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Abstract

Certain	social	preference	models	have	been	proposed	to	explain	fairness	behavior	in	experimental	games.	Existing	bodies	of	research	on	evolutionary	games,	however,
explain	the	evolution	of	fairness	merely	through	the	self-interest	agents.	This	paper	attempts	to	analyze	the	ultimatum	game's	evolution	on	complex	networks	when	a	number
of	agents	display	social	preference.	Agents'	social	preference	is	modeled	in	three	forms:	fairness	consideration	or	maintaining	a	minimum	acceptable	money	level,	inequality
aversion,	and	social	welfare	preference.	Different	from	other	spatial	ultimatum	game	models,	the	model	in	this	study	assumes	that	agents	have	incomplete	information	on
other	agents'	strategies,	so	the	agents	need	to	learn	and	develop	their	own	strategies	in	this	unknown	environment.	Genetic	Algorithm	Learning	Classifier	System	algorithm	is
employed	to	address	the	agents'	learning	issue.	Simulation	results	reveal	that	raising	the	minimum	acceptable	level	or	including	fairness	consideration	in	a	game	does	not
always	promote	fairness	level	in	ultimatum	games	in	a	complex	network.	If	the	minimum	acceptable	money	level	is	high	and	not	all	agents	possess	a	social	preference,	the
fairness	level	attained	may	be	considerably	lower.	However,	the	inequality	aversion	social	preference	has	negligible	effect	on	the	results	of	evolutionary	ultimatum	games	in	a
complex	network.	Social	welfare	preference	promotes	the	fairness	level	in	the	ultimatum	game.	This	paper	demonstrates	that	agents'	social	preference	is	an	important	factor
in	the	spatial	ultimatum	game,	and	different	social	preferences	create	different	effects	on	fairness	emergence	in	the	spatial	ultimatum	game.

Spatial	Ultimatum	Game,	Complex	Network,	Social	Preference,	Agent	Based	Modeling

	Introduction

Classical	game	theory	is	not	sufficient	to	explain	the	fairness	or	altruistic	behavior	commonly	observed	in	social	systems	and	experimental	games.	To	resolve	this	issue,	a
number	of	researchers	have	deviated	from	the	self-regarding	rational	choice	paradigm	in	economics	(Camerer	2003;	Montet	and	Serra	2005 )	and	have	forwarded	the	social
preference	theory.	In	recent	years,	however,	research	on	evolutionary	games	in	network	has	likewise	received	significant	attention.	By	adding	the	factor	of	spatial	or	network
structure	to	the	agents	interaction	model,	researchers	have	discovered	various	interesting	results	(Lieberman	et	al.	2005;	Szabóa	and	Fáth	2007).	At	present,	it	has	been
accepted	that	the	structure	of	agent	interaction	indeed	plays	an	important	role	in	a	significant	number	of	spatial	games.	Further,	it	is	worth	mentioning	that	in	the	evolution	of
spatial	games,	social	preference	has	received	negligible	attention.

The	evolutionary	spatial	game	theory	attempts	to	explain	the	emergence	of	fairness	behavior.	However,	merely	a	handful	of	literature	mention	that	agents	may	possess
varying	social	preferences,	a	salient	feature	of	human	beings	in	society.	When	do	agents	display	social	preference	in	the	game	evolution	process?	Social	preference	is	not
merely	the	outcome	of	the	evolution,	but	an	important	element	in	the	fairness	evolution	process	as	well.	It	may	have	a	substantial	effect	on	evolution	results.	Since	social
preference	has	been	proved	useful	in	explaining	fairness	behavior	in	experimental	games,	it	will	be	interesting	to	study	whether	social	preference	works	in	the	spatial	game
situation	as	well.

This	paper	focuses	on	the	spatial	ultimatum	game.	In	the	simple	ultimatum	game,	two	players	are	asked	to	divide	a	specific	amount	of	money.	One	is	chosen	as	the	first
player	or	proposer,	while	the	other	serves	as	the	responder.	The	proposer	suggests	a	way	to	split	the	money.	If	the	suggestion	is	accepted	by	the	responder,	the	money	will
be	shared	accordingly.	If,	however,	the	suggestion	is	rejected,	both	players	will	get	nothing.	According	to	the	game	theory	(Rubinstein	1982),	the	Nash	equilibrium	of
ultimatum	game	states	that	the	proposer	should	extend	the	least	possible	amount	of	money	to	the	responder.	However,	contrary	to	game	theory	predication,	extensive
experiments	on	the	ultimatum	game	have	revealed	that	the	responder	in	most	cases	will	reject	the	offer	if	he	deems	the	suggestion	unfair	(Güth	et	al.	1982 ;	Kahneman	et	al.
1986;	Camerer	2003;	Bolton	and	Zwick	1995 ;	Cameron	1999;	Croson	1996;	Güth	et	al.	2007 ;	List	and	Cherry	2000;	Hoffman	et	al.	1996 ;	Oosterbeek	et	al.	2004 ).	Curiousity
abounds	as	to	why	the	game	theory	predication	is	different	from	social	facts	and	experimental	results.	What	happens	if	the	agents	are	placed	in	a	complex	network	and	the
ultimatum	game	is	played	again?

Similar	to	the	widely	studied	prisoner's	dilemma	game,	the	ultimatum	game	has	received	significant	attention.	One	main	research	approach	is	the	evolutionary	spatial
ultimatum	game,	which	introduces	the	network	structure	among	agents.	Page,	Nowak,	and	Sigmund	(2000)	first	applied	evolutionary	game	theory	to	analyze	the	spatial
ultimatum	game	on	a	lattice	grid.	They	demonstrated	that	natural	selection	chooses	an	unfair	solution	in	a	nonspatial	setting.	However,	in	a	spatial	setting,	much	fairer
outcomes	survive.	Nowak,	Page,	and	Sigmund	(2000)	developed	another	model	which	added	the	reputation	factor.	Their	research	results	revealed	that	fairness	would	evolve
if	the	proposer	could	obtain	information	on	the	responders'	past	behavior.	As	in	other	cooperative	games	and	market	competition	games,	the	evolution	of	fairness	is	related	to
the	agent's	reputation.	Killingback	and	Studer	(2001)	likewise	demonstrated	that	considerably	fair	divisions	are	evolved	in	a	spatial	structured	context,	and	the	spatial
structure	provides	a	natural	explanation	for	the	collaborative	behavior.

Recently,	Kuperman	and	Risau-Gusman	( 2008)	focused	on	the	topology's	effect	on	the	spatial	ultimatum	game.	They	studied	the	spatial	non-homogeneous	ultimatum	game
based	on	an	agent	model	and	analyzed	the	effect	of	the	neighborhood	and	spatial	structure's	size.	They	observed	that	the	increase	in	neighborhood	size	and	disorder	degree
pushed	agents	to	a	more	rational	level.

Other	papers	likewise	tapped	the	agent-based	simulation	to	study	the	evolutionary	ultimatum	game.	A	number	treated	the	agent	as	an	automaton	playing	the	ultimatum
game,	and	these	research	focused	on	agent	behavior	and	evolution.	However,	none	succeeded	in	placing	agents	in	a	complex	network	(Riechmann	2001,	Hayashida	2007).

Another	research	approach	to	the	ultimatum	game	focuses	on	the	agent's	behavior,	especially	the	social	preference	displayed	by	certain	agents.	Experimental	economics
and	behavior	science	during	the	past	decades	have	revealed	that	certain	agents	may	exhibit	social	preference.	Further,	behavior	economists	have	suggested	some	new
utility	functions	to	describe	the	agent's	social	preference	(other-regarding).	Although	the	social	preference	theory	relaxes	the	selfish	agent	assumption,	it	still	can	be
considered	as	a	type	of	rational	choice	theory.	Rabin	(1993)	developed	a	"fairness	equilibrium"	to	include	agent	motivations	in	explaining	experimental	evidence.	His	main
idea	may	be	summarized	as,	"People	like	to	help	those	who	are	helping	them,	and	to	hurt	those	who	are	hurting	them."	This	reciprocal	intention	consideration	has	a	significant
effect	on	agent	behavior.	While	Rabin's	model	assumes	that	an	individual	does	not	care	about	how	the	agent	payoff	distribution	transpires,	Bolton	and	Ockenfels	(2000)
proposed	a	model	called	"Equity,	Reciprocity,	and	Competition"(ERC)	where	the	agent	is	concerned	about	his	relative	payoff	compared	to	others.	The	ERC	model	attempted
to	capture	three	features	of	behavior	as	reported	from	experiments:	equity,	reciprocity,	and	competition.	The	ERC	model	can	explain	the	reciprocal	pattern	found	in
experiments	on	cooperation	games.	Fehr	and	Schmidt	(1999)	proposed	an	inequity	aversion	model	similar	to	ERC.	Their	model	assumed	that	there	is	a	fraction	of	agents
motivated	by	self-centered	inequity	aversion	apart	from	the	selfish	agents.	Andreoni	and	Miller	(2002)	proposed	a	social	welfare	preference	model	where	agents	care	about
social	welfare	as	well	as	individual	utility.	Charness	and	Rabin	(2002)	integrated	reciprocal	preference	and	social	welfare	preference	into	their	model.	Aside	from	the	above
social	preference	models,	a	number	of	extensions	and	integrated	models	have	been	developed	recently	(Falk	and	Fischbacher	2006 ).	Although	social	preference	can	explain
agent	behavior	in	experiments,	the	agent's	social	preference	and	its	effect	on	complex	network	remain	issues	worth	studying.
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The	above	models	commonly	assume	that	agents	possess	complete	information	on	their	neighboring	agents'	strategies.	Under	this	circumstance,	agents	can	imitate	the
strategy	of	the	agent	who	achieves	the	biggest	payoff	in	his	neighborhood.	What	happens	when	this	is	no	longer	true?	As	game	theory	has	demonstrated,	information	and
players'	moving	sequence	are	critical	in	the	games.	Straub	and	Murnigh	(	1995)	designed	experiments	to	test	the	effect	of	information	on	the	ultimatum	game.	Croson	( 1996)
studied	the	role	of	information-money	and	relative	fairness-in	determining	offer	and	response	through	experiments.	Huck	(1999)	analyzed	the	responder	behavior	in	ultimatum
offer	games	with	incomplete	information.	By	endogenizing	first	moving	advantage	in	the	ultimatum	game,	Poulsen	(2007)	analyzed	information's	role	in	an	evolutionary
ultimatum	game	where	responders	possess	acceptable	thresholds	and	proposed	offers	are	conditioned	on	any	available	information	on	the	responders'	thresholds.	They
demonstrated	that	the	higher	the	probability	of	receiving	correct	information	on	the	thresholds	and	the	lower	the	price,	the	larger	the	share	of	the	money	obtained	by	the
responders.	Poulsen	likewise	pointed	out	that	although	information	on	responders'	thresholds	is	desirable	for	an	individual	proposer,	it	will	hurt	proposers	as	a	group	in	the
long	run.

Based	on	the	above	mentioned	studies,	information	can	be	considered	to	be	an	important	factor	in	the	ultimatum	game.	Therefore,	it	may	be	helpful	to	integrate	this	factor
into	the	ultimatum	game	on	networks	as	well.	When	the	proposer's	suggestion	is	rejected,	the	proposer	will	not	obtain	the	exact	information	on	his	opponents'	minimal
acceptable	money.	The	agent	is	unsure	of	other	agents'	strategies	except	for	the	offers	he	can	receive.	In	this	situation,	agents	cannot	simply	imitate	the	best	strategy	of	their
neighboring	agents.

The	purpose	of	this	paper	is	to	study	the	ultimatum	game	while	integrating	social	preference	utility	function	with	evolutionary	game	theory	in	a	complex	network	through	an
agent-based	approach.	In	this	model,	a	few	heterogeneous	agents	displaying	social	preference	are	allowed	and	their	effects	on	the	evolution	of	ultimatum	game	in	a	complex
network	are	studied.

Unlike	the	limited	number	of	strategies	such	as	cooperation	or	defection	in	the	prisoner's	dilemma	game,	the	ultimatum	game	distinctly	features	a	continuous	strategy	space.
In	various	research,	agents'	strategies	are	assumed	to	be	distributed	over	a	unit	interval	[0,	1].	Through	natural	selection	or	imitation	and	agents'	spatial	interaction,	the	fittest
survives.	However,	this	assumption	is	not	always	realistic,	and	this	approach	fails	to	explain	the	emergence	of	fairness	behavior	as	it	merely	addresses	the	question	of	which
strategy	will	most	likely	survive	in	the	evolution.	Another	feature	of	ultimatum	game	is	that	agents	may	only	have	incomplete	information	on	other	players.	Even	if	the
proposer's	suggestion	is	rejected,	he	does	not	attain	complete	information	on	his	opponents'	minimal	acceptable	money.	Agents	are	unsure	of	other	agents'	strategies,	with
the	exception	of	the	offer	he	can	receive.	Therefore,	agents	cannot	merely	imitate	their	neighbor's	best	strategy,	which	may	be	the	case	if	they	possessed	complete
information	on	other	agents'	strategies.	Under	such	an	environment,	agents	need	to	learn	and	probe	in	the	strategy	space,	hoping	to	obtain	the	strategy	which	can	raise	the
largest	utility.

This	paper	will	explore	social	preference	in	fairness	behavior	emergence	under	the	condition	where	each	agent	needs	to	determine	the	best	strategy	in	a	continuous	strategy
space	because	of	limited	information	on	other	agents.	Through	agent-based	simulation,	the	following	questions	will	be	investigated:	Is	social	preference	helpful	in	promoting
fairness	level	in	spatial	ultimatum	game?	How	do	different	social	preferences	affect	the	evolution	of	spatial	ultimatum	game?	First,	this	study	will	address	the	case	where
agents	possess	fairness	considerations,	which	prescribe	the	least	money	they	wish	to	accept	in	the	ultimatum	game.	Next,	the	case	of	inequity	aversion	preference	in	the
network	will	be	tested,	where	the	agents	care	about	other	agents'	payoffs.	Finally,	the	case	of	social	welfare	preference,	whose	main	feature	is	that	an	agent	cares	about
social	welfare	other	than	his	own	payoff,	will	be	tested	as	well.

The	Model

The	model	consists	of	a	set	of	N	agents	connected	through	a	complex	network.	This	network	defines	the	neighborhood	for	each	agent	in	the	system.	In	each	simulation	step,
every	agent	interacts	with	those	in	his	own	neighborhood.	The	network	in	question	is	a	Watts-Strogatz	(WS)	small	world	network	(Watts	and	Strogatz	1998).

In	the	model's	initial	status,	each	agent	is	assigned	a	playing	strategy	 s(oi	,ri),	which	is	given	by	a	pair	of	real	numbers	(o i,ri)∈[a,b].	Here,	a≤b;	oi	is	the	offer	of	agent	 i	when
acting	as	a	proposer,	and	ri	is	the	reserve	level	or	the	least	amount	which	agent	 i	could	accept	when	he	is	a	responder.	In	a	two-agent	ultimatum	game,	the	total	sum	allotted
is	equal	to	1.

In	each	step	of	the	simulation,	each	agent	must	play	separate	ultimatum	games	with	all	his	neighboring	agents.	In	every	game,	the	single	ultimatum	game	between	two
directly	linked	players	is	played	twice,	while	agents	alternate	between	the	roles	of	offerer	and	responder.

If	agent	i	with	strategy	s(oi	,ri)	interacts	with	agent	j	with	strategy	s(oj	,rj),	the	payoff	pij	agent	i	will	obtain	is	set	as	follows:

(1)

The	total	payoff	received	by	each	agent	is	calculated	after	each	has	played	with	his	entire	neighborhood	of	agents.	Each	agent	then	decides	to	select	a	strategy	for	the
current	condition.	In	this	model,	both	the	oi	and	ri	of	agent	i	can	be	adjusted	to	maximize	agents'	payoff.	However,	as	previously	noted,	agent	 i	possesses	no	exact
information	on	the	least	amount	of	money	which	other	agents	will	accept.	To	model	the	adaptive	learning	behavior	under	this	situation,	Genetic	Algorithm	Learning	Classifier
System	(GALCS)	is	employed,	This	is	an	evolutionary	learning	algorithm	based	on	Holland's	Learning	Classifier	System	(Holland	1976).

Based	on	the	situations	faced	by	the	agent	and	the	correspondent	strategies'	performance,	GALCS	will	assign	and	update	a	probability	vector	in	every	state	for	the	agents.
This	determines	which	strategy	will	most	likely	be	utilized.	The	strategy	is	chosen	according	to	the	random	number	generated	in	the	interval	[0,	1].	GALCS	may	be
considered	as	a	type	of	reinforcement	learning	algorithm,	though	the	rule	is	not	based	on	a	fixed	(oj	,rj)	value	but	on	the	situations	in	which	the	agent	may	be	situated.
Through	the	evolution	process,	the	rules	(strategy	and	current	status)	which	have	brought	more	payoffs	will	more	likely	survive	and	attain	more	opportunities	for	future	use.
Under	the	uncertain	circumstance	inherent	in	this	study's	model,	GACLS	is	a	reasonable	learning	mechanism.	The	more	status	included	in	the	GALCS,	the	more	efficient	it
will	be	for	the	strategies'	evolution,	even	though	its	performance	will	be	greatly	lowered	and	convergence	time	will	be	longer.	In	the	present	spatial	ultimatum	game	model,
four	factors	are	defined	for	identifying	the	situation	determined	by	the	four	status	agent	i:

a.	 Whether	more	than	half	of	the	neighboring	agents	accept	the	offer	proposed	by	agent	 i
b.	 Whether	agent	i's	reserve	level	is	greater	than	the	average	offer	level	of	his	neighboring	agents
c.	 Whether	agent	i's	offer	is	greater	than	the	average	offer	proposed	by	his	neighboring	agents
d.	 Whether	agent	i's	payoff	is	greater	than	his	neighboring	agents'	average	payoff

These	are	the	four	most	important	factors	in	GALCS	that	can	be	observed	by	each	agent.	The	probability	vector	assigned	to	agent	 i	has	nine	elements	corresponding	to	the
nine	strategies	which	may	be	employed	(pi0	,	pi1	,	pi2,	pi3,	…,	pi8),	where	pi0	=	probability	that	agent	 i	will	increase	both	oi	and	ri	(by	a	certain	exogenously	specified
adjustment	step)	when	the	agent	enters	the	same	status;
pi1	=	probability	that	agent	 i	will	increase	oi	and	decrease	oi;
pi2	=	probability	that	agent	 i	will	decrease	both	oi	and	ri;
pi3	=	probability	that	agent	 i	will	decrease	oi	and	increase	 ri;
pi4	=	probability	that	agent	 i	will	increase	oi	and	ri	will	remain	unchanged;
pi5	=	probability	that	agent	 i	will	decrease	oi	and	ri	will	remain	unchanged;
pi6	=	probability	that	agent	 i	will	increase	ri	and	oi	will	remain	unchanged;
pi7	=	probability	that	agent	 i	will	decrease	ri	and	oi	will	remain	unchanged;	and
pi8	=	probability	that	agent	 i's	ri	and	oi	will	both	remain	unchanged.

Upon	entering	into	a	certain	situation,	agent	 i	will	choose	a	strategy	from	the	corresponding	probability	vector	based	on	the	generated	random	number	in	the	interval	[0,	1].
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Agent	i	plays	with	his	neighboring	agents	using	this	strategy,	and	then	adjusts	the	values	of	 ri	and	oi	accordingly	based	on	this	strategy's	payoff.	If	the	strategy	under	the
current	state	provides	agent	i	with	more	or	less	profit	than	the	last	simulation	step,	agent	 i	will	update	the	probability	vector	to	reflect	the	profit	difference.	In	other	words,
agent	i	will	increase	the	probability	for	the	just	chosen	strategy	if	it	yields	more	payoff.	If	this	strategy	under	the	current	state	provides	agent	 i	with	less	profit	than	the	last
simulation	step,	agent	i	will	decrease	the	probability	just	chosen	in	the	probability	vector.	To	ensure	that	the	sum	of	the	probability	vector	is	equal	to	1,	other	elements	in	the
probability	vector	will	likewise	be	modified	at	the	same	time;	otherwise,	agent	i	will	not	change	his	probability	vector.

To	avoid	cases	where	GALCS	is	overtrained,	thus	leaving	space	for	all	strategies,	the	probability	of	each	strategy	is	limited	to	a	certain	upper	limit	value	lower	than	one.
Each	element	in	the	probability	vector,	therefore,	will	not	be	equal	to	zero.

In	this	study's	model,	a	number	of	agents	exhibit	the	social	preference	feature,	which	assumes	three	forms.	First,	agents	display	a	minimum	acceptable	level	in	the	ultimatum
game	because	of	the	fairness	consideration.	Numerous	experiments	on	economics	reveal	that	people	will	always	refuse	the	proposal	which	appear	to	be	exceedingly	unfair.
Second,	certain	agents	display	inequality	aversion	in	the	game.	Following	Fehr	and	Schmidt	(1999)	but	using	a	localized	approach	to	social	preference,	it	is	assumed	that
agent	i's	social	preference	utility	of	payoff	allocation	 X={x1,	x2,	…,	x n}	for	him	and	his	 n-1	neighboring	agents	is	obtained	through	the	following:

(2)

Here,	xi	is	the	material	payoff	of	agent	 i,	and	x j	is	the	material	payoff	of	agent	 j	who	is	the	neighbor	of	agent	 i.	It	is	assumed	that	0	≤ 	ai	<	1	and	 bi	≤	ai,	where	ai	is	the	weight	of
agent	i	assigned	to	represent	the	degree	of	sufferance	when	his	payoff	is	less	than	his	neighboring	agents'	(envy),	and	 bi	is	the	weight	of	agent	 i	assigned	to	represent	the
degree	of	sufferance	when	his	payoff	is	higher	than	his	neighboring	agents'	payoff	(guilt).

In	the	third	kind	of	social	preference,	certain	heterogeneous	individuals	are	assumed	to	care	about	the	welfare	of	other	agents	besides	themselves.	This	consideration	is
limited	within	his	neighborhood.	It	is	assumed	that	agent	i's	social	preference	utility	of	payoff	allocation	 X={x1,	x2,	…,	x n}	for	himself	and	his	 n-1	neighboring	agents	is
provided	by	the	following	formulae,	where	wi	is	the	weight	agent	 i	places	on	the	social	welfare	of	his	neighboring	agents.

(3)

Therefore,	in	the	present	ultimatum	game	model,	the	strategies	of	each	agent	will	evolve	accordingly	and	the	agents	will	be	driven	by	the	pursuit	of	maximum	profit	through
GALCS	learning	in	a	simulation	process.	The	evolving	process	and	agents'	strategy	distribution	in	this	process	can	then	be	observed.

Simulation	Results

The	simulation	is	carried	out	on	a	WS	small	world	network	with	2,000	agents.	Although	there	is	negligible	differences	between	a	WS	small	world	network	and	a	Newman-
Watts	(NW)	small	network	model,	simulation	on	the	latter	is	likewise	conducted.	The	WS	small	world	is	built	using	original	WS	small	world	algorithm	(Watts	and	Strogatz
1998).	During	simulation,	the	effect	of	different	social	preference	forms	on	the	spatial	ultimatum	game	is	tested.	At	the	same	time,	the	parameters	set	of	the	model	are	varied.
Each	simulation	is	performed	with	5,000	steps.	The	system's	synchronous	and	asynchronous	update	mechanisms	are	compared,	but	the	results	reveal	that	these	do	not	yield
any	significant	difference.	Thus,	only	simulation	results	from	a	synchronous	updating	mechanism	are	reported.	The	agent	strategy	updating	step	will	likewise	have	a	small
effect	on	long-term	fairness	level,	and	its	value	is	set	to	0.1.	The	system	may	not	evolve	into	a	stable	status	because	the	agent	will	continuously	update	his	strategy	and
formulate	a	decision	according	to	probability	during	the	simulation	process.	To	achieve	robust	results,	this	study	utilizes	the	values	which	are	averaged	over	30	individual
simulations	for	each	given	set	of	model	parameters.

Minimum	acceptable	level	and	the	fairness	level	in	ultimatum	game

The	case	begins	when	a	few	agents	maintain	a	minimum	or	reserve	acceptable	level	in	the	ultimatum	game.	When	other	agents'	offers	are	lower	than	his	reserve	value,	the
agent	will	reject	the	offer	directly,	for	his	type	has	a	strong	requirement	for	fairness	in	the	ultimatum	game.	It	is	a	very	simple	form	of	social	preference,	but	it	does	exist	in
many	situations	as	shown	in	various	experiments.	It	may	appear	obvious	that	if	an	agent	anticipates	that	the	other	agents	will	reject	his	offer,	which	is	lower	than	their	reserve
value,	he	will	raise	his	offer	level.	Therefore,	the	overall	offer	levels	will	likewise	be	raised.	However,	the	simulation	results	only	support	this	assertion	in	part	if	agents	are
located	in	the	complex	network.	The	simulation	results	reveal	that	the	fairness	level	is	increased	given	the	minimal	reserve	increases	when	the	minimal	reserve	level	is	not
extremely	high.	However,	the	fairness	level	will	drop	to	a	low	level	when	the	reserve	level	increases	to	a	certain	level.	For	example,	when	the	minimum	acceptable	level	is
0.5,	the	average	offer	level	is	even	lower	than	the	average	reserve	level,	which	is	not	observed	in	other	situations.

Figure	1	illustrates	the	dynamic	processes	of	the	average	offer	and	the	reserve	money	level,	with	certain	agents'	minimum	acceptable	level	set	between	0.2	and	0.5	(step	is
0.1)	in	a	WS	small	world	network	when	random	rewire	probability	is	set	to	0.05.	The	initial	strategy	distributions	are	all	drawn	from	the	interval	[0,	0.5].

(a)	Agents'	minimum	reserve	level	is	0.2 (b)	Agents'	minimum	reserve	level	is	0.3

(c)	Agents'	minimum	reserve	level	is	0.4 (d)	Agents'	minimum	reserve	level	is	0.5
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Figure	1.	The	effect	of	minimum	reserve	level.	Heterogeneous	social	preference	agents	number	is	500
On	the	other	hand,	not	all	agents	in	the	complex	network	adopt	the	same	strategy	because	of	their	initial	strategies	and	locations	within	the	network.	Final	strategies
distribution	must	thus	be	checked.	The	corresponding	histograms	are	illustrated	in	Figure	2.	From	these	graphs,	majority	of	agents'	final	strategies	distribution	are	discovered
to	depend	on	the	minimum	acceptable	level.

(a)	Agents'	minimum	reserve	level	is	0.2 (b)	Agents'	minimum	reserve	level	is	0.3

(c)	Agents'	minimum	reserve	level	is	0.4 (d)	Agents'	minimum	reserve	level	is	0.5
Figure	2.	Histogram	with	the	effect	of	minimum	acceptable	level.	Heterogeneous	social	preference	number	is

500

The	agents'	strategies	may	always	change	along	with	those	of	other	agents,	thus	a	stable	status	may	not	be	reached.	To	obtain	robust	results,	the	simulation	is	repeated	30
times,	the	results	of	which	are	summarized	in	Figure	3.

The	number	of	agents	who	display	a	social	preference	is	500.	The	minimum	acceptable	level	is	denoted	by	 ma,	the	average	offer	level	by	 ao,	the	average	reserve	level	by
ar,	and	the	total	payoff	by	 tp.	For	comparison,	the	results	when	no	social	preference	agents	exist	are	likewise	listed.	Under	this	setting,	when	the	minimum	acceptable	level	is
between	0.25	to	0.4,	the	attained	fairness	level	is	highest.	When	the	minimum	acceptable	level	increases	continuously,	the	attained	fairness	level	decreases.	When	the
minimum	acceptable	level	is	0.5,	the	attained	fairness	level	is	not	extremely	different	from	the	case	where	no	minimum	acceptable	level	is	set,	though	reserve	level	is	a	little
higher.	Although	this	result	appears	strange,	it	can	be	explained	from	two	perspectives.	First,	agents	are	situated	in	the	WS	small	world	network	and	they	play	the	ultimatum
game	with	many	neighboring	agents,	not	merely	the	agent	whose	minimum	acceptable	level	is	high.	Therefore,	this	agent	will	consider	his	strategy's	effect	on	other	agents
when	he	modifies	it.	Second,	even	though	the	minimum	acceptable	levels	of	an	agent's	neighbors	are	high,	this	agent's	learning	algorithm	may	limit	his	offer	continuously	to
meet	the	demand	of	the	agents'	highest	minimum	acceptable	level.	Therefore,	in	the	complex	network	environment,	merely	raising	the	minimum	acceptable	level	does	not
necessarily	lead	to	a	high	fairness	level	in	the	ultimatum	game	in	the	WS	small	world	network.	Moreover,	the	overall	payoff	may	be	lowered	when	the	minimum	acceptable
level	is	raised.	This	implies	that	though	the	minimum	acceptable	level	may	raise	the	fairness	level	to	a	certain	extent,	the	system's	total	payoff	is	another	issue.

(a)	Average	offer	and	reserve	level	as	the	function	of	minimum	acceptable
level

(b)	Total	payoff	as	the	function	of	minimum	acceptable
level

Figure	3.	Statistical	average	results	of	the	simulation	when	certain	agents	possess	a	minimum	acceptable	level	in	the	ultimatum	game

The	effect	of	agent	inequality	aversion	social	preference	on	spatial	ultimatum	game

Fehr	and	Schmidt's	(1999)	model	assumes	that	agents	are	heterogeneous.	Although	certain	people	are	not	interested	in	the	allocation	of	wealth	among	the	population,	they
are	interested	in	their	relative	ranking	in	this	wealth	distribution.	This	social	comparison	depicts	agents'	social	preference,	and	this	is	dubbed	"self-centered	in	inequity-
aversion".	This	model	has	successfully	explained	the	observed	behavior	in	many	game	experiments.	However,	what	happens	when	agents	are	distributed	in	a	network	and
they	interact	through	the	network	connections?	Can	this	inequality	aversion	preference	help	explain	the	fairness	behavior	in	the	spatial	ultimatum	game?

Agent	simulation	enables	this	paper	to	explore	this	question.	The	number	of	inequality	aversion	agents	is	first	set	at	500,	and	then	eventually	at	1,500.	The	initial	strategies
distribution	is	drawn	from	the	interval	[0,	0.5].	The	results	are	illustrated	in	Figure	4	(other	cases	yield	similar	results).
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(a)	Agents'	inequality	aversion	weight	is	0.2	and	agents'	initial
strategies	distribution	is	drawn	from	the	interval	[0,0.5]

(b)	Agents'	inequality	aversion	weight	is	0.5.	Agents'	initial	strategies
distribution	is	drawn	from	the	interval	[0,0.5]

Figure	4.	The	dynamic	processes	of	evolution	with	inequality	aversion	agents.	The	number	of	heterogeneous	social	preference	agents	is
500

The	simulation	results	demonstrate	that	this	kind	of	social	inequality	aversion	has	a	small	effect	on	the	spatial	ultimatum	game's	evolution	process.

The	strategy	distribution	of	all	agents	after	running	5,000	steps	is	displayed	in	Figure	5.	The	results	are	not	quite	different	from	the	case	with	no	inequality	aversion	agents.
Although	there	is	a	modest	difference,	simulation	results	reveal	that	inequality	aversion	agents	do	not	play	an	important	role	in	the	spatial	ultimatum	game's	evolution	as	a
result	of	heterogeneous	inequality	aversion.

(a)	Agents'	inequality	aversion	weight	is	0.2	and	agents'	initial
strategy	distribution	is	drawn	from	the	interval	[0,0.5]

(b)	Agents'	inequality	aversion	weight	is	0.5	and	agents'	initial
strategies	distribution	is	drawn	from	the	interval	[0,0.5]

Figure	5.	The	effect	of	inequality	aversion	agents	on	final	strategy	distribution.	Heterogeneous	social	preference	number	is	500

The	simulation	is	repeated	30	times,	and	the	average	results	are	summarized	in	Figure	6.	The	inequality	aversion	agent	number	is	denoted	by	 av.	As	previously	stated,	ai	is
the	weight	of	agent	i	assigned	to	represent	the	degree	of	sufferance	when	his	payoff	is	less	than	his	neighbors',	and	 bi	is	the	weight	of	agent	 i	assigned	to	represent	the
degree	of	sufferance	when	his	payoff	is	higher	than	his	neighbors'.	The	initial	strategy	distribution	of	agents	is	drawn	from	the	interval	[0,	0.5].

(a)	Average	offer	level	as	the	function	of	inequality	aversion	degree
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(b)	Average	reserve	level	as	the	function	of	inequality	aversion	degree

(c)	Total	payoff	as	the	function	of	inequality	aversion	degree
Figure	6.	Statistical	average	results	of	the	simulation	when	certain	agents	display	inequality	aversion	in	the	ultimatum

game

The	results	reveal	that	the	achieved	fairness	level	is	smaller	than	the	situation	when	no	inequality	aversion	agents	exist	and	the	number	of	inequality	aversion	agents	is	large.
In	the	case	of	total	payoff	in	the	system,	inequality	aversion	agents	will	slightly	lower	the	total	payoff	in	the	system.	The	reserve	level,	though,	is	slightly	different.	There	is	no
simple	relationship	between	reserve	level	and	the	number	of	inequality	aversion	agents.	However,	when	inequality	aversion	agents	exist,	the	reserve	level	is	slightly	higher
than	in	other	cases	sometimes.	Therefore,	inequality	aversion	agents	may	lead	to	a	smaller	difference	between	offer	level	and	reserve	level.	This	is	primarily	a	result	of	the
fact	that,	under	the	complex	network,	agents	interact	with	their	neighboring	agents	and	the	inequality	between	agents	is	averaged.	Further,	the	initial	strategies	are
distributed	among	agents	in	the	network.	It	is	therefore	reasonable	to	assume	that	inequality	aversion	does	not	have	a	significant	effect	on	the	spatial	ultimatum	game.	If
strategy	distribution	among	agents	is	modified,	the	result	may	be	different.	This	requires	further	research.

Social	welfare	preference	and	the	ultimatum	game

Another	social	preference	approach	assumes	that	agents	care	about	social	welfare	besides	their	own	payoffs.	This	paper	studies	whether	this	kind	of	social	preference	will
promote	fairness	level	in	the	ultimatum	game.	It	follows	Kohler's	model	(2003),	which	integrates	the	concern	of	self-regarding,	inequality	aversion	with	social	welfare.	It	is
assumed	that	agents	are	merely	concerned	about	their	neighborhood's	welfare.	The	simulation	is	conducted	with	three	different	numbers	of	social	welfare	preference	agents
in	the	network,	and	the	weight	agents	assigned	to	the	welfare	of	their	neighboring	agents	are	changed.	The	results	reveal	that	concern	over	neighboring	agents'	welfare	will
promote	fairness	level	in	the	spatial	ultimatum,	though	the	degree	depends	on	the	weight	agents	placed	on	the	social	welfare.

The	dynamic	processes	of	the	ultimatum	game's	evolution	with	social	welfare	preference	agents	are	displayed	in	Figure	7.	It	is	assumed	that	the	initial	strategies	are
randomly	drawn	from	the	interval	[0,	0.5].

(a)	The	social	welfare	weight	agents	assigned	is	0.3 (b)	The	social	welfare	weight	agents	assigned	is	0.5
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(c)	The	social	welfare	weight	agents	assigned	is	0.7 (d)	The	social	welfare	weight	agents	assigned	is	0.9
Figure	7.	The	dynamic	process	with	social	welfare	preference	agents.	The	number	of	heterogeneous	social	preference	agents	is

500

The	strategy	distribution	after	running	5,000	steps	is	displayed	in	Figure	8.

(a)	The	social	welfare	weight	agents	assigned	is	0.3 (b)	The	social	welfare	weight	agents	assigned	is	0.5

(c)	The	social	welfare	weight	agents	assigned	is	0.7 (d)	The	social	welfare	weight	agents	assigned	is	0.9
Figure	8.	Histogram	with	social	welfare	preference	agents.	The	number	of	heterogeneous	social	preference	agents	is

500

The	simulation	is	repeated	30	times	under	different	sets	of	parameters,	the	average	results	of	which	are	summarized	in	Figure	9.	The	social	welfare	preference	agents'
number	is	denoted	by	av,	and	wi	is	the	weight	which	agent	 i	places	on	the	social	welfare	of	his	neighbors. 	ai	and	bi	are	set	to	0.2.

(a)	Average	offer	level	as	the	function	of	social	preference	degree
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(b)	Average	reserve	level	as	the	function	of	social	preference	degree

(c)	Total	payoff	as	the	function	of	social	preference	degree
Figure	9.	Statistical	average	results	of	simulations	when	certain	agents	possess	social	welfare	preference	in	the	ultimatum

game

It	is	evident	from	the	above	simulation	results	that	the	more	the	social	welfare	preference	agents	and	the	more	weight	the	agent	places	on	social	welfare,	the	higher	the
fairness	level.	This	signifies	that	social	welfare	preference	agents	favor	the	emergence	of	fairness	among	agents	in	the	network.	Otherwise,	the	difference	in	achieved
fairness	level	in	the	ultimatum	game	is	small.	Simulation	results	demonstrate	that	more	agents	will	raise	their	offer	levels	if	more	social	welfare	preference	agents	exist.
Owing	to	the	existence	of	social	welfare	preference	agents,	an	individual	will	care	about	others	and	will	be	more	likely	to	assume	a	strategy	that	is	beneficial	to	the	welfare	of
neighboring	agents.

Conclusion

An	agent-based	model	has	been	designed	to	study	the	effects	of	various	forms	of	social	preference	on	fairness	evolution	in	spatial	ultimatum	games.	Although	many	social
preference	models	can	explain	the	agent	behavior	in	the	experiment,	a	number	are	not	as	effective	when	the	ultimatum	game	is	extended	to	a	network	version.

Three	kinds	of	social	preference	theories	have	been	tested:	fairness	requirement,	inequality	aversion,	and	social	welfare	preference.	The	simulations	imply	that	fairness
requirement	can	promote	fairness	level	in	society	only	in	certain	parameter	intervals.	However,	when	the	minimum	acceptable	level	is	high	and	not	all	agents	in	the	system
display	social	preference,	the	attained	fairness	level	will	be	lower.	Simulation	results	likewise	reveal	that	inequality	aversion	among	agents	has	a	slight	effect	on	the	spatial
ultimatum	game's	evolution.	In	the	spatial	ultimatum	game,	the	existence	of	inequality	aversion	agents	does	not	create	a	significant	difference	on	the	average	offer	and
acceptable	level.

The	case	of	social	welfare	preference	is	quite	different.	Its	effects	depend	on	the	number	of	social	welfare	preference	agents	and	the	weight	placed	on	it.	The	more	the
number	of	social	preference	agents	and	the	more	weight	placed	on	the	social	welfare	utility,	the	higher	the	fairness	level	that	will	be	achieved	by	society.	The	factor	of	social
welfare	changes	the	strategy	distribution	among	the	population	as	well.

By	adding	social	preference	and	incomplete	information	to	the	agent	model	of	spatial	ultimatum	game,	the	fairness	behavior	in	the	ultimatum	game	can	be	explained	in	a
more	realistic	way.	As	it	depicted	in	the	behavior	game	theory,	many	social	factors	will	affect	the	fairness	level	which	emerges	in	the	ultimatum	game.	Incomplete	information
leads	to	a	fairness	level	that	is	lower	than	in	the	case	when	agents	have	complete	information	on	other	agents,	as	demonstrated	by	Page,	Nowak,	and	Sigmund	(2000),
Kuperman	and	Risau-Gusman	(2008),	and	other	empirical	results	( Camerer	2003).	At	the	same	time,	this	study	likewise	confirms	the	idea	that	information	is	an	important
factor	in	the	ultimatum	game,	as	pointed	out	by	Poulsen	(2007).	This	is	applied	in	a	spatial	version	of	ultimatum.	However,	this	study	has	proved	that	with	adequate	social
preference,	the	fairness	level	will	be	enhanced.

Further,	this	study	has	demonstrated	that	social	preference	models	have	various	implications	on	the	complex	network,	which	is	different	from	cases	where	agents	have	no
network	connections	between	them.	Although	inequality	aversion	preference	has	explained	fairness	behavior	in	a	simple	ultimatum	game,	it	fails	to	do	so	in	a	spatial
ultimatum	game.	This	implies	that	agents'	interaction	cannot	remove	the	effect	of	social	preference.	This	is	likewise	a	feature	of	a	complex	system	that	is	composed	of	the
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interactions	between	agents.	Therefore,	it	cannot	be	reduced	to	the	behavior	of	a	single	agent.	However,	social	preference	is	considered	a	feature	for	agents	living	in	a
society,	and	certain	social	preferences	indeed	promote	fairness	level	in	the	spatial	ultimatum	game.	This	study	demonstrates	that	the	relationship	among	evolution,	social
preference,	and	fairness	behavior	is	rather	complex.	Further	study	must	be	conducted	in	this	field,	with	special	focus	on	the	effect	of	agents'	psychology	and	mutual
reciprocity	on	fairness	emergence	and	the	spatial	games'	evolution	process.	Nevertheless,	social	preference	can	play	an	important	role	in	the	evolution	of	the	spatial
ultimatum	game.

Appendix:	Pseudo-code	of	the	model	and	algorithm	of	GALCS

The	model	presented	in	this	work	was	implemented	using	Repast	Simphony.

Model	class

1.	 Generate	2000	agents.	Initialize	the	agents.	Set	the	agents'	offer	and	reserve	level	randomly	from	the	given	interval.
2.	 Build	the	WS	small	world	network;	Agents	are	located	on	the	vertices	of	the	network.
3.	 Randomly	select	given	number	of	agents	to	be	the	agents	possessing	social	preference;
4.	 Build	the	simulation	schedules	as	follows:	

// Because in the simulation process, each agent needs to get some neighboring agents' information, 
// thus it is needed to make sure that each agent's change of status will not affect other agents'
//computation during the same step or tick in simulation

// t signifies time step or tick
 If t=0{   
  //Prepare to begin the model, first compute the payoff and social preference payoff 
  // in the model. Step 1 begins with the strategy choice after which each agent can
  // adjust the strategy vector according to the results in this step.

       for each agent on the network

  {
   // Compute the payoff each agent has received, here no social preference involved.
   computePayoff();
   //Compute the social preference payoff if this agent displays social preference.
   computeSocialPreference(); 
  }

  for each agent on the network {
   // Update the status of this agent when the other works in this step are done.
   postUpdate();  >
  }
 }

 //t[stop] is the time step or tick when simulation stops.
 for t = 1 to t[stop]
 { 
  for each agent on the network {
  //Choose one strategy according to the probability vector. 
  chooseStrategy(); 
   //Adjust the offer and reserve level values.
   adjustStrategy(); 
  }

  for each agent on the network {
   computePayoff(); 
   // Compute the payoff when this agent has modified his offer and reserve level values.
   computeSocialPreference();  
   //Compute the social preference payoff if this agent displays social preference.
  }

  for each agent on the network {
   // Update the strategy vector according to the payoff current strategy achieved. The strategy     
   // which has achieved more utility will increase its probability to be used in future under the
   // current condition.
   updateStrategyProbability ();
  }

  for each agent on the network) {
   // update the status of this agent after the other works in one step are done.
   postUpdate();  
  }
 }

 If t=t[stop]{
   Perform data recording work, write needed data to output file.
  End the model;
 }
 

Agent	class

The	following	methods	are	defined.	They	are	the	methods	deployed	by	the	agents	during	their	interactions	in	the	spatial	ultimatum	game.

GameAgent()	initializes	agents,	especially	sets	strategy	vector,	all	strategies	will	be	set	with	the	same	value	at	first.	The	strategy	vector	is	a	five	dimension	array,	the
first	four	signify	the	condition	agent	faces,	each	has	three	elements,	the	last	represents	the	strategy	which	has	nine	elements,	and	it	is	denoted	by	the	integers	from	0
to	8.	
play(agent1,	agent2)	computes	the	payoff	of	single	play	between	this	agent	with	one	of	his	neighboring	agents.
computePayoff()	computes	total	payoffs	when	an	agent	plays	ultimatum	game	with	neighboring	agents.	
computeSocialPreference()	computes	the	social	preference	according	to	social	preference	utility	function	if	this	agent	is	set	to	display	social	preference.	
chooseStrategy	()	chooses	the	strategy	in	t.
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 chooseStrategy() {
  Compute the average payoff and average offer level of the neighboring agents;
  Compute current offer accepted number and check whether current reserve level
  is larger than average offer level of neighboring agents;

  Identify the status agent faces, including four factors now:

  // conditionO represents how many agents accept the offer in this agents' neighborhood
  if (more than half of the neighboring agents accept this agent's offer)
   conditionO=0;
  else conditionO=1; 

  //conditionR represents whether the reserve level is larger than  
  //the average offer level of neighboring agents
  if (reserve level < average offer level of neighboring agents) conditionr=0; 
  else conditionR=1; 

  if(offer level>=average neighboring agents' offer) conditionN=0;
  else conditionN=1;

  if(current payoff>=average neighboring agents' payoff) conditionT=0;
  else conditionT=1;

  //choose the strategy according to the above parameters;
  choose(conditionO,conditionR,conditionT,conditionN,conditionA);
 }

adjustStrategy()	adjusts	the	values	of	offer	and	reserve	level	according	to	the	choosen	strategy.	

 switch(choosen strategy){
  case 0: increase offer and reserve level;
  case 1: increase offer, decrease reserve level;
  case 2: decrease offer, increase reserve level;
  case 3: decrease offer and reserve level;
  case 4: only decrease offer level, reserve value unchanged;
  case 5: only increase offer level, reserve value unchanged;
  case 6: only increase reserve level, offer value unchanged;
  case 7: only decrease reserve level, offer value unchanged;
  case 8: nothing changed; 
 }
 

updateStrategyProbability	()	updates	the	strategy	vector	i;	

 updateStrategyProbability() {
  Identify the condition this agent faces; 
  if (current social preference utility > previous social preference utility) {
  if (current social preference utility + adjustment step < 
     upper value of the probability) {
   Raise the probability of this strategy by a given step under the current condition; 
   Adjust other elements in the vector to keep the sum 
    of all elements equal to 1 under this condition;
  }
 }
 else if (current social preference utility + adjustment step < upper value of the probability){
  Decrease the probability of this strategy by a given step under the current condition; 
  Adjust other elements in the vector to keep the sum 
    of all elements equal to 1 under this condition;
   }
 else return; //nothing changed;
   }
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