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Abstract

We	have	studied	how	leaders	emerge	in	a	group	as	a	consequence	of	interactions	among	its	members.	We	propose	that	leaders	can	emerge	as	a	consequence	of	a
self-organized	process	based	on	local	rules	of	dyadic	interactions	among	individuals.	Flocks	are	an	example	of	self-organized	behaviour	in	a	group	and	properties
similar	to	those	observed	in	flocks	might	also	explain	some	of	the	dynamics	and	organization	of	human	groups.	We	developed	an	agent-based	model	that	generated
flocks	in	a	virtual	world	and	implemented	it	in	a	multi-agent	simulation	computer	program	that	computed	indices	at	each	time	step	of	the	simulation	to	quantify	the	degree
to	which	a	group	moved	in	a	coordinated	way	(index	of	flocking	behaviour)	and	the	degree	to	which	specific	individuals	led	the	group	(index	of	hierarchical	leadership).
We	ran	several	series	of	simulations	in	order	to	test	our	model	and	determine	how	these	indices	behaved	under	specific	agent	and	world	conditions.	We	identified	the
agent,	world	property,	and	model	parameters	that	made	stable,	compact	flocks	emerge,	and	explored	possible	environmental	properties	that	predicted	the	probability	of
becoming	a	leader.
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	Introduction

Although	leaders	and	leadership	are	classical	and	recurrent	topics	that	have	inspired	philosophers	and	writers	for	centuries,	it	was	only	in	the	last	century	that	they
began	to	be	studied	in	a	more	systematic	manner	and	became	a	main	topic	in	several	disciplines	such	as	sociology,	political	science,	business	management	and	social
psychology.	Research	in	these	fields	has	produced	a	wide	variety	of	empirical	data	and	models,	usually	grounded	on	diverse	methodological	and	theoretical	approaches
(see,	for	example,	Bass	1990).

In	this	paper,	we	focus	on	the	emergence	of	leaders	as	a	consequence	of	the	interactions	among	the	members	of	a	group.	A	specific	member	is	considered	a	leader	on
the	basis	of	attributes	and	perceptions	made	by	group	members.	Specifically,	we	show	that	a	leader	can	emerge	from	a	self-organized	process	based	on	local	rules	of
dyadic	interactions	among	the	individuals,	even	though	the	rules	that	govern	such	relationships	do	not	explicitly	indicate	that	a	leader	may	arise.	Contrary	to	the
proposals	of	several	authors	(e.g.	House	1977;	Kirkpatrick	&	Locke	1991 ),	we	suggest	that	an	emergent	leader	does	not	necessarily	possess	particular	capacities	that
are	different	from	those	of	the	other	members	of	the	group;	instead,	he/she	is	perceived	as	a	leader	by	those	members	as	a	consequence	of	the	dynamics	of	their	social
interactions.	According	to	Couzin,	Krause,	Franks	&	Levin	(2005),	for	animals	that	forage	or	travel	in	groups,	"no	inherent	differences	between	individuals	(such	as
dominance	due	to	larger	body	size)	need	to	be	invoked	to	explain	leadership"	(p.	515).	We	therefore	propose	that	in	certain	group	dynamics,	crucial	changes	in	group
structure,	such	as	the	emergence	of	a	leader,	do	not	necessarily	depend	on	external	factors,	but	can	be	explained	simply	as	the	consequence	of	a	self-organized
process	resulting	from	simple,	local	rules	that	govern	the	dynamics	of	the	relationships	between	individuals.	According	to	the	notion	of	"explanation	by	mechanism"
(Hedström	2005;	Hedström	&	Swedberg	1998),	those	local	rules	are	the	mechanisms	that	bring	flocks	and	leadership	into	existence,	and	explain	them.

Flocking	behaviour,	i.e.	moving	in	a	coordinated	way,	is	widespread	in	nature.	Birds,	fish	and	crowds	of	people	coordinate	their	movements	to	achieve	coherent
displacement,	but	this	complex,	high-level	behaviour	is	a	result	of	the	action	of	sets	of	simple	low-level	rules	that	guide	organisms'	reaction	to	changes	in	their
relationships	with	their	neighbouring	organisms.	Reynolds	(1987)	proposed	a	set	of	simple	rules	which,	when	applied	to	each	individual,	help	explain	flocking	behaviour
in	birds:	(1)	each	bird	attempts	to	avoid	colliding	with	its	neighbours,	(2)	each	bird	attempts	to	stay	close	to	its	neighbours,	and	(3)	each	bird	attempts	to	match	the
velocity	of	its	neighbours.	Those	rules,	implemented	in	a	multi-agent	computer	program,	produce	behaviour	that	emulates	the	flocking	behaviour	of	real	birds.	Similar
rules	have	been	used	to	simulate	the	evolution	of	collective	motion	towards	a	target	in	robots	(e.g.,	Baldassarre,	Nolfi	&	Parisi	2002 ).	Analogously	to	the	Turing	test
(Turing	1950),	a	first	step	to	validate	those	computer	simulations	should	require	that	simulated	flocks	be	indistinguishable	from	real	flocks,	as	perceived	by	an	external
observer;	that	is	the	case	of	Reynolds'	model.	Detailed	studies	involving	computerized	tracking	of	individuals	in	real	flocks	(e.g.,	STARFLAG	project;	Cavagna,	Giardina,
Orlandi,	Parisi,	Procaccini,	Viale,	&	Zdravkovic	2008)	and	comparison	with	simulated	data	will	provide	a	systematic	way	of	validation.

Flocks	are	a	clear	example	of	self-organized	behaviour	in	a	group,	because	flocking	behaviour	is	produced	solely	by	the	dynamics	of	the	interactions	among	individuals
without	a	central	authority	governing	the	group.	Thus,	the	properties	observed	in	flocks	could	also	explain	some	of	the	dynamics	and	organization	of	human	groups.	For
example,	the	rationale	that	guides	the	typical	behaviour	of	"follow	your	neighbour"	in	flocks	could	likewise	be	applied	to	people	making	their	own	decisions	based	on	the
observation	of	their	neighbours'	decisions	(Barnajee	1992),	and	to	the	case	where	the	choices	made	by	some	individuals	influence	the	beliefs	of	others,	and
consequently	their	actions,	a	social	mechanism	called	rational-imitation	(Hedström	1998).	Recently,	Rosen	(2003)	presented	a	theory	of	emergent	self-organization	in
human	interaction	that	focuses	on	the	optimization	of	distances	from	other	group	members,	maintaining	leadership	and	matching	the	other	individuals'	movements,	a
theory	inspired	by	Reynolds'	rules.	Although	it	cannot	be	assumed	that	the	properties	observed	in	flocks	can	explain	all	kinds	of	human	group	dynamics	(particularly
those	in	which	individuals	make	decisions	that	are	based	on	beliefs	and	anticipations,	but	not	only	on	direct	observation	of	their	neighbours),	they	can	adequately	explain
relevant	social	phenomena	as	those	mentioned	above.

We	developed	an	agent-based	model	to	generate	flocks,	implemented	it	in	a	multi-agent	simulation	program	and	studied	the	emergence	of	leaders	in	these	self-
organized	groups.	However,	whereas	Reynolds'	rules	generate	flocking	behaviour	by	specifying	the	rules	for	inter-agent	distances	and	for	matching	other	agent
movements,	our	model	made	global	flocking	emerge	as	a	result	of	dyadic	agent-to-agent	adaptation.	Unlike	Reynolds'	rules,	which	specify	how	agents	should	move	in
accordance	with	the	nearest	group,	our	model	included	dyadic	interaction	rules	only.	We	also	introduced	two	indices	of	global	flocking	behaviour	and	flock	leadership.
Finally,	we	ran	a	series	of	simulations	in	order	to	study	how	our	model	behaved.	Specifically,	we	identified	the	particular	properties	of	the	agents	and	the	environment,	as
well	as	the	range	of	model	parameters	that	favoured	flock	emergence.	We	described	the	emergence	of	flock	leaders	and	tried	to	make	connections	between	certain
environmental	properties	and	the	leaders'	main	features,	such	as	their	initial	spatial	position	in	the	group,	i.e.	either	in	the	centre	or	on	the	edge,	and	the	probability	of
becoming	a	stable	leader	as	the	simulation	progressed.

Modelling	Flock	Emergence

We	developed	an	agent-based	model	of	the	emergence	of	coordinated	movement	in	a	group	and	implemented	it	in	the	simulation	program	P-Flock	2.0,	which	was
written	in	C	and	Delphi	and	run	in	Windows.	Both	the	model	and	the	computer	program	are	continuations	of	previous	work	on	the	modelling	and	simulation	of	spatial
behaviour	in	groups	(Beltran,	Salas	&	Quera	2006 ;	Quera,	Beltran,	Solanas,	Salafranca	&	Herrando	2000 ;	Quera,	Solanas,	Salafranca,	Beltran	&	Herrando	2000 ).	In	the
current	model,	agents	adapt	their	movements	locally	through	repeated	interactions	as	they	encounter	other	agents;	adaptation	is	accomplished	by	applying	local	rules	to
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reward	the	agents'	movements	that	fulfil	their	predictions,	and	to	penalize	those	that	do	not.	As	a	result,	under	certain	conditions,	these	dyadic	adaptations	lead	to	the
emergence	of	coordinated	movement	in	the	group,	a	global	phenomenon	that	is	not	specified	in	the	local	rules.	A	snapshot	of	a	simulation	with	the	P-Flock	2.0	program
is	shown	in	Figure	1.

Figure	1.	Snapshot	of	a	P-Flock	simulation	with	50	agents,	showing	their	positions	and	headings	in	a	toroidal	world.	At	time	unit	1,600,	a
loose	flock	emerged;	the	program	detected	a	possible	leader	(agent	39,	shown	in	yellow).	Agents	with	different	perceptual	features	(see

below)	are	displayed	using	different	colours.	A	flocking	index	time	series	is	displayed	in	the	bottom	section	(see	below).

World	and	Agents

The	agents	move	in	a	two-dimensional,	discrete	world	that	is	either	toroidal	or	closed.	The	world	is	composed	of	cells	or	patches,	and	one	cell	can	be	occupied	by	only
one	agent	at	a	time.	Each	agent	i	is	identified	by	its	coordinates	(xi(t),	yi(t))	and	heading	αi(t)	at	time	 t.	The	heading	of	an	agent	at	time	 t	is	defined	as	the	vector

connecting	its	location	at	t-1	with	its	location	at	 t,	and	is	expressed	as	the	anti-clockwise	angle	between	that	vector	and	the	 X	axis,	αi(t)	=	tan-1	[	(yi(t)	-	yi(t-1))	/	(xi(t)	-
xi(t-1))].

Agents	have	a	perceptual	field,	which	is	defined	as	a	circular	sector	whose	centre	is	the	agent's	current	location	and	which	is	bisected	by	its	current	heading	vector;
radius	ri	and	angle	 θi	of	the	circular	sector	are	the	depth	and	scope	of	agent	 i's	perceptual	field,	respectively,	and	are	the	model	parameters	that	can	be	modified	(see
Figure	2).	Agent	movement	is	restricted	to	its	current	local	neighbourhood	of	cells;	Moore	or	Von	Neumann	neighbourhoods	can	be	defined	with	several	possible
diameters	(see	Figure	3).
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Figure	2.	An	agent's	coordinates	at	times	t-1	and	t,	its	heading	αi(t),	and	its	perceptual	field	(in	white),	defined	by	radius	ri	and	angle
θi.

Figure	3.	Moore	and	Von	Neumann	neighbourhoods	and	possible	diameters.	The	agent's	current	position	is	indicated	by	a	black	square,
and	its	current	movement	is	limited	by	its	neighbourhood.

Ideal	Distances	and	Dissatisfaction

A	matrix	of	ideal	distances	among	the	agents	is	also	defined.	The	ideal	distance	from	agent	 i	to	agent	j	at	t,	Dij(t),	is	the	distance	at	which	agent	 i	wants	to	be	from	agent
j	at	that	time;	ideal	distances	are	not	necessarily	symmetrical.	As	agents	encounter	other	agents,	their	ideal	distances	can	change	as	a	function	of	the	outcome	of	their
interaction.	Agents'	local	goal	is	to	minimize	their	dissatisfaction	and	to	that	end	they	can	move	within	their	current	neighbourhood;	an	agent's	dissatisfaction	at	time	t,
Ui(t),	is	defined	as	a	composite	function	of	the	absolute	differences	between	its	ideal	distance	from	every	other	agent	that	it	currently	perceives	and	the	real	distance
from	them:

(1)

where	dij(t)	is	the	Euclidean	distance	from	agent	 i	to	agent	j	at	t,

dij(t)	=	[(xi(t)	-	xj(t))2	+	(yi(t)	-	yj(t))2]1/2 (2)

and	the	sum	is	for	all	the	agents	currently	perceived	by	agent	i	at	t	(subset	Zi(t)).	The	sum	is	divided	by	the	diameter	of	the	world,	or	the	maximum	possible	real	distance
(m),	and	by	the	cardinal	number	of	 Zi(t);	dissatisfaction	therefore	has	to	be	between	0	and	1	(for	details,	see	 Quera,	Beltran,	Solanas,	Salafranca	&	Herrando	2000 ).	The

maximum	possible	real	distance	is	a	function	of	the	size	and	shape	of	the	world;	for	a	rectangular	world	of	size	H	×	V,	m	=	 [H2	+	V2]1/2	if	it	is	non	toroidal,	and	m	=	 ([H2	+
V2]1/2)/2	if	it	is	toroidal.

At	time	t,	agent	i	estimates	its	ideal	or	possible	future	dissatisfaction	for	time	 t+1	for	all	candidate	positions	p	within	its	current	neighbourhood,	by	computing	the
distances	from	them	to	the	current	positions	of	the	agents	it	is	perceiving:

(3)

where	dijp(t)	is	the	real	distance	from	position	 p	within	agent	i's	neighbourhood	to	agent	 j's	position	at	time	 t	(see	Figure	4).	Agent	i	then	decides	to	move	to	that	position
within	its	neighbourhood	for	which	it	estimated	U'ip(t+1)	to	be	the	lowest	value.	If	several	positions	share	the	minimum	ideal	dissatisfaction,	the	agent	decides	on	the
move	that	requires	the	least	change	to	its	current	heading.	At	time	t+1,	the	other	agents	could	also	have	moved,	and	therefore	the	ideal	dissatisfaction	that	agent	 i
estimated	for	time	t+1	might	not	necessarily	have	been	attained.	At	each	time	unit	the	agents	make	the	decision	to	move	within	their	respective	neighbourhoods
simultaneously	and	independently.	However,	if	two	or	more	neighbourhoods	overlap,	then	some	of	the	cells	in	those	neighbourhoods	can	be	candidates	for	more	than
one	agent	if	they	happen	to	provide	the	minimum	dissatisfaction	for	all	of	them.	At	each	time	unit,	agents'	priorities	to	move	are	sorted	randomly.	The	agents	with	lower
priorities	will	then	only	be	able	to	move	to	those	cells	not	chosen	by	agents	with	higher	priorities	that	provide	less	than	the	minimum	dissatisfaction.
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Figure	4.	How	an	agent	estimates	its	possible	dissatisfaction	at	a	given	time.	For	every	candidate	position	within	its	current
neighbourhood	(in	this	example,	a	Moore	neighbourhood	with	a	diameter	of	3	and	nine	candidate	positions),	agent	1	computes	the	real
distances	from	itself	to	the	current	positions	of	the	other	agents	it	perceives.	These	real	distances	are	compared	with	the	ideal	distances

as	per	the	Equation	3	and	a	dissatisfaction	is	obtained	for	each	candidate	position.

Flock	Synthesis	Rules

In	this	model,	ideal	distances	between	agents	vary	as	a	consequence	of	the	outcomes	of	their	interactions,	according	to	a	set	of	reward	rules,	which	we	call	Flock
Synthesis	Rules	(FSRs)	because	a	flock	may	emerge	when	they	are	applied	locally,	massively	and	repeatedly.	Initially,	agent	i	moves	at	random	without	considering
any	other	agents;	when	it	perceives	agent	j	for	the	first	time	and	their	real	distance	apart	is	less	than	or	equal	to	a	critical	value,	 PD,	the	FSRs	for	agent	 i	are	activated
with	regard	to	agent	j,	and	the	ideal	distance	from	agent	 i	to	agent	j	is	set	so	it	is	equal	to	a	uniform	random	value	between	 dij,	their	current	real	distance	apart,	and	 m,
the	maximum	possible	real	distance.	From	that	time	on,	ideal	distance	Dij	undergoes	two	different	kinds	of	change:	smooth	change	and	abrupt	change.

A	smooth	change	is	caused	by	agent	 i	when	it	adapts	to	agent	 j's	movements.	As	mentioned	above,	at	each	time	step,	agents	 i	and	j	move	to	the	positions	in	their
respective	current	neighbourhoods	that	minimize	their	dissatisfaction.	Before	moving	(time	t-1),	agent	i	predicted	that	its	real	distance	from	agent	 j	at	time	 t	would	be
d'ij(t),	assuming	that	agent	 j	would	not	move.	After	moving,	agent	i	evaluates	the	difference	between	its	prediction,	 d'ij(t),	and	its	previous	real	distance	from	agent	 j,	dij(t-
1):

cij(t)	=	d'ij(t)	-	dij(t-1) (4)

From	the	point	of	view	of	agent	 i,	its	movement	was	an	"attempt	to	approach"	agent	 j	if	cij(t)	<	0,	or	an	"attempt	to	move	away"	from	agent	 j	if	cij(t)	>	0.	After	moving,
agent	i	also	evaluates	the	discrepancies	between	the	current	real	distance,	 dij(t),	the	predicted	distance,	d'ij(t),	and	the	ideal	distance	it	wanted	to	keep	from	agent 	j,
Dij(t-1):

uij(t)	=	|dij(t)	-	Dij(t-1)	|	-	|	d'ij(t)	-	Dij(t-1)	| (5)

which	is	in	fact	the	difference	between	the	two	partial	dissatisfactions	for	agent	i	with	respect	to	agent	j:	the	actual	one	and	the	one	it	predicted	it	would	have	before
moving.	If	uij(t)	=	0,	we	can	say	that	agent	 i	has	momentarily	adapted	to	agent	 j,	because	the	dissatisfaction	it	expected	is	fulfilled;	if	 uij(t)	<	0,	agent	 i	"overadapted"	to
agent	j,	because	the	dissatisfaction	after	moving	is	less	than	expected;	and	if	 uij(t)	>	0,	agent	 i	"underadapted"	to	agent	j,	because	the	dissatisfaction	after	moving	is
greater	than	expected.

The	ideal	distance	from	agent	i	to	agent	j	is	increased	if	agent	i	either	attempted	to	approach	and	underadapted	( cij(t)	<	0	and	uij(t)	>	0)	or	attempted	to	move	away	and
overadapted	(cij(t)	>	0	and	uij(t)	<	0);	in	the	first	case,	increasing	the	ideal	distance	can	be	seen	as	a	penalty,	as	the	attempted	approach	was	excessive,	while	in	the
second	case,	it	can	be	seen	as	a	reward,	as	the	attempted	move	away	was	successful.	On	the	other	hand,	the	ideal	distance	is	decreased	if	agent	i	either	attempted	to
approach	and	overadapted	(cij(t)	<	0	and	uij(t)	<	0)	or	attempted	to	move	away	and	underadapted	( cij(t)	>	0	and	uij(t)	>	0);	in	the	first	case,	decreasing	the	ideal	distance
can	be	seen	as	a	reward,	as	the	attempted	approach	was	successful,	while	in	the	second	case,	it	can	be	seen	as	a	penalty,	as	the	attempted	move	away	was
excessive.	Finally,	the	ideal	distance	either	remains	the	same	if	agent	i	momentarily	adapted	(uij(t)	=	0),	or	it	is	randomly	increased	or	decreased	if	agent	 i	overadapted
or	underadapted	but	attempted	neither	to	approach	or	move	away	(cij(t)	=	0	and	uij(t)	≠	0).	Change	in	the	ideal	distance	at	time	 t	is	thus:

Dij(t)	=	(1	+	kPC)Dij(t-1) (6)

where	PC	is	a	parameter	of	the	model	that	modulates	the	rate	of	change	(0	<	 PC	<	1),	and	 k	=	+1,	0,	or	-1,	for	increase,	no	change	and	decrease,	respectively	(see
Table	1	and	Figure	5).
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Table	1:	Decision	Table	for	the	Flock	Synthesis	Rules

Underadapted
uij(t)	>	0

Adapted
uij(t)	=	0

Overadapted
uij(t)	<	0

Attempt	to	approach
cij(t)	<	0

Increase	(k	=	1)
Penalty

No	change	(k	=	0) Decrease	(k	=	-1)
Reward

No	attempted	move
cij(t)	=	0

Random	
Increase	or	Decrease

No	change	(k	=	0) Random
Increase	or	Decrease

Attempt	to	move	away
cij(t)	>	0

Decrease	(k	=	-1)
Penalty

No	change	(k	=	0) Increase	(k	=	1)
Reward

Figure	5.	An	example	of	agent	i	adapting	to	agent	j	and	updating	its	ideal	distance.	The	agents'	positions	are	indicated	by	green	cells	at
the	centre	of	their	current	diameter-3	Moore	neighbourhoods.	At	time	t-1,	agent	i	decided	to	move	to	the	upper	left	cell	in	its

neighbourhood	because	it	happened	to	provide	minimum	dissatisfaction;	agent	i	computed	its	real	distance	to	agent	j,	dij(t-1)	(shown	in
green),	and	the	distance	it	predicted	for	time	t,	assuming	that	agent	j	would	not	move,	d'ij(t)	(shown	in	red).	At	time	t,	both	agents	moved
(as	indicated	by	the	brown	arrows,	which	are	the	agents'	current	headings)	and	the	real	distance	between	them	is	dij(t)	(shown	in	blue).

Agent	i's	ideal	distance	to	agent	j	at	t-1,	Dij(t-1),	is	shown	in	brown.	As	cij(t)	=	d'ij(t)	-	dij(t-1)	>	0,	agent	i	attempted	to	move	away	from
agent	j.	As	|dij(t)	-	Dij(t-1)|	<	|	d'ij(t)	-	Dij(t-1)|,	uij(t)	<	0,	and	agent	i	(slightly)	overadapted	to	agent	j	when	it	moved.	Consequently,	agent	i's

movement	with	respect	to	agent	j	is	rewarded	and	the	ideal	distance	is	increased	by	factor	PC.

An	abrupt	change	in	the	ideal	distance	from	agent	 i	to	agent	j	occurs	when	that	distance	remains	constant	or	changes	cyclically	in	small	amounts	at	consecutive	time
steps	for	a	certain	period	of	time	Sij(T),	T	being	the	number	of	times	the	abrupt	change	occurred.	This	reflects	agent	 i's	tolerance	towards	being	'stagnated'	with	respect
to	agent	j,	i.e.	remaining	stable	or	relatively	stable	with	respect	to	it.	Initially,	 Sij(1)	=	PS,	which	is	a	parameter	of	the	model.	When	the	tolerance	limit	is	reached,	the
ideal	distance	is	increased	abruptly	by	a	factor	equal	to	PC	·	Sij(T),	i.e.

Dij(t)	=	Dij(t-1)	+	PCSij(T) (7)

and	it	remains	constant	for	the	next	 Eij(T)	time	units,	where	Eij(T)	is	agent	i's	tolerance	for	being	'exiled'	from	agent	 j	and	T	is	the	number	of	times	the	exile	occurred.
Initially,	Eij(1)	=	PE,	which	is	a	parameter	of	the	model.	By	increasing	agent	 i's	ideal	distance	from	agent	j	abruptly	when	it	stagnates,	agent	 i	is	given	an	opportunity	to
adapt	to	new	situations	while	it	is	exiled	from	agent	j.	When	the	exile	time	is	over,	the	ideal	distance	is	decreased	abruptly	by	a	factor	equal	to	 PC	·	Sij(T)	+	PD,	i.e.

Dij(t)	=	Dij(t-1)	-	(PCSij(T)	+	PD) (8)

and	agent	i	resumes	the	smooth	change	phase	with	respect	to	agent	 j.	Every	time	T	that	agent	i	is	exiled	with	respect	to	agent	 j,	its	tolerance	to	stagnation	is	increased
slightly	by	factor	PC:

Sij(T)	=	(1	+	PC)Sij(T	-	1) (9)

and	every	time	it	resumes	the	smooth	change	phase,	its	tolerance	to	exile	is	decreased	slightly	by	that	same	factor:

Eij(T)	=	(1	-	PC)Eij(T	-	1) (10)

Thus,	agent	i	progressively	adapts	to	agent	j	by	tolerating	longer	stagnation	and	shorter	exile	periods	from	it.	The	model	parameters	are	listed	in	Table	2.

Table	2:	Parameters	of	the	Flock	Synthesis	Rules

PD Critical	real	distance	at	which	the	FSRs	are	activated
PC Change	rate	(0	<	PC	<	1)	for	increasing	and	decreasing	ideal	distances,	and	stagnation	and	exile

tolerance	times
PS Initial	value	of	the	stagnation	tolerance	time
PE Initial	value	of	the	exile	tolerance	time

It	should	be	noted	that	the	model	does	not	require	every	agent	to	interact	with	every	other	agent.	That	is,	whenever	agent	 i	perceives	agent	 j,	only	the	FSRs	for	 i
towards	j	are	activated.	Agent	 j	may	never	have	perceived	 i,	or	certain	pairs	of	agents	may	never	have	perceived	each	other.	Thus,	repeated	application	of	the	dyadic
FSRs	make	the	group	move	in	a	coordinated	way,	even	if	some,	or	many,	of	the	agents	never	interacted	with	each	other.	We	must	stress	that,	even	if	an	agent
perceives	several	agents	simultaneously,	the	FSRs	are	applied	in	a	dyadic	and	independent	way.	That	is,	if	at	time	t	agent	i	perceives	agents	 j1,	j2,	and	 j3,	the	FSRs	are

http://jasss.soc.surrey.ac.uk/13/2/8.html 5 07/10/2015



2.13

3.1

3.2

3.3

3.4

independently	applied	three	times,	for	agent	i	towards	j1,	j2,	and	 j3,	respectively;	the	decision	for	agent	 i	towards	j1	resulting	from	Table	1	has	no	effect	on	the	decision
for	agent	i	towards	j2,	and	so	on.

The	pseudocode	of	the	main	functions	of	the	P-Flock	program	is	shown	in	the	Appendix.	The	C	code	includes	specific	functions	(not	shown	there)	for	computing
Euclidean	distances	on	a	toroidal	surface	and	agent	dissatisfaction,	and	for	checking	which	agents	perceive	other	agents	at	every	simulation	step.	The	program	reads	a
parameters	file,	performs	the	simulations,	and	saves	the	agents'	coordinates,	headings,	ideal	distances,	and	flocking	and	leadership	indices	(see	below)	to	a	text	file.
The	simulation	can	then	be	played,	paused,	slowed	down	and	played	backwards	(e.g.	Figure	1).	P-Flock	2.0	runs	on	Windows	and	can	be	downloaded	from
http://www.ub.edu/gcai/	(go	to	download	in	the	main	menu).	A	demo	video	can	also	be	downloaded	from	that	web	site.

Quantifying	Flocking

When	flocking	behaviour	is	studied	using	agent-based	simulation,	flock	detection	is	sometimes	carried	out	merely	by	observing	the	changes	in	the	agents'	locations	over
time	on	the	computer	screen.	Although	some	indicators	are	used	to	analyse	flock	behaviour	(Kunz	&	Hemelrijk	2003 ;	Parrish	&	Viscido	2005 ),	there	is	no	simple	index
that	includes	the	different	factors	that	indicate	the	degree	of	flocking	behaviour	as	a	whole	and	that	is	easily	applicable	to	agent-based	simulations	(Zaera,	Cliff	&	Bruten
1996).

Therefore,	in	order	to	objectively	describe	flocking	behaviour,	we	defined	an	index	of	the	degree	to	which	a	set	of	agents	actually	formed	a	flock.	A	moving	group	as	a
whole	was	considered	a	flock	when	all	the	agents	had	similar	headings	and	the	distance	between	them	was	short	enough	(Quera,	Herrando,	Beltran,	Salas	&	Miñano
2007).	Given	two	agents,	 i	and	j,	we	defined	their	dyadic	flocking	index	as	the	product	of	 H,	a	function	of	the	difference	between	the	agents'	headings,	and	 Z,	a	function
of	their	distance	apart:

fij(t)	=	H(Δαij(t))	Z(dij(t)) (11)

where	Δαij(t)	is	the	difference	in	radians	between	their	headings,

Δαij(t)	=	min(|αi(t)	-	αj(t)|,	2π	-	|αi(t)	-	αj(t)|) (12)

and	dij(t)	is	the	real	distance	between	their	locations	at	 t.	Functions	H	and	Z	are	defined	as:

H(Δαij(t))	=	1	-	Δαij(t)/π (13)

Z(dij(t))	=	1	-	1/[1	+	exp(-g(dij(t)	-	rm)/m)] (14)

Both	functions	can	yield	values	between	0	and	1.	Function	H	is	equal	to	1	when	the	agents'	headings	are	identical,	i.e.	Δ αij(t)	=	0,	and	is	equal	to	0	when	the	two	agents
are	facing	opposite	directions,	i.e.	Δαij(t)	=	π.	Function	Z	is	the	inverse	logistic	function	(with	some	parameters,	 g	>	0,	0	<	 r	<	1,	m	>	0);	it	tends	towards	1	when	the
distance	between	the	two	agents	is	close	to	0	(in	which	case	the	exponential	function	yields	a	high	value),	and	it	tends	towards	0	when	the	distance	is	great	(in	which
case	the	exponential	function	yields	a	value	close	to	0).	Therefore,	the	more	the	agents	face	similar	directions	and	the	closer	they	are	(i.e.	when	both	H	and	Z	approach
1),	the	greater	their	dyadic	flocking	index	is;	on	the	other	hand,	if	the	two	agents	have	identical	headings	but	are	far	away	from	each	other,	or	if	they	are	close	to	each
other	but	their	headings	are	opposite	(i.e.	either	H	or	Z	approach	0),	their	dyadic	flocking	index	is	low.

A	global	flocking	index	for	the	 N	agents	was	defined	as	the	arithmetic	mean	of	the	dyadic	indices:

F(t)	=	[Σi<j	fij(t)]	/	[N(N-1)/2] (15)

Values	of	F(t)	range	from	0	to	1;	when	 F(t)	=	1,	the	group	of	agents	move	in	a	coordinated,	compact	fashion	in	the	same	direction,	and	when	 F(t)	=	0,	they	are	scattered
and	move	in	a	disorderly	fashion.	Values	of	F(t)	are	a	time	series	that	indicates	when	the	agents	move	as	a	flock	and	whether	the	flock	is	maintained	over	time.	If	the
agents'	behaviour	is	governed	by	some	rules	that	make	the	flock	emerge	from	initial	disorderly	movement,	then	an	abrupt	increase	in	F(t)	indicates	such	a	phase
transition.

Yet	a	group	of	agents	moving	randomly	and	not	in	a	coordinated	way	can	theoretically	result	in	 F(t)	>	0.	Therefore,	in	order	to	evaluate	 F(t)	appropriately,	we	need	to
know	the	distribution	function	of	the	index	for	specific	N,	m,	g,	and	 r	values	in	case	the	agents	had	random	locations	and	headings.	The	distribution	function	can	be
estimated	by	assigning	random	coordinates	and	headings	to	the	N	agents	repeatedly	and	independently	many	times	(say,	10,000	times),	and	by	calculating	 F	for	each
one;	by	averaging	the	Fs,	an	estimate	of	their	mathematical	expectancy	(E[ F])	can	be	obtained.	However,	actual	values	of	 F(t)	depend	on	the	number	of	agents	and	the
diameter	of	the	world	in	which	they	move;	therefore,	in	order	to	compare	flocks	with	different	group	and	world	diameters,	those	indices	must	be	converted	into	a
common,	or	standardized,	value.	Cohen's	(1960)	kappa	coefficient	provides	a	way	to	compare	an	observed	proportion	of	agreement	with	the	proportion	that	is	expected
under	the	hypothesis	of	chance	agreement,	by	calculating	the	ratio	of	the	difference	between	observed	and	expected	to	the	maximum	possible	difference.	As	F(t)	and
E[F]	are	observed	and	expected	proportions,	the	same	rationale	as	that	used	for	calculating	kappa	can	be	applied	in	order	to	calculate	the	desired	standardized	index.
Thus,	the	F(t)	index	can	be	converted	into	a	kappa-like	coefficient,	ΚF(t)	=	(F(t)	-	E[F])/(1	-	E[F]).	This	index	can	be	viewed	as	the	degree	to	which	agent	interaction
actually	caused	a	flock	to	emerge:	a	flock	exists	when	ΚF(t)	>	0	(i.e.	the	agents'	headings	are	similar	and	their	distances	apart	are	shorter	than	in	the	random	case),	and
the	closer	ΚF(t)	is	to	1,	the	more	defined	the	flock	is	(i.e.	the	more	similar	the	agents'	headings	are	and	the	shorter	the	distance	between	them).	Figure	6	shows	an
example	of	series	ΚF(t)	for	a	simulation	with	20	agents.

Figure	6a.	Index	ΚF(t)	for	a	simulation	with	20,000	time	units	and	20	agents	for	a	specific	combination	of	FSR
parameters.
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Figure	6b.	Five	snapshots	are	shown	for	specific	moments	of	the	simulation	in	Figure	6a:	(A)	movement	is	not	coordinated,	no	flock
exists;	(B)	a	scattered	flock	begins	to	emerge	from	approximately	time	units	1,000	to	3,000,	but	is	not	maintained	for	long;	(C)	after	two
short	periods	of	stable	flocks	before	and	after	time	unit	4,000,	a	period	of	instability	follows;	(D)	after	time	unit	10,000,	a	compact,	stable
flock	emerges	and	is	maintained	until	time	unit	18,000,	with	some	oscillations	mainly	at	time	units	14,000	and	17,000,	approximately;
(E)	a	period	of	compact	but	unstable	flocks	follows,	similar	to	period	C.	The	index	values	have	been	smoothed	out	using	a	moving

average	window	100	time	units	wide.

An	Index	of	Hierarchical	Flock	Leadership

When	a	flock	emerges	(i.e.	when	ΚF(t)	approaches	1),	certain	agents	appear	to	lead	the	group.	For	an	external	observer,	a	leader	agent	is	at	one	end	with	respect	to	the
group	and	tends	to	face	a	direction	opposite	that	of	the	group	centroid,	while	the	agents	being	led	face	the	leader.	By	borrowing	concepts	and	terminology	from	social
network	analysis	(e.g.	Faust	&	Waserman	1992;	Waserman	&	Faust	1994),	we	defined	a	leadership	index	based	on	the	amount	of	directed	paths	each	agent	received
from	the	other	agents.	At	time	t,	a	sociomatrix	M(t)	=	{mij(t)},	N	×	N,	was	defined	as	 mij(t)	=	1	if	agent	j	was	perceived	by	agent	i,	and	 j	was	not	behind	 i;	as	mij(t)	=	0	if
agent	j	was	not	perceived	by	agent	 i,	or	 j	was	behind	i;	or	as	 mii(t)	=	0.	The	sociomatrix	can	be	represented	by	a	directed	graph	or	network	in	which	each	agent	is	a
node,	and	an	arrow	connects	i	to	j	if	mij(t)	=	1.	For	agent	j,	its	column	and	row	sums	of	the	sociomatrix	at	 t	(m+j(t)	and	mj+(t),	respectively)	are	its	 nodal	indegree	and
nodal	outdegree.	The	former	is	agent	 j's	degree	prestige	at	t.

However,	it	can	be	assumed	that	agents	in	a	flock	do	not	necessarily	perceive	all	the	other	agents	except	for	the	immediate	neighbours	in	front	of	them.	When	a	leader
agent	exists,	it	may	not	necessarily	be	perceived	and	followed	by	the	rest	of	agents,	but	only	by	a	small	fraction	of	them,	which	in	turn	are	perceived	and	followed	by
other	agents,	and	so	on.	Therefore,	the	leader	agent	does	not	necessarily	have	the	highest	nodal	indegree	(i.e.	having	a	high	degree	prestige	is	not	a	necessary
condition	for	being	a	leader).	On	the	other	hand,	while	the	leader	agent	does	not	perceive	any	other	agents	in	front	of	it	and	its	nodal	outdegree	is	consequently	zero,
non-leader	agents	may	have	nodal	outdegrees	equal	to	zero	as	well	(i.e.	having	a	null	nodal	outdegree	is	not	enough	to	be	a	leader).

An	appropriate	way	of	quantifying	leadership	is	 rank	prestige:	an	agent's	rank	prestige	is	a	function	of	the	rank	prestige	values	of	the	agents	that	target	it,	so	that	an
agent	targeted	by	many	high-ranking	agents	has	a	higher	prestige	than	one	that	is	only	targeted	by	low-ranking	agents	(Faust	&	Waserman	1992;	Katz	1953;	Seeley
1949).	Therefore,	an	agent's	leadership	rank	can	be	defined	hierarchically	as	a	function	of	the	leadership	ranks	of	the	agents	that	perceive	and	follow	it	(a	formal
definition	of	hierarchical	leadership	is	given	by	Shen	2007).	Accordingly,	agent	j's	rank	Lj	was	defined	as	a	linear	combination	of	the	ranks	of	those	agents	that	perceive
it:

Lj=	m1jL1	+	m2jL2	+	...	+	mNjLN=	Σk=1..N	mkjLk (16)

In	matrix	notation,	L	=	MTL,	where	L	is	the	Nx1	vector	of	ranks,	and	MT	is	the	transposed	sociomatrix.	The	ranks	are	thus	 N	unknowns	in	a	linear	system	of	 N	equations.
Through	diagonalization	of	MT,	the	elements	of	the	eigenvector	associated	to	its	largest	eigenvalue	are	the	solution	for	that	equation	(Katz	1953).

However,	the	ranks	can	also	be	obtained	by	means	of	this	series	(e.g.	 Foster,	Muth,	Potterat	&	Rothemberg	2001):

L	=	XU	+	X2U	+	X3U	+	X4U	+	... (17)

where	X	=	aMT,	U	is	an	N	×	1	vector	of	1's,	and	 a	is	an	"attenuation	factor"	(0	<	 a	<	1;	Katz	1953)	that	ensures	convergence	of	the	series.	That	is,	the	transposed
sociomatrix	(multiplied	by	the	attenuation	factor)	is	raised	to	successive	powers,	and	its	rows	are	summed;	finally,	ranks	are	obtained	by	adding	the	row	sums.	As	the
powers	increase,	smaller	values	are	obtained	and	the	sum	converges,	provided	that	a	<	1/max i,j(mi+,	m+j).	Instead	of	raising	the	transposed	sociomatrix	to	successive
powers,	Foster	et	al.	propose	estimating	ranks	by	means	of	an	iterative	and	computationally	less	complex	procedure,	which	is	appropriate	for	large	N	values.

In	fact,	Equation	17	results	from	viewing	ranks	as	the	number	of	directed	paths	in	the	network	from	one	agent	to	another	and	applying	Markov	chain	theory	(e.g.
Manning,	Raghavan	&	Schütze	2008,	p.	425).	While	matrix	M	indicates	the	number	of	one-step	paths	from	each	agent	to	every	other	agent,	cells	in	its	squared	matrix
M2	contain	the	number	of	two-step	paths	from	each	agent	to	every	other	agent,	irrespective	of	the	intermediate	one;	in	general,	cells	in	matrix	 Mn	contain	the	number	of
n-step	paths	connecting	the	agents,	irrespective	of	the	intermediate	 n-1	agents.	By	raising	the	sociomatrix	to	successive	integer	powers	up	to	 N,	the	total	number	of
agents,	and	summing	the	columns	of	the	resulting	matrices	(i.e.	by	applying	Equation	17	up	to	the	first	N	terms,	and	with	X	=	MT),	the	total	number	of	directed	paths
with	one-,	two-,	…,	and	N-steps	connecting	any	agent	to	each	agent	 j	are	obtained.

Still,	sociomatrix	M	could	contain	loops	or	circular	paths	consisting	of	two	or	more	steps;	for	example,	agent	 i	perceives	agent	 j,	which	perceives	agent	k,	which	in	turn
perceives	agent	i.	In	that	case,	when	 M	is	raised	to	successive	powers,	column	sums	tend	to	increase	exponentially.	One	solution	is	to	substitute	 X	=	aMT,	as
mentioned.	For	the	specific	purpose	of	obtaining	flock	leadership	indices,	an	alternative	solution	is	to	substitute	X	=	(M	°	F)T	instead,	where	F	=	{fij(t)},	the	symmetrical
matrix	of	dyadic	flocking	indices,	and	°	stands	for	a	Hadamard	or	entry-wise	product;	as	M	is	binary	and	the	dyadic	flocking	indices	have	to	be	between	0	and	1,	this
results	in	attenuation	of	loop	effects	and	convergence	of	the	series.	We	therefore	proposed	calculating	leadership	indices	or	ranks	for	a	group	of	N	agents	as:

L	=	Σk=1	…	N[(M	°	F)T]kU (18)

By	using	dyadic	flocking	indices	as	weights,	the	leadership	indices	reflect	the	degree	of	coordinated	movement	of	the	flock	as	well.	When	the	flock	is	compact	and	all
agent	headings	are	very	similar,	many	dyadic	flocking	indices	are	close	to	1,	and	the	resulting	leadership	indices	are	high	(i.e.	an	agent	leading	a	very	compact	and
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coordinated	flock	is	a	"strong"	leader);	on	the	other	hand,	when	the	flock	is	scattered	or	there	is	substantial	variability	of	agent	headings,	few	dyadic	flocking	indices	are
close	to	1,	and	the	resulting	leadership	indices	are	low	(i.e.	an	agent	leading	a	not-so-compact	or	coordinated	flock	is	a	"weak"	leader).

It	should	be	noted	that	hierarchical	leadership,	as	it	is	defined	here,	is	different	from	effective	leadership	( Couzin,	Krause,	Franks	&	Levin	2005 ).	Effective	leadership	is
defined	in	terms	of	information	transfer	among	individuals,	and	"can	emerge	as	a	function	of	information	differences	among	members	of	a	population"	(p.	515).
Therefore,	while	effective	leadership	explains	group	motion,	hierarchical	leadership	is	simply	a	description	made	by	an	external	observer.	Calling	an	agent	a	hierarchical
leader	is	not	an	explanation	of	why	a	group	moves	coordinately	as	it	does;	instead,	what	explains	coordinated	motion	is	the	mechanism	governing	the	agents'
interaction,	that	is,	the	FSRs.

An	Example

Figure	7	shows	a	snapshot	of	 N	=	8	agents	as	they	move	in	two-dimensional	space.	Short	blue	arrows	indicate	their	current	headings.	A	network	of	red	arrows
connecting	agents	indicate	which	agents	perceive	other	agents	in	front	of	them.	In	the	upper	left	corner	of	the	figure	there	is	a	schematic	representation	of	the	scope	and
depth	of	the	agents'	perception	field;	agents'	coordinates	and	headings	in	radians	are	shown	in	Table	3.

Figure	7.	A	snapshot	of	8	agents	as	they	move	in	two-dimensional	space,	indicating	their	headings	and	the	perception
network.

Table	3:	Headings	(in	radians)	and	two-dimensional	coordinates	of	a	group	of	8	agents

Agent Heading X Y
1 4.54 5.0 11.0
2 4.75 4.8 9.2
3 4.01 5.1 8.0
4 2.79 5.8 5.7
5 3.49 4.5 6.2
6 3.32 2.0 5.4
7 2.97 4.0 3.7
8 2.97 3.0 4.0

For	this	network,	sociomatrix	M	and	dyadic	flocking	indices	 F	are	shown	in	Tables	4a	and	4b,	respectively.	Finally,	Table	4c	shows	the	results	of	[( M	°	F)T]kU,	for
powers	k	=	1	to	8,	plus	the	leadership	indices.	As	visual	inspection	of	Figure	7	suggests,	agent	6	is	the	leader;	accordingly,	its	leadership	index	is	the	highest.	It	should
be	noted	that	in	this	case	agent	6	was	the	only	agent	with	a	null	outdegree,	and	that	agents	5	and	6	share	the	highest	indegree.

Table	4a:	Sociomatrix	for	the	8	agents	shown	in	Figure	7	(matrix	M)

Agents
1 2 3 4 5 6 7 8 Out

Agents 1 0 1 1 0 0 0 0 0 2
2 0 0 1 0 1 0 0 0 2
3 0 0 0 0 1 0 0 0 1
4 0 0 0 0 1 0 0 0 1
5 0 0 0 0 0 1 0 1 2
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6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 0 1 2
8 0 0 0 0 0 1 0 0 1
In 0 1 2 0 3 3 0 2

Table	4b:	Dyadic	flocking	indices	for	the	8	agents	shown	in	Figure	7	(matrix	F)

Agents
1 2 3 4 5 6 7 8

Agents 1 1.000 0.933 0.833 0.444 0.667 0.611 0.500 0.500
2 0.933 1.000 0.767 0.378 0.600 0.544 0.433 0.433
3 0.833 0.767 1.000 0.611 0.833 0.778 0.667 0.667
4 0.444 0.378 0.611 1.000 0.778 0.833 0.944 0.944
5 0.667 0.600 0.833 0.778 1.000 0.944 0.833 0.833
6 0.611 0.544 0.778 0.833 0.944 1.000 0.889 0.889
7 0.500 0.433 0.667 0.944 0.833 0.889 1.000 1.000
8 0.500 0.433 0.667 0.944 0.833 0.889 1.000 1.000

Table	4c:	Results	of	applying	Equation	18,	for	powers	k	=	1	to	8,	and	leadership	indices	for	the	agents

Agents
1 2 3 4 5 6 7 8

Powers 1 0 0.933 1.600 0 2.211 2.722 0 1.833
2 0 0 0.716 0 1.893 3.718 0 1.843
3 0 0 0 0 0.596 3.426 0 1.578
4 0 0 0 0 0 1.966 0 0.497
5 0 0 0 0 0 0.442 0 0.833
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
Lj 0 0.933 2.316 0 4.701 12.273 0 5.751

Method

We	ran	two	series	of	simulations	with	P-Flock.	With	the	first	series	we	tried	to	identify	the	environmental	conditions	(size	of	the	universe),	agent	features	(perceptual
depth	and	scope)	and	values	for	the	FSR	parameters	that	made	compact	flocks	emerge,	and	analysed	how	the	flocking	indices	behaved	in	the	time	steps	prior	to	flock
emergence.	With	the	second	series	of	simulations	we	detected	the	agents	that	had	become	flock	leaders	and	tried	to	determine	whether	an	agent's	initial	spatial	position
(central	vs.	peripheral)	could	be	used	to	predict	its	chances	of	becoming	a	future	leader.

Flock	Emergence

In	the	first	simulation	series,	eight	different	toroidal	world	sizes	were	explored	(600	×	450,	260	×	200,	230	×	180,	210	×	180,	200	×	150,	180	×	150,	150	×	120,	and	120	×
90).	Previous	work	had	indicated	that	certain	values	of	agent	features	and	FSR	parameters	could	favour	flock	emergence	(Quera,	Herrando,	Beltran,	Salas	&	Miñano
2007).	The	number	of	agents	was	therefore	set	at	20	and	their	perceptual	scope	and	depth	were	set	at	3π/2	and	60,	respectively,	for	all	simulations.	A	Moore	agent
neighbourhood	with	a	diameter	of	3	was	used.	The	initial	agent	positions	were	assigned	and	equally	spaced,	like	nodes	on	a	grid,	and	the	agent	headings	were	set	so
they	were	identical	and	equal	to	π/4.	The	FSR	parameters	were	PD	=	60,	PC	=	0.01,	and	 PS	=	PE	=	6.	For	each	simulation	(with	a	specific	world	size),	P-Flock	was	run
for	20,000	time	steps.	For	each	world	size,	the	simulation	was	replicated	four	times.	At	each	time	step	 t,	the	program	calculated	flocking	index	ΚF(t).

The	results	showed	that	the	bigger	the	world	was,	the	more	difficult	it	was	for	a	flock	to	emerge,	as	agents	that	were	more	scattered	tended	to	take	longer	to	begin
interacting	with	one	another.	Conversely,	the	smaller	the	world,	the	less	stable	the	flocks	were	that	emerged,	as	the	amount	of	interaction	among	the	agents	increased
and	they	were	more	likely	to	change	continuously	in	a	small	world,	which	led	to	flocks	that	emerged	and	disbanded	often.	The	optimal	world	size	for	flock	emergence
was	found	to	be	150	×	120.	Figure	8	shows	four	examples	of	time	series	of	index	ΚF(t)	for	various	world	sizes.
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(a)

(b)

(c)

(d)
Figure	8.	Four	examples	of	time	series	of	index	ΚF(t)	for	different	world	sizes:	(a)	600	×	450,	flocks	were	very	unstable;	(b)	230	×	180,

flocks	formed	early	but	tended	to	disband	in	the	long	run;	(c)120	×	90;	flocks	formed	early	but	then	disbanded;	and	(d)	150	×	120,	flocks
remained	for	a	long	period	of	time.	See	text	for	details	on	model	parameters	and	agent	features.

Previous	work	also	revealed	that	the	agents'	perceptual	depth	and	scope	were	critical	to	producing	flock	emergence	( Quera,	Herrando,	Beltran,	Salas	&	Miñano	2007 ).
We	therefore	ran	a	new	series	of	simulations	to	determine	the	combinations	of	perceptual	depth	and	scope	that	were	optimal	for	generating	flocks.	We	kept	the	toroidal
world	size	constant	at	150	×	120	and	the	number	of	agents	constant	at	20.	The	FSR	parameters	were	the	same	as	in	previous	simulations.	As	we	had	done	previously,
the	agents'	initial	positions	were	assigned	and	equally	spaced.	Their	headings	were	set	at	π/4.	The	following	combinations	of	the	perceptual	parameters	were	tried:
(depth	40,	scope	6π/4),	(60,	6π/4),	(80,	6π/4),	(60,	5π/4),	(80,	5π/4),	and	(60,	7π/4).	For	each	combination,	P-Flock	was	run	for	20,000	time	steps,	and	flocking	indices
were	calculated	at	each	t;	each	simulation	was	replicated	four	times.	The	results	showed	that	the	most	compact,	stable	flocks	were	formed	at	(60,	6π/4)	and	(80,	5π/4).
Two	new	simulations,	with	four	replications	each,	were	run	by	assigning	initial	positions	and	headings	randomly	and	uniformly,	and	trying	the	combination	of	perceptual
parameters	again	(60,	6π/4)	and	(80,	5π/4);	the	latter	showing	the	most	compact,	stable	flocks	(i.e.	high	perceptual	distance	and	low	scope).

A	new	series	of	simulations	was	run	in	order	to	identify	the	FSR	parameters	that	favoured	flock	emergence	and	maintenance	by	keeping	all	the	other	parameters
constant	(toroidal	world	size	150	×	120;	perceptual	depth	and	scope	80	and	5π/4,	respectively;	20	agents	with	random	initial	coordinates	and	headings),	and	exploring
several	combinations	of	parameters	PD,	PC,	and	PS	(parameter	PE	was	set	equal	to	PS).	First,	the	following	combinations	of	values	for	the	FSR	parameters	were	tried:
(PD	=	6,	PC	=	0.01,	PS	=	6),	(100,	0.01,	6),	(6,	0.01,	100),	(6,	100,	6),	and	(100,	0.01,	100).	For	each	combination,	P-Flock	was	run	for	20,000	time	units	and	replicated
four	times;	compact,	stable	flocks	were	produced	when	PD	>	6.	Next,	while	keeping 	PD	=	60	and	PC	=	0.01	constant,	new	simulations	were	run	(20,000	time	units	each,
four	replications)	by	varying	PS	=	5,	12,	15,	20,	22,	25,	40;	compact,	stable	flocks	were	found	when	5	<	 PS	<	25.	Finally,	while	keeping	 PD	=	60	constant,	the	following
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combinations	were	tried:	(PC	=	0.02,	PS	=	6),	(0.03,	6),	(0.05,	6),	(5,	6),	(0.03,	25),	and	(0.05,	25);	compact,	stable	flocks	were	obtained	when	 PC	<	0.02.

Finally,	we	ran	100	simulations	(20,000	time	units	and	four	replications	each)	using	the	optimal	world	and	parameter	values	obtained	in	previous	simulations.	We	set	the
FSR	parameters	at	PD	=	60,	PC	=	0.01,	and	 PS	=	PE	=	6,	and	assigned	uniform	random	initial	agent	coordinates	and	headings.	At	each	time	step	of	the	simulation,	the
program	calculated	flocking	and	leadership	(L)	indices.	The	results	showed	that	compact,	stable	flocks	emerged	and	were	maintained	in	72%	of	the	simulations	(see
Figure	9).

(a)

(b)
Figure	9.	Time	series	of	index	ΚF(t)	for:	(a)	an	example	of	a	compact,	stable	flock,	and	(b)	an	example	of	a	loose,	unstable	flock.

Toroidal	world	size:	150	×	120;	20	agents;	perceptual	depth:	80;	scope:	5π/4;	and	FSR	parameters:	PD	=	60,	PC	=	0.01,	PS	=	PE	=	6.

For	the	simulations	in	which	compact,	stable	flocks	emerged,	we	searched	for	possible	patterns	in	how	the	flocking	index	behaved	during	the	time	steps	immediately
prior	to	flock	emergence.	Figure	10	shows	four	examples	with	a	zoom	on	the	100	time	units	prior	to	that	point.	No	regular	patterns	were	observed	(i.e.	no	general	growth
model	seemed	reasonable),	except	for	an	abrupt	increase	in	the	flocking	index	(ranging	between	0.3	and	0.5	in	kappa	units)	approximately	20	time	units	prior	to	flock
emergence.

Figure	10.	Four	examples	of	the	time	series	of	index	ΚF(t)	in	the	100	time	units	immediately	prior	to	flock	emergence.	Note	that	there
was	a	sharp	increase	in	approximately	the	last	20	time	units.

Flock	Leadership

P-Flock	computed	a	leadership	index	for	each	agent	at	each	time	unit.	The	agent	with	the	highest	leadership	index	 Lj	at	time	 t	could	be	considered	the	momentary
leader.	Leadership	was	dubious	if	ΚF(t)	was	low,	say,	less	than	0.80;	in	that	case,	two	or	more	groups	of	agents	could	have	formed	flocks	independently,	and	thus	the
agent	with	the	highest	leadership	index	could	not	be	viewed	as	the	leader	for	the	whole	group.	When	leadership	was	not	dubious,	an	agent	with	the	highest	Lj	for	a	long
period	of	time	could	be	considered	a	stable	leader.	Stable	leadership	was	mutually	exclusive,	i.e.	there	could	only	be	one	stable	leader	at	a	time.	An	example	of	stability
of	leadership	is	shown	in	Figure	11.
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Figure	11.	Time	lines	indicating	leadership	periods	for	a	simulation	with	20,000	time	units.	Each	colour	represents	a	different	agent.
Long	segments	indicate	stable	leaders.	A	succession	of	very	short	segments	is	shown	at	the	beginning	of	the	simulation	representing

an	initial	period	when	no	stable	flocks	had	formed	yet.

The	distribution	of	leadership	time	among	the	agents	could	indicate	how	stable	or	unstable	the	leaders	were.	A	group	with	a	single	leader	throughout	the	simulation
would	have	had	a	totally	skewed	time	distribution,	with	one	agent	monopolizing	all	the	leadership	time;	conversely,	a	group	whose	agents	took	over	as	leaders
successively	and	perhaps	recurrently	would	have	had	a	more	uniform	time	distribution.	We	computed	the	distributions	of	leadership	time	for	groups	of	20	agents	from
the	results	of	100	simulations	obtained	previously	(see	section	Flock	Emergence).	The	simulations	were	divided	into	two	sets:	those	that	showed	compact,	stable	flocks
(72%)	and	those	that	showed	unclear	flocks	(28%).	For	each	simulation,	the	total	leadership	time	of	each	agent	was	obtained	and	its	unconditional	probability	was
computed;	the	entropy	of	the	time	distribution	was	calculated	using	Shannon	&	Weaver's	(1949)	formula,	H	=	-	Σ	 pi	log2(pi),	where	pi	is	agent	i's	unconditional	probability
of	being	a	leader,	and	is	estimated	as	the	proportion	of	time	the	agent	was	the	leader	during	the	simulation.	Entropy	measures	the	degree	of	uncertainty	(in	bits).	Thus,
if	an	agent	monopolized	all	the	leadership	time,	H	=	0	bits;	conversely,	if	all	the	agents	(N)	in	the	group	were	leaders	for	exactly	the	same	amount	of	time,	entropy	was
the	maximum,	H	=	log2(N)	bits.	Average	entropy	for	the	first	set	of	simulations	(compact,	stable	flocks)	was	2.835	bits	(standard	deviation	0.449	bits),	and	for	the	second
set	(loose,	unstable	flocks)	was	3.224	bits	(standard	deviation	0.494	bits);	maximum	entropy	was	log2(20)	=	4.322	bits. 	A	two	tailed	t-test	showed	a	significant	difference
between	them	(t	=	-3.62;	p	<	0.001;	df	=	46).	Therefore,	when	flocks	were	compact	and	stable,	their	leaders	tended	to	remain	stable	and	monopolize	the	leadership	time
more	than	when	flocks	were	loose	and	unstable,	in	which	case	leaders	tended	to	change	more	often.

Centrality	and	Leadership

Being	in	a	centre	position	with	respect	to	the	other	agents	could	have	caused	an	agent	to	become	a	leader,	as	it	could	have	been	perceived	as	one	by	most	other
agents.	In	order	to	determine	whether	the	emergence	of	a	leader	agent	could	be	predicted	from	its	initial	location	relative	to	the	other	agents,	centrality	at	time	0	was
computed	for	298	agents	that	had	shown	stable	leadership,	i.e.	whose	leadership	remained	for	long	periods	of	time	during	the	simulations.

Agent	centrality	was	calculated	according	to	Mardia	( 1972):	for	each	agent	i,	a	unit	vector	towards	every	other	agent	 j	was	computed	at	time	0,	wij	=	(uij,	vij),	with
coordinates	uij	=	(xj	-	x i)/dij	and	vij	=	(yj	-	y i)/dij,	where	(xi,	yi)	and	(xj,	yj)	are	agent	i's	and	j's	coordinates	at	time	0,	respectively,	and	 dij	is	the	distance	between	them.
Agent	i's	centrality	is	thus	the	module	of	the	sum	of	its	unit	vectors	towards	all	the	other	agents,	i.e.	 Gi	=|Σi	≠	j	wij|.	The	smaller	the	Gi,	the	more	central	agent	 i's	location
is	in	relation	to	the	other	agents.	An	example	is	shown	in	Figure	12	for	a	group	of	8	agents.	Unit	vectors	for	two	agents	(green	and	yellow)	and	the	sums	of	those	vectors
(in	red)	are	displayed;	because	the	green	agent's	location	is	more	central	than	the	yellow	agent's,	its	unit	vectors	are	more	uniformly	distributed,	thus	yielding	a	sum
vector	with	a	smaller	module.

Figure	12.	Centrality	vectors	(in	red)	for	two	agents	in	a	group	of	eight
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Figure	13	shows	the	number	of	stable	leaders	as	a	function	of	their	initial	centrality	ranks,	where	rank	1	means	maximum	centrality,	i.e.	the	smallest 	Gi;	because	the
total	number	of	agents	was	set	at	20,	agents	with	a	centrality	rank	20	were	the	most	peripheral	at	the	beginning	of	the	simulations.	For	initial	centrality	to	be	a	predictor
of	future	leadership,	the	distribution	of	ranks	had	to	be	positively	skewed,	i.e.	many	stable	leaders	would	have	ranks	of	1	or	similar,	and	there	would	be	progressively
fewer	stable	leaders	with	ranks	far	above	1.	However,	as	the	figure	indicates,	initial	centrality	did	not	seem	to	be	correlated	with	leadership.	Agents	that	became	stable
leaders	were	located	indistinctively	in	central	and	peripheral	positions	at	the	beginning	of	the	simulations.

Figure	13.	Number	of	stable	leaders	(N=298)	as	a	function	of	their	initial	centrality	ranks.	Rank	1	means	maximum
centrality

Discussion	and	Conclusions

Like	a	classic	Reynolds	model,	our	agent-based	model	made	flocks	emerge.	Unlike	it,	our	model	did	not	assume	that	agents	could	perceive	and	evaluate	distances	and
velocities	for	groups	of	neighbouring	agents	in	order	to	match	their	movements.	Instead,	the	Flocking	Synthesis	Rules	only	required	each	agent	to	adapt	momentarily	to
the	other	agents	it	encountered,	and	adaptation	was	accomplished	by	rewarding	and	penalizing	attempted	approaches	and	movements	away.	Moreover,	in	our	model
agents	tried	to	minimize	their	local	dissatisfaction	by	moving	to	the	positions	in	their	local	neighbourhood	where	they	predicted	that	the	differences	between	the	real
distances	they	kept	from	the	currently	perceived	agents	and	the	ideal	distances	they	wanted	to	keep	from	them	would	be	minimal.	In	turn,	the	ideal	distances	varied	as	a
consequence	of	rewarding.	Each	agent	tried	to	minimize	its	dissatisfaction	independently,	and	therefore	moving	to	a	certain	position	where	the	minimum	was	predicted
did	not	guarantee	that	it	would	be	fulfilled,	as	neighbouring	agents	would	have	moved	as	well.	Consequently,	it	was	highly	unlikely	for	all	agents	to	reach	an	absolute
minimum;	that	lack	of	equilibrium	was	what	maintained	the	group	in	movement.	Still,	nothing	in	the	FSRs	indicated	that	the	agents	had	to	move	in	a	coordinated	fashion
as	a	whole.	Therefore,	when,	as	a	result	of	repeated	dyadic	interactions	and	applications	of	the	FSRs,	the	group	tended	to	move	in	the	same	direction	in	a	compact	way,
we	could	say	that	a	flock	emerged	from	the	local	dyadic	rules.

The	fact	that,	once	a	flock	had	emerged,	certain	agents	tended	to	be	at	one	end	of	the	group	for	long	periods	of	time	and	the	rest	of	the	agents	seemed	to	"follow"	them
might	prompt	an	external	observer	to	label	the	former	agents	"leaders".	Again,	nothing	in	the	FSRs	specified	that,	depending	on	certain	dyadic	interactions,	certain
agents	should	become	leaders,	and	therefore,	leadership	in	our	virtual	flocks	was	also	an	emergent	phenomenon.

We	developed	a	method	for	quantifying	the	degree	to	which	a	group	of	agents	moved	in	a	coordinated	fashion	(flocking	index)	and	applied	concepts	from	social
networks	in	order	to	obtain	the	degree	to	which	each	individual	agent	was	a	leader.	These	indices	were	computed	by	our	P-Flock	program	at	each	simulation	step,	thus
providing	time	series	that	could	be	inspected	to	indicate	when	a	flock	emerged,	whether	it	was	maintained	for	short	or	long	periods	of	time,	and	which	agent	had	the
highest	leadership	index	and	for	how	long.	Leadership	indices	indicated	where	agents	were	located	in	the	hierarchy	of	coordinated	movement;	the	agent	with	the
highest	leadership	index	had	all	other	agents	behind	it,	while	agents	with	lower	indices	had	some	subgroup	of	other	agents	behind	them,	and	so	on.

Due	to	the	great	many	possible	agent,	world	and	model	parameter	combinations,	we	could	only	explore	some	of	them.	Our	aim	was	to	determine	which	of	them	favoured
flock	emergence	and	then	characterize	stable	agents.	We	first	varied	some	world	parameters	and	left	agents'	perceptual	and	model	parameters	constant;	then,	once	an
optimal	world	size	was	found,	several	combinations	of	perceptual	parameters	were	explored,	while	keeping	FSR	parameters	constant;	finally,	several	combinations	of
FSR	parameters	were	explored	and	the	rest	of	parameters	remained	constant.	Of	course,	this	procedure	did	not	guarantee	that	we	would	find	the	optimal	combination
for	all	parameters;	a	full	factorial	design	including	all	of	them,	or	a	fractional	factorial	design	including	a	subset	of	the	more	relevant	parameters,	would	make	that
possible.	Our	results	were	therefore	tentative	and	can	be	summarized	as:	(a)	the	bigger	the	world	size,	the	more	stable	the	flocks	were	once	they	emerged;	(b)	the	most
compact,	stable	flocks	appeared	when	the	agents'	perceptual	distance	was	large	and	their	scope	was	small;	(c)	for	the	optimal	combinations	of	parameters	found,
compact,	stable	flocks	emerged	and	were	maintained	in	72%	of	the	simulations.

Finally,	we	explored	how	leaders	behaved	once	stable	flocks	formed	and	found	that:	(a)	when	flocks	were	compact	and	stable,	their	leaders	also	tended	to	remain
relatively	stable	and,	although	several	agents	could	become	absolute	leaders	one	after	another,	they	tended	to	monopolize	the	total	leadership	time	more	when	flocks
were	compact	and	stable	than	when	they	were	loose	and	unstable,	in	which	case	leaders	tended	to	change	more	often;	and	(b)	future	leadership	could	not	be	predicted
based	on	initial	agent	centrality,	as	agents	in	both	central	and	peripheral	positions	at	the	beginning	of	the	simulations	eventually	became	stable	leaders.

Multi-agent	simulation	gives	us	a	powerful	tool	to	study	the	emergence	of	leaders	in	self-organized	groups	of	individuals.	Both	the	flock-inspired	approach	and	multi-
agent	simulation	provide	a	promising	framework	for	future	research	on	leaders	and	leadership.	More	simulation	experiments	with	P-Flock	are	necessary	to	understand
and	characterize	the	emergence	of	stable	leaders	in	flocks.	Future	developments	will	include	a	new	version	of	the	program	for	simulating	flocks	in	three	dimensional
worlds	and	the	validation	of	the	model	and	the	program	by	fitting	it	to	empirical	data	from	automatic	tracking	of	individuals	in	fish	schools,	obtained	in	controlled
laboratory	experiments.

	Acknowledgements

This	project	was	partially	supported	by	grants	from	the	Directorate	General	for	Research	of	the	Government	of	Catalonia	(2005SGR-0098,	2009SGR-1492),	from	the

http://jasss.soc.surrey.ac.uk/13/2/8.html 13 07/10/2015



Directorate	General	for	Higher	Education	and	Culture	of	the	Spanish	Government	(SEJ2005-07310-C02-01/PSIC,	PSI2009-09075)	and	from	the	European	Union's
ERDF	program.	The	authors	would	like	to	thank	Antoine	Berlemont	for	his	assistance	running	simulations	and	data	analyses,	Axel	Guillaumet	for	developing	the
Windows	viewer	component	for	P-Flock	2.0,	and	two	anonymous	reviewers	for	their	comments	and	suggestions	on	an	earlier	version	of	the	manuscript.

Appendix

Pseudocode	of	the	P-Flock	program

Figure	A1.	General	variables	and	initial	setup
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Figure	A2.	Agent	movement	and	dissatisfaction
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Figure	A3.	Updating	of	ideal	distances	according	to	the	Flock	Synthesis	Rules
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