

Imitation and cooperation in different helping games:

Accompanying material
for

Giangiacomo Bravo (2008)
Imitation and Cooperation in Different Helping Games

Journal of Artificial Societies and Social Simulation vol. 11, no. 1 8
�<http://jasss.soc.surrey.ac.uk/11/1/8.html>

Giangiacomo Bravo

Dipartimento di Studi Sociali
Università di Brescia

The model has been implemented using Netlogo 3.1
(http://ccl.northwestern.edu/netlogo/). After setting the simulation parameters and the
turtle strategies, the main routine for all the no-move experimental condition is

to go
 help-others ;(i)
 imitate ;(ii / iii)
 update-globals ;(iv)
 do-plots ;(iv)
 if time = maxtime [stop]
end

while a “move-imitate” procedure (iii) replaces the “imitate” one in all the experimental
conditions allowing agents to move.

(i) The “help-others” procedure implements the helping game (HG). For the private HG
we have

to help-others
 ask turtles
 [let gain benefit * count (turtles-on neighbors) with [strategy = 1]
 set payoff payoff + gain - strategy * cost * count (turtles-on
 neighbors)
]
end

where strategy = 1 means cooperation, while strategy = 0 means defection. The
variables “benefit” and “cost” represent b and c respectively. The payoff function for the
public HG is simply

 set payoff payoff + gain - strategy * cost

(ii) The “imitate” procedure depends on the imitation condition. For the M condition we
have:

to imitate
 ask turtles
 [let n-neighbors count (turtles-on neighbors)
 let tot-npayoff sum values-from (turtles-on neighbors) [payoff]
 let mean-payoff (tot-npayoff / n-neighbors)
 if payoff < mean-payoff
 [let similar-nearby count (turtles-on neighbors)
 with [strategy = strategy-of myself]
 let other-nearby count (turtles-on neighbors)
 with [strategy != strategy-of myself]
 if other-nearby > similar-nearby
 [ifelse strategy = 0
 [set strategy 1
 set color green
]
 [set strategy 0
 set color red
]
]
]
]

end

Notice that defectors are marked in red, while cooperators are marked in green (e.g.
Figure 1 in the main text). For the S condition the procedure is

to imitate
 ask turtles
 [let n-neighbors count (turtles-on neighbors)
 let tot-npayoff sum values-from (turtles-on neighbors) [payoff]
 let mean-payoff (tot-npayoff / n-neighbors)
 if payoff < mean-payoff
 [let n-coop count (turtles-on neighbors) with [strategy = 1]
 let n-def count (turtles-on neighbors) with [strategy = 0]
 if n-coop = 0
 [set strategy-of self 0
 set color red
]
 if n-def = 0
 [set strategy-of self 1
 set color green
]
 if n-coop > 0 and n-def > 0
 [let coop-payoff sum values-from (turtles-on neighbors)
 with [strategy = 1] [payoff]
 let mean-coop-payoff coop-payoff / n-coop
 let def-payoff sum values-from (turtles-on neighbors)
 with [strategy = 0] [payoff]
 let mean-def-payoff def-payoff / n-def
 if mean-def-payoff > mean-coop-payoff
 [set strategy-of self 0
 set color red
]
 if mean-def-payoff < mean-coop-payoff
 [set strategy-of self 1
 set color green
]
]

]
]

end

Finally, for the MS condition the “imitate” procedure is simply

to imitate
 ask turtles
 [let max-payoff max values-from (turtles-on neighbors) [payoff]
 if max-payoff > payoff
 [let new-strategy value-from one-of (turtles-on neighbors)
 with [payoff = max-payoff] [strategy]
 set strategy new-strategy
 if strategy = 1 [set color green]
 if strategy = 0 [set color red]
]
]

end

(iii) In the move condition, the “move-imitate” procedure selects whether “unsatisfied”
agents chose to move or to imitate:

to move-imitate
 ask turtles
 [let n-neighbors count (turtles-on neighbors)
 ifelse n-neighbors > 0
 [let tot-npayoff sum values-from (turtles-on neighbors) [payoff]
 let mean-payoff (tot-npayoff / n-neighbors)
 if payoff < mean-payoff
 [ifelse random 1001 < m
 [move]
 [imitate]
]
]
 [move]
]

end

where m ∈ {1, … , 999} is the propensity to move of each agent. The “imitate”
procedure depends, as below, from the imitation condition, while the “move” procedure
is

to move
 ask turtles
 [let newx xcor + ((random 2) * 2 - 1)
 if newx < 0 [set newx 31]
 if newx > 31 [set newx 0]
 let newy ycor + ((random 2) * 2 - 1)
 if newy < 0 [set newy 31]
 if newy > 31 [set newy 0]
 let test any? turtles-on (patch newx newy)
 if test = false
 [set xcor newx
 set ycor newy
]
]

end

(iv) The “update-globals” procedure updates the global variables after each round and
the “do-plots” one plots the selected indicators.

