the	normative	protocol.

Experiment	5	-	Adaptability	of	an	agent	in	identifying	norms

An	agent	in	our	system	can	flexibly	modify	the	history	length	(HL)	based	on	whether	it	is	successful	in	identifying	a	norm.	If	an	agent	does	not	infer	norms	when	HL=25,	it	can
increase	the	HL.	If	it	has	identified	if	the	norm	holds	at	a	particular	HL,	the	agent	will	check	after	a	certain	number	of	iterations	whether	the	norm	still	holds.	If	it	holds,	it	will	try	to
decrease	the	HL	and	check	whether	the	norm	can	be	identified.	If	it	can	be	identified	the	agent	will	decrease	its	HL	further.	The	objective	for	reducing	the	HL	is	to	reduce	the	amount
of	computation	required	to	find	a	norm.	The	agent	will	be	better	off	in	terms	of	the	computation	required	if	it	can	find	the	same	norm	when	it	lowers	the	amount	of	history	it	has	to	store.

The	top	line	in	Figure	17	shows	the	adaptive	history	length	of	an	agent	when	it	tries	to	identify	a	norm.	The	bottom	line	shows	whether	the	agent	has	found	a	norm	(a	value	of	5)	or	not
(a	value	of	0).	An	agent	initially	starts	with	an	HL	of	25.	When	it	does	not	find	the	norm	when	HL=25,	it	increases	its	HL	by	five.	This	increases	to	a	maximum	value	of	50.	Once	a	norm
is	found,	the	agent	tries	to	check	whether	the	same	norm	can	be	found	for	a	lower	value	of	HL.	It	can	be	inferred	from	Figure	17	that	in	iteration	75,	the	agent	found	the	norm	when
the	HL	was	40.	When	it	tried	to	reduce	HL	to	35,	the	norm	was	not	found.	The	agent	then	increased	the	HL	to	50	by	incrementing	it	by	5	in	the	next	few	norm	inference	instances.	The
agent	was	able	to	find	the	norm	again	in	iteration	250.	It	then	decreased	the	HL	to	45	and	it	found	the	norm	again.	When	HL	was	set	to	40	it	did	not	find	the	norm,	hence	the	agent
increased	HL	to	45.	This	graph	shows	that	an	agent	is	adaptive	in	terms	of	the	history	length	it	stores.	Dynamic	adjustment	of	history	length	will	be	beneficial	to	the	agent	when	norms
are	changing.
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Figure	17.	Adaptive	history	of	an	agent

We	have	also	experimented	with	varying	the	history	lengths	of	an	agent	with	and	without	the	ability	of	having	an	adaptive	history	length	(i.e.	static	HL	vs.	dynamic	HL).	When	HL	is
static	the	agent	has	a	constant	HL	throughout	the	simulation.	When	HL	is	dynamic,	the	agent	can	change	its	HL	based	on	whether	it	has	identified	a	norm.	It	can	be	seen	from	Figure
18	that	when	dynamic	HL	is	used,	an	agent	is	able	to	infer	the	norms	faster.	Note	that	when	HL	was	set	to	five	(static	HL=5),	the	agent	found	the	norm	only	after	99	norm	inference
instances.	When	dynamic	HL	was	used	by	the	agent,	it	inferred	the	norm	in	28	inference	instances.	For	larger	values	of	HL	there	isn't	a	significant	difference	between	static	and
adaptive	HL.	This	is	because	for	large	HL	values	the	agent	would	have	collected	enough	evidence	from	observing	the	other	agents	regarding	the	norm	(i.e.	the	evidence	of	a
sanction).	For	smaller	HL	values,	the	agent	does	not	have	enough	evidence	regarding	the	sanction.	Hence,	dynamically	adapting	the	history	length	produces	better	results	for	an
agent.

Figure	18.	Static	vs.	adaptive	history

Similar	to	varying	the	history	length	dynamically,	an	adaptive	agent	can	also	vary	its	visibility	threshold,	the	number	of	referrals,	norm	inference	thresholds	and	the	window	size	for
identifying	norms.	The	effects	of	changing	these	parameters	have	been	reported	in	experiments	2	to	4.

Experiment	6	-	Identifying	dynamic	norm	change

An	agent	should	have	the	ability	to	dynamically	add	newly	identified	norms	and	remove	norms	that	do	not	hold.	This	experiment	demonstrates	that	norms	can	be	added,	removed	and
modified	by	an	agent	dynamically	depending	upon	the	environmental	conditions.	The	ability	to	change	norms	is	important	for	an	adaptive	agent	so	that	it	can	flexibly	adopt	norms.	An
agent,	on	identifying	a	norm,	evaluates	whether	the	norm	holds	at	regular	intervals	of	time.	If	the	norm	does	not	hold,	it	removes	the	norm	from	its	norm	base.	Figure	19	shows	the
results	of	dynamic	norm	change	in	a	society.	There	are	two	lines	in	the	graph.	The	top	line	shows	the	proportion	of	agents	in	the	society	with	a	norm	at	any	given	iteration.	The	line
that	appears	in	the	bottom	shows	whether	punishers	are	present	in	the	society.	A	(dummy)	value	of	5	means	that	there	are	punishers	in	the	society	and	a	value	of	0	means	that	the
punishers	are	not	present	in	the	society.	In	this	experiment,	the	punishers	do	not	punish[17]	from	iterations	300	to	600.	In	this	experiment,	having	found	a	norm,	an	agent	checks	for
the	validity	of	the	norm	once	again	after	50	iterations.	If	the	norm	is	found	again,	then	the	agent	does	not	delete	the	norm.	If	the	norm	is	not	found,	it	removes	the	norm	from	its	norm
base.	When	the	punishers	do	not	punish,	the	norm	is	not	inferred.	As	the	norm	is	not	inferred,	the	agent	removes	the	norm.	It	can	be	observed	that	the	agents	start	losing	the	norm
from	iteration	400	and	all	the	agents	in	the	society	have	successfully	removed	the	norm	by	iteration	500.	In	iteration	700	some	of	the	agents	have	identified	the	norm	again	and	all	the
agents	have	identified	the	norm	in	iteration	850[18].
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Figure	19.	Dynamic	norm	change	in	an	agent	society

	Discussion

The	main	contributions	of	the	paper	are	the	following.

1.	 The	issue	of	norm	identification	has	not	been	dealt	with	by	many	researchers	in	the	field	of	normative	multi-agent	systems.	To	this	end,	in	this	paper	we	have	demonstrated
how	one	type	of	norm	-	obligation	norms	can	be	identified	by	an	agent	using	the	Obligation	Norm	Identification	(ONI)	algorithm.	For	this	purpose	we	have	made	use	of	the	norm
identification	architecture	(Savarimuthu	et	al.	2010).	When	compared	to	identifying	prohibition	norms,	identifying	obligation	norms	is	difficult	because	with	a	prohibition	norm	it	is
usually	the	occurrence	of	a	particular	event	or	a	sequence	of	events	that	is	the	reason	for	a	sanction	to	occur.	In	obligation	norms,	it	is	the	absence	of	an	event	that	is	the	cause
of	a	sanction.	Association	rule	mining	algorithms	only	cater	for	the	extraction	of	interesting	sequences	that	are	present	in	an	event	sequence.	They	cannot	identify	sequences
when	data	items	are	missing.	The	Obligation	Norm	Inference	(ONI)	algorithm	presented	here	can	be	used	to	generate	candidate	obligation	norms.

2.	 Second,	using	a	simple	example	(tipping	norm	identification	in	a	restaurant),	we	have	demonstrated	how	the	norm	inference	mechanism	works.	In	particular	we	have
demonstrated	the	following:

An	agent	can	modify	the	parameters	of	the	system	based	on	whether	it	is	successful	in	identifying	a	norm	(e.g.	the	history	length).
An	agent	can	add,	remove	and	modify	norms	in	a	dynamically	changing	environment.
An	agent	using	this	mechanism	can	increase	the	accuracy	of	norm	identification	and	reduce	the	number	of	false	positives	generated.
An	agent	is	able	to	identify	the	normative	protocols.

We	believe	the	mechanism	proposed	in	this	paper	can	be	used	to	identify	obligation	norms	in	several	settings.	For	example,	the	norm	identification	architecture	can	be	used	to	infer
norms	in	Massively	Multi-player	Online	Games	(MMOGs)	such	as	World	of	Warcraft	(WoW).	Players	involved	in	massively	multi-player	games	perform	actions	in	an	environment	to
achieve	a	goal.	They	may	play	as	individuals	or	in	groups.	When	playing	a	cooperation	game	(e.g.	players	forming	groups	to	slay	a	dragon),	individual	players	may	be	able	to	observe
proscriptions	of	actions	(prohibition	norms)	and	obligations	that	need	to	be	satisfied	(obligation	norms).	The	mechanism	proposed	in	this	paper	can	be	used	to	identify	norms	that	are
being	formed.	For	example	a	norm	could	be	that	a	player	who	has	helped	another	player	twice	to	escape	from	a	dragon	expects	the	other	player	to	help	him	escape	from	the	dragon	if
the	need	arises.	This	norm	may	not	be	part	of	the	protocol	defined	for	playing	the	game	but	may	evolve	during	the	game.	Such	a	norm	can	be	identified	by	this	mechanism.	Secondly,
the	same	principle	can	be	used	in	virtual	environments	such	as	Second	Life	to	infer	norms.	The	mechanism	reported	in	this	work	can	be	used	to	identify	co-existing	norms	(e.g.	OX,Y
(t|(e	—	p))	and	OX,Y	(p|(o	—	e)) [19]	can	be	identified).	In	the	future	we	intend	to	extend	our	work	to	identify	conflicting	norms	and	how	these	conflicting	norms	can	be	handled	by	an

agent[20].

A	possible	extension	to	this	work	is	to	allow	the	tipping	customers	to	impose	sanctions	on	non-tipping	customers.	We	believe	the	impact	of	this	addition	will	be	the	faster	convergence
of	norms	in	the	society.	We	note	that	the	emphasis	of	the	current	work	has	been	on	norm	identification.

Another	potential	addition	to	this	work	is	on	identifying	conditional	norms.	For	example,	in	one	society,	an	agent	may	tip	10%	of	the	bill	while	in	another	society	an	agent	might	be
obliged	to	tip	20%	of	the	bill.	Depending	upon	what	an	agent	has	observed,	agents	may	have	subtly	different	norms.	Both	these	agents	could	still	infer	the	obligation	norm	but	the
conditions	they	had	noticed	can	be	different.

	Conclusion

This	paper	addresses	the	question	of	how	obligation	norms	can	be	identified	in	an	agent	society.	To	this	end,	this	paper	proposes	the	Obligation	Norm	Inference	(ONI)	algorithm.	The
paper	uses	the	norm	inference	architecture	for	identifying	obligation	norms.	An	agent	that	employs	the	ONI	algorithm	makes	use	of	a	data	mining	approach	to	infer	obligation	norms.
An	agent	can	dynamically	add,	remove	and	modify	norms	and	also	can	adaptively	vary	parameters	of	the	system	in	order	to	identify	norms.	Experimental	results	in	the	context	of	a
virtual	restaurant	scenario	have	been	discussed.

	Appendix

Acronyms	and	expansions

Table	A:	Acronyms	used	and	the	corresponding	expansions

Acronym Expansion
HL History	Length
ES Event	Sequences
SES Special	Event	Set
UES Unique	Event	Set
WS Window	Size
NIT Norm	Identification	Threshold
NIF Norm	Inference	Frequency
ONI Obligation	Norm	Inference
EEL Event	Episode	List
NEEL Normal	Event	Episode	List
SEEL Special	Event	Episode	List
NREEL Norm	Related	Event	Episode	List
tempEEList temporary	Event	Episode	List
CONL Candidate	Obligation	Norm	List

	Notes

1	We	assume	that	sanctioning	events	such	as	an	agent	yelling	at	another	agent	for	violating	a	norm	or	an	agent	publicly	shaming	another	agent	are	observable.	We	note	that
recognizing	and	categorizing	a	sanctioning	event	is	a	difficult	problem.	In	this	architecture	it	is	assumed	that	such	a	mechanism	exists	(e.g.	based	on	an	agent's	past	experience).

2	For	example,	in	Massively	Multi-Player	Online	Role	Playing	Games	(MMORPGs),	the	logs	of	user	interactions	may	be	available	for	the	observer	through	chat	channels	(c.f. Boella	et
al.	2008).

3	Assume	that	event	occurrences	can	be	modelled	as	simple	propositions.

4	A	subsequence	is	a	sequence	that	can	be	generated	from	a	sequence	by	removing	certain	elements	from	the	sequence	without	altering	the	order	of	the	elements	in	the	sequence.

http://jasss.soc.surrey.ac.uk/13/4/3.html 14 07/10/2015



For	example,	"anna"	is	a	subsequence	of	"banana".	Conversely,	one	of	the	supersequences	of	"anna"	is	"banana".

5	A	sub-episode	is	a	subsequence	of	an	event	episode.

6	A	previous	work	(Savarimuthu	et	al.	2010 )	has	shown	how	the	former	can	be	identified.

7	We	note	that	the	cost	of	punishment	is	not	modelled	in	this	work	because	our	main	focus	is	to	model	and	experiment	with	how	an	agent	is	able	to	recognize	a	norm	in	the	first	place.
The	cost	of	punishment	has	been	experimented	with	in	other	works	(Savarimuthu	et	al.	2008 ;	Savarimuthu	et	al.	2010 ).

8	We	note	this	decision	is	domain	specific.	In	some	other	domains	such	as	an	auction,	it	could	be	that	an	agent	is	prohibited	from	buying	three	consecutive	items	of	the	same	type.	In
those	cases	each	action	of	the	same	type	should	be	recorded.	We	note	that	the	mechanism	proposed	in	this	paper	can	handle	this	scenario.

9	http://www.youtube.com/watch?v=lgBZBUbu-qg

10	http://www.openabm.org/model-archive/norm_identification

11	An	agent	may	initially	set	the	visibility	threshold	to	a	lower	value	so	that	it	does	not	have	to	process	a	large	amount	of	information.	If	it	does	not	find	a	norm,	it	can	then	choose	to
observe	interactions	that	happen	in	a	larger	area	by	increasing	its	visibility.

12	When	the	number	of	referees	increases,	the	rate	of	norm	establishment	increases.	This	has	also	been	reported	in	many	other	works	in	multi-agent	systems	( Yu	and	Singh
2002;Yolum	and	Singh	2003 ;Candale	and	Sen	2005).

13	A	norm	inference	instance	is	related	to	NIF.	An	agent	infers	a	norm	once	every	x	iterations	as	governed	by	NIF.	When	an	agent	invokes	its	norm	inference	component	this	is	known
as	a	norm	inference	instance.

14	For	example,	when	WS=1,	if	p	precedes	a	sanction,	then	p-t	may	be	identified	as	the	protocol.	In	the	ONI	algorithm,	the	size	of	the	super-sequence	of	a	subsequence	of	size	n	is
n+1.

15	When	WS	is	set	to	5,	the	length	of	the	sub-sequences	can	vary	from	one	to	five.

16	PT	is	p-t.

17	There	can	be	several	reasons	why	punishers	may	stop	punishing.	The	punishers	can	move	from	one	society	to	another	or	can	just	stop	punishing	because	their	utility	has	gone
below	a	certain	threshold.

18	The	simulation	video	can	be	found	at	http://www.youtube.com/watch?v=sZhsfliW83g.

19	In	fact,	paying	after	eating	is	related	to	a	protocol	than	a	norm.	For	arguments	sake,	let	us	consider	this	to	be	a	norm.

20	We	note	that	norm	conflict	resolution	is	being	studied	by	some	researchers	(e.g. Kollingbaum	et	al.	2007,Vasconcelos	et	al.	2009 ).
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