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Abstract: Future climate change is expected to have greater impacts on societies whose livelihoods rely on
subsistence agricultural systems. Adaptation is essential for mitigating adverse e�ects of climate change, to
sustain rural livelihoods and ensure future food security. We present an agent-basedmodel, called OMOLAND-
CA, which explores the impact of climate change on the adaptive capacity of rural communities in the South
OmoZone of Ethiopia. The purpose of themodel is to answer research questions on the resilience and adaptive
capacity of rural households with respect to variations in climate, socioeconomic factors, and land-use at the
local level. Our model explicitly represents the socio-cognitive behavior of rural households toward climate
change and resource flows that prompt agents to diversify their production strategy under di�erent climatic
conditions. Results from themodel show that successive episodes of extreme events (e.g., droughts) a�ect the
adaptive capacity of households, causing them to migrate from the region. Nonetheless, rural communities in
the South Omo Zone, and in the model, manage to endure in spite of such harsh climatic change conditions.
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Introduction

1.1 In societieswhose livelihoods rely on subsistence agriculture, the impact of climate change canhave significant
consequences for their survival. Climate change canplace unprecedented stress on rural communities, as itwill
alter their resource base without giving them su�icient time for adaptation (Admasu et al. 2010; Gebresenbet &
Kefale 2012; Oba 2001; Solomon et al. 2007; Thornton et al. 2009). While rural systems have developed various
adaptive strategies over many generations in order to survive, the alteration of any resources can significantly
a�ect evenhighly regarded andaccepted customs, andmay lead to the displacement of populations alongwith
other severe humanitarian consequences (Kniveton et al. 2011).

1.2 In this paper we focus on the South Omo Zone of Ethiopia, a region where climate change is expected to play a
significant role in shaping the future socio-ecological setting of the region. The South OmoZone covers an area
of 2.3 million hectares and is located in the southern part of Ethiopia, bordering Kenya to the south and South
Sudan to the southwest, as shown in Figure 1. It has a total population of over half a million people (570,000
inhabitants in 125,000 households) living in a traditional system of subsistence agriculture dominated by pas-
toral systems (CSA 2012). Historically, communities in this area havemanaged resources and their livelihoods in
the face of challenging climatic conditions formany generations by applying di�erent adaptationmechanisms,
such as increasing herd size, diversifying herds or crops, or migrating (see Admasu et al. 2010; Gebresenbet &
Kefale 2012). While there is significant uncertainty concerning the magnitude and direction of changes in rain-
fall under future climate change scenarios (Funk et al. 2008), the South Omo Zone provides an appropriate
case-study for investigating rural household adaptation to climate variability and associated land use behav-
iors. Specifically, we address the following research questions, among others: Under which climate change
conditions are households pushed beyond the limits of survival? How do variousmixes of herding and farming
a�ect household well-being under climate change conditions? What role do factors such as households’ ability
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to accurately predictweather events have on livelihoods and adaptation to climate change? In the remainder of
this paper, we first provide some background pertaining to climate change adaptation and agent-based mod-
eling (Section 2) which sets the scene for our model. Section 3 introduces in detail our study area and provides
a detailed description of the OMOLAND-CA model, while in Section 4 we present results from the model under
three di�erent scenarios in order to address our research questions. Finally, in Section 5, we discuss policy
implications of this study and identify areas of further research.

Figure 1: Geographical location of the South Omo Zone of Ethiopia.

Background: Climate Change Adaptation and Agent-Based Models

Climate change adaptation

2.1 Adaptation to climate change,which includes adjustments inbehavior or economics, cangreatly reduce vulner-
ability to it by making rural communities more proactive to climate change and variability in weather. Adapta-
tion canmoderate potential damages and help rural communities cope with adverse consequences (McCarthy
et al. 2001; Smith et al. 2011). Several adaptivemeasures havebeendiscussed in previous research, includingdi-
versifying crops and varieties, changing planting dates, rotating crops, intensifying use of irrigation, expanding
farm lands, implementing di�erent soil conservationmechanisms, and diversifying household income sources
(see, for example, Cooper et al. 2008; Deressa et al. 2009; Mendelsohn & Dinar 1999; Osbahr et al. 2008). Knive-
ton et al. (2011) also suggested that seasonal migration of people could be considered an adaptivemechanism,
as seen inBurkina Faso. In the context of pastoral rural communities, Agrawal&Perrin (2009) suggested that ba-
sic adaptation strategies involve functions that share risks through mobility, storage, diversification, common
pooling, and exchange of resources. A similar observation was also made by Morton (2006) based on a review
of studies on coping strategies of pastoralists during recent droughts and long-term adaptations in Northern
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Kenya and Southern Ethiopia. Morton (2006) suggests that the most common adaptation strategies pastoral-
ists use are increasing mobility, increasing herd size, diversifying herd composition, diversifying livelihoods,
and sharing resources. Thornton et al. (2009) also suggested that farming, herd diversification, and increase in
o�-farm activities are the most common pastoralist adaptations. In addition, Adger et al. (2009) observed that
use of local-based knowledge of resource systems and social networks to share risks also plays an important
role in adaptation. Finally, open-access resources, such as wild foods, are another core adaptive mechanism
(Eriksen et al. 2005; Mortimore & Adams 2001).

2.2 Although adaptation to climate change plays a significant role in rural systems, modeling adaptation is ex-
tremely complex due to (a) heterogeneity of rural households and (b) locational and contextual specificity of
mechanisms by which rural communities respond to climate change and variability (Bryan et al. 2009; Morton
2007). Several studies have examined the factors that influence the capacity of rural communities to adapt and
their priority for adaptation measures (see for example, Brooks et al. 2005; Smit et al. 2000; Smit & Skinner
2002; Yohe & Tol 2002). These studies emphasize the importance of natural resources and socioeconomic de-
terminants – such aswealth, technology, information, skills, infrastructure, institutions, and equity – in shaping
the adaptive behavior and themechanismbywhich rural communities respond to climate variability. However,
the role of cognition in adaptation to climate change has so far been largely neglected (Grothmann& Patt 2005;
Kniveton et al. 2011). Smith et al. (2011) suggest that adaptation strategies depend not only on present house-
holds’ characteristics and the surrounding biophysical environment, but also on previous experience and the
networks to which households belong. Grothmann & Patt (2005) also argue that people’s beliefs about risks,
chances, and adaptation drive much of the process of adaptation to climate change. Individuals’ perception
of climate-induced events, the timing of their responses, and their subsequent ability to manage, adapt to, or
escape from the impact of these events determines the type of adaptation strategy used.

Agent-based climate changemodels

2.3 Agent-Based Modeling (ABM) is a natural way of representing socio-cognitive behavior of individuals and sim-
ulating complex interactions between individuals and their environment (Berger & Troost 2014; Cio�i-Revilla
2016; Geard et al. 2013). It provides a viable scientific approach for representing human decision-making pro-
cesses (Balke & Gilbert 2014) and complex interactions between humans and their environments (both natural
and artificial) at di�erent spatial and temporal scales (Crooks & Heppenstall 2012). It has been argued that
agent-based models are particularly useful for developing an understanding of the complex adaptive system
under investigation, where assumptions about processes and interactions can be explored through simulation
(Bert et al. 2015; Epstein 2008; Kelly et al. 2013; Lee et al. 2015). Moreover, it is also possible to use such mod-
els as computational laboratories for exploring interesting scenarios that focus on the local people’s adaptive
responses to di�erent socioeconomic factors and the underlying e�ects on their ecosystem (Crooks & Heppen-
stall 2012). Accordingly, several agent-based models have been developed to examine interactions between
rural households and their environments, including assessing the consequences of household decisions on
land-use and land-cover change (e.g., Bert et al. 2015; Deadman et al. 2004; Liu et al. 2007; Etienne et al. 2003;
Rindfuss et al. 2008; Saqalli et al. 2011); households’ migration behavior (e.g., Cio�i-Revilla et al. 2015; Entwisle
et al. 2008; Kniveton et al. 2008; Smith et al. 2011); vulnerability to climatic factors (e.g., Acosta-Michlik & Espal-
don 2008; Bharwani et al. 2005); adaptation to climate variability (e.g., Bommel et al. 2014; Cio�i-Revilla et al.
2010, 2015; Hailegiorgis et al. 2010); climate risk perception in landmarkets (e.g., Filatova et al. 2011; Putra et al.
2015); and diversification and adoption of new technologies (e.g., Berger 2001; Kaufmann et al. 2009).

2.4 Although previous models provide many insights on the impact of human actions on the environment and
vice versa, they either exclude the representation of socio-cognitive behavior of households altogether or they
greatly simplify the adaptivebehavior and responsesof households to climate change. In this paper, wepresent
a spatiality explicit agent-based model of climate adaptation, namely the OMOLAND-CA (OMOLAND Climate
Change Adaptation) model, which explicitly represents the socio-cognitive behavior of rural households to-
wards climate changeusing the framework of theModel of Private Proactive Adaptation toClimate Change (MP-
PACC) proposed by Grothmann & Patt (2005). OMOLAND-CA is designed to explore interactions and decision-
makingamongheterogeneous actors in rural systems, especially in rural householdswhose livelihood is closely
coupledwith climate and the biophysical environment. Themodel also enables exploration of climate variabil-
ity impacts on actors and their biophysical environment; i.e., how feedback from the environment influences
decision-making at di�erent spatio-temporal scales.
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Methodology

Setting, site, situation

3.1 The South Omo Zone is an area of some of 2.1 million hectares located in the southern part of Ethiopia. It bor-
ders with Kenya in the south and South Sudan in the southwest as shown in Figure 2. The topography of the
Zone shows a distinct gradient along a northeast-southwest direction. At the northeast of the zone, the eleva-
tion ranges between 2500-3500 meters above sea level (m.a.s.l.), while in the southwest, the elevation drops
significantly and falls between 400-500m.a.s.l. Along the elevation gradient, the vegetation cover exhibits vari-
ation. The lowlands are covered with grasslands and woodlands while the highlands are covered with shrubs
and broad leaf trees. The Zone is intersected by the OmoRiver running north to south, draining the higher rain-
fall areas in the northern part of the Zone into Lake Turkana. Along the southeast side, it is also intersected by
the Woito river, which drains the northeast escarpments into the Chew Bahir (aka Salt seas).

3.2 The climate shows a relatively constantmean annual temperature of 28◦. The averagemaximumdaily temper-
ature changes along the elevation gradient from 25◦in the northeastmountainous area to 33◦in the southwest.
Theminimum temperature varies from 20◦in the hottest months of December and January to 15◦during June-
August. Figure 2a provides themean daily temperature of our study area. Rain fallsmostly in a bimodal pattern
across the region, with the long rain during February to April, and short rain in October to November. The rain
mayhappenas one longperiodmainly in thenortheast or the short rain can entirely fail, especially in the south-
west. Themeanannual rainfall patterns showastronggradientwith less than400mmin the southwest andwith
above 1000mm in the northeast as shown in Figure 2b. Although there are twomain rainy seasons, the pattern
and distribution of rainfall varies betweenmonths and years across the Zone.

Figure 2: Climate indices of the South Omo Zone.

3.3 Based on the 2007 Census, the total population of the Zone is 569,448, of which 284,781 (50.01%) aremales and
284,667 (49.99%) are females (CSA2012). The total number of households is 125,009with anaveragehousehold
size of 4.6. Of these, about 80% are male-headed households while the rest, 20%, are female-headed house-
holds. Figure 3 shows the population density of the Zone and although the Zone is less populated (on average
24 person per km2) when compared to the rest of the country, there is an increasing trend in population growth.
For example, in 2007 the population had increased 75% from 1994.
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Figure 3: Population density of the South Omo Zone using Landscan data.

3.4 The economic activity of the Zone is characterized by subsistence agriculture dominated by agro-pastoral and
pastoral systems. The crop production system is dominated by a subsistence rain-fed crop production system,
mainly targetedat filling thehouseholdconsumptionneed. Theagricultural cycle follows the two rainy seasons.
Planting of staple crops (e.g., maize and sorghum) starts with the onset of the main rainy season (February
- June). Staple crops planted in February are harvested in August or September depending on the length of
growing period of the crop. The secondary agricultural season commences with the onset of the short rainy
season that starts in September and ends in December. Supplementary crops produced in the Zone during this
period, mainly in the higher altitudes, include: sorghum, wheat, barley, and te�. The average land-holding for
cropproduction ranges from0.1 to2.0hectares. Livestockproductionoccursmainly in the lowlandareas,where
moisture is a constraint. In these areas, households realize 80% of their income from the sale of livestock. The
main livestock species reared are cattle, goats, and sheep, in order of importance. Wealth is particularly gauged
by cattle ownership: the better-o� households have up to 70 cattle and up to about 200 small stock (about 70
Tropical Livestock Units (TLU)), while the poor have not more than 5 cattle and 25 small stock (about 6 TLU)
(Gebresenbet & Kefale 2012).

3.5 Thecommunitiesof theSouthOmoZonehavemanaged resourcesand their livelihood in the faceof challenging
climatic condition for many generations. They have applied di�erent coping mechanisms, such as increasing
herd size, diversifying herds and crops, and migrating in some instances. However, the change in climate vari-
ation and frequent incidence of extreme climate events a�ect the biophysical and socioeconomic dynamics of
the Zone and challenge the adaptive capacity of the communities, as their livelihood is mainly dependent on a
climate-driven agriculture production system.

The OMOLAND-CAmodel

3.6 We conceptualized our study area – i.e., the South Omo Zone of Ethiopia – as a coupled human and natural
system (CHANS) composed of a set of interrelated agents interacting at di�erent spatial and temporal scales.
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Figure 4 illustrates the main model components and their relationships. The main agents represent individ-
ual households living in a subsistence agricultural system (herding or farming) in the biophysical environment
of the study area, consisting of 146.7 by 224.7 km (i.e., the South Omo Zone) using a spatial resolution of 100
by 100 m (i.e., 1 hectare). The biophysical system dynamically responds to climate dynamics (e.g., more rain
generates more vegetation). Such a response will indirectly influence land-use choices by households. Cli-
mate is represented primarily by rainfall and includes patterns from seasonal normal to extreme events (e.g.,
drought). The model’s temporal resolution is one day, with some processes occurring when necessary con-
ditions are satisfied. For example, crops are instantiated and grow when a household agent sows crop seeds
on the household’s farmland. Similarly, a household member’s age increases once in a year. Table 1 provides
an overview and description of entities (agents and other objects), their attributes, and default values. The
model was implemented in the MASON simulation system, including its geographical information system (GIS)
extension, GeoMASON (Luke et al. 2005; Sullivan et al. 2010). OMOLAND-CA source code, all data reported in
this paper (including GIS files), and a fully detailed description of the model using the Overview, Design con-
cepts, and Details plus Decision (ODD+D) protocol (Müller et al. 2013) are available at https://www.comses.
net/codebases/5734/releases/1.1.0/, which should be su�icient for replications, extensions, and addi-
tional experimentation by others. An overview of themodel’s overall structure and processes is provided in the
sequel, following a shortened and modified version of the ODD+D protocol. In addition, to get a sense of the
dynamics within the model a short movie of a simulation can be seen at https://youtu.be/sbAUPhOe3fk.

Figure 4: High-level architecture of the OMOLAND-CAmodel.

Entities [Ob-
jects]

Attributes Units Default value
or range of
values

References

Global model
Initial number of households 50,000
Household birth rate 0.002 CSA (2012)
Household death rate 0.07 CSA (2012)

Climate

Adaptive household learning rate [γ] 0.05
Household ingenuity level [φ] 0.2 -1.0
Cognitive bias [ξ] 0.2
Intensity of cognitive [η] adaptation
elasticity

0.2 Brooks et al. (2005)

Cost of adaptation 0.2 Deressa et al. (2009)
Risk elasticity [ζ] 0.4 Gebresenbet & Kefale

(2012)
Percentage of initial number of
adopters

% 5

Risk assessment exponent [x] 0.2
Adaptation appraisal coe�icients α 0.35

Continues on the following page

JASSS, 21(4) 4, 2018 http://jasss.soc.surrey.ac.uk/21/4/4.html Doi: 10.18564/jasss.3812

https://www.comses.net/codebases/5734/releases/1.1.0/
https://www.comses.net/codebases/5734/releases/1.1.0/
https://youtu.be/sbAUPhOe3fk


Continued from previous page

Entities [Ob-
jects]

Attributes Units Default value
or range of
values

References

β 0.35
γ 0.3

Daily consumption rate kg/TLU 3 Galvin (2009);
Schmidt & Verweij
(1992)

Average livestock price birr/TLU 1600
Daily consumption rate kg/TLU 3 Galvin (2009);

Schmidt & Verweij
(1992)

Proportion of destocking rate 0.1
Livestock growth rate [β] 0.00008

Herds / Livestock biomass index [ν] 0.5
Herding activi-
ties

Dailymaximumdrymatter (DM) intake kg 7 Galvin (2009)

Maximum DM stored kg 350 Mulindwa et al.
(2009), Schmidt &
Verweij (1992)

Proportion of restocking rate 0.1

McCabe (1987)Herd splitting threshold 0.3
Minimum vision range km 50
Maximum vision range km 200
Proportion labor to Topical Livestock
Unit (TLU)

person / TLU 5 Mulindwa et al. (2009)

Farm Cobb-Douglas coe�icient 0.5
Farm input cost birr/ha 200 Demeke et al. (2004)
Farm labor e�iciency factor 1.1 Kebede et al. (1990)

Farms / Irrigation farm cost birr 200 Terefe et al. (2010)
Farming activi-
ties

Intensification status True or false true

Maximum days to wait a�er land
preparation

days 30

Minimum annual rainfall for crop pro-
duction

mm 400 Allen et al. (1998)

Proportion labor to farmland (HA) person / ha 0.7

Vegetation

Weeding day a�er planting days 30
Base growth rate controller [φ] 2.39 Bekure et al. (1991)
Minimum rainfall amount mm 0.125 Galvin (2009)
Maximum vegetation per hectare kgDM/ha 4000
Minimum vegetation per hectare kgDM/ha 50

Crops

Number of days withminimum rainfall days 3

Omotosho et al. (2000)
Number of days with minimum e�ec-
tive rainfall

days 15

Minimum cessation rainfall threshold mm 10
Minimum e�ective rainfall (MER) mm 40
Minimumdays onset rainfall threshold days 10

Table 1: Overview of entities, attributes, and default values in the
OMOLAND-CAmodel

Model processes, overview, and scheduling

3.7 The model sequence routine includes all components involved in the scheduling routine. Each procedure is
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activated by the responsible actor or entity, and at each time step similar sequential procedures are activated
in the same order. The first routine concerns climate, which produces rain falling on land parcels, which, in
turn, updates their level of soil moisture. For simplicity, there is no overflow, inflow of water, or accumulation
of soilmoisture, so the updatemechanism is relatively simple. If there is no rain in a givenmonth, a parcel’s soil
moisture is assigned value zero; otherwise soil moisture in a given parcel equals the amount of rain received.
However, if a parcel is irrigable, then soil moisture remains constant, regardless of the amount of rain (i.e., we
assume that farmers who use irrigation will maintain an amount of soil moisture that maximizes crop growth).
A�er a rainfall update, the vegetation subroutine is executed, by growing or shrinking (on parcels where it al-
ready exists), depending onmoisture available (as detailed in Section 3.9) below.

3.8 The second routine concerns households (details in Sections 3.2-3.7). At each time step, each household con-
ducts livelihoodactivities, updates its profiles, andassesses the success or failure of its actions. As shown in Fig-
ure 5, the main sequential procedures of household are: prediction of future climate conditions based on past
experiences; analysis of adaptive response; selection of potential livelihood options; allocation of resources;
implementationof livelihood-relatedactivities;monitoringwealth status; updatingprofile; andupdatingmem-
ory. Routines are only executed at appropriate times under specific conditions. For instance, sequential proce-
dures from the prediction of future climate conditions to the determination of livelihood options are executed
once in any given season, based on the rainfall pattern. At the specified prediction time, the household predicts
the onset and amount of rainfall for the upcoming season (see Section 3.2). Based on the outcome of its action,
a household decides whether or not to adapt in response to anticipated climatic conditions for the season (see
Section 3.2).

Figure 5: Household decision-making sequence for each time period in the model.

3.9 Each household chooses its adaptation strategy by combining herding and farming, in some proportion, de-
pending on what yields the highest return (see Section 3.3). Given a chosen combination, a household then
proportionately allocates resources to each. A household remembers its decision and allocation of resources
for each livelihood throughout the implementation of each subsequent activity (see Section 3.4). Each activity
is carried out until it has either been discarded or completed. Each household updates its memory at the end
of each season (see Section 3.7).

3.10 A�er the household routine, the herd sequence is invoked (as detailed in Section 3.8). Herds consume grass at
their current location andmove to another location, updating theirmetabolic rate, food level, and size basedon
grass consumed. Next, the crop sequence is invoked at parcels where it exists (detailed in Section 3.9). Similar
to vegetation, crops grow or shrink depending onmoisture at their parcel. At each time step, a crop updates its
growth and production level. Finally, an observer object, which collects statistics, is invoked and the output is
written to a disk for further analysis.

Household socio-cognitive processes

3.11 The socio-cognitive adaptivebehavior of ahousehold inOMOLAND-CA follows theMPPACC frameworkofGroth-
mann & Patt (2005) applied to our geographic and demographic data, which uses Protective Motivation Theory

JASSS, 21(4) 4, 2018 http://jasss.soc.surrey.ac.uk/21/4/4.html Doi: 10.18564/jasss.3812



(Maddux & Rogers 1983) to explain the subjective adaptive capacity of individuals to climate change. The MP-
PACC includes agents’ perceptions of their own capacity to adapt to climate change, a feature commonly over-
looked in conventional adaptation studies, and has been applied to diverse geographic regions (e.g., Germany,
Zimbabwe, and Kiribati; Grothmann & Patt 2005; Kuruppu & Liverman 2011). Its potential for ABM has been dis-
cussed but not yet fully implemented (Kniveton et al. 2011; Smith et al. 2011), so we apply it for the first time
in OMOLAND-CA. We begin the implementation of MPPACC by framing the way individual households perceive
future climatic conditions for proactive adaptive response, to which we turn next.

Climate forecast

3.12 Households that are entirely or partially dependent on rain-fed livelihoodspredict future rainfall patternsbased
on past experience, proactively responding to possible impacts of climatic variability. Households predict the
onset and amount of rain for each season based on past experience, assigning greater weight to recent events.

3.13 Within the model, the onset date is determined by analyzing the intensity and duration of rainfall in a given
season, as defined by Omotosho et al. (2000). We first determine mean onset frequency in the South Omo
Zone using 109 years (1901-2009) of rainfall data. This onset frequency is considered as a reference onset and
is used as an input in the model. In the same way, the observed seasonal onset is calculated for each parcel
in the same manner, assessing whether the current onset is observed early, on time, or late, and the observa-
tion is compared to the reference (long-term mean) onset. If the current season is earlier than the mean by a
margin of 7 days, it is considered an “Early Onset (EO).” If the current onset occurs a�er the mean onset by a
margin of 7 days, it is considered a “Late Onset (LO).” Otherwise, it is considered a “Normal Onset (NO).” Total
seasonal rainfall is calculated to determine moisture level, by adding the amount of daily rain in each season.
Seasonal rainfall variation is calculated from the long-term mean (based on the 109-year reference) and cat-
egorized into three ordinal levels: “Below Normal (BN)” if less than the reference amount by a margin set as
parameter; “Above Normal (AN)” if greater than the reference amount by a margin set as parameter; or “Nor-
mal Amount (NA)”. A household predicts current onset as follows:

Oc = max

n∑
i=1

m∑
j=1

Oiβi + ε (1)

whereOc andOi refer toonsets in the current and ith years, respectively;βi is theonsetweight at year I ;n is the
number of ordinal onset categories (EO, NO, LO);m is the number of previous consecutive years remembered
by the household; and ε is stochastic noise. Similarly, the current amount of rainfall is determined by:

Ac = max

n∑
i=1

m∑
j=1

Aiψi + ε (2)

whereAc andAi are rainfall amounts on current and ith years, respectively; ψi is the weight assigned to year
I ; and n andm are as before. Accordingly, if a household wants to determine the rainfall amount, and if rainfall
in year iwas NA, then NA = 1 and the other values (BN and AN) will be assigned 0.

Risk assessment

3.14 Risk assessment in the MPPACC framework has two sub-components: perceived probability and perceived
severity. Perceived probability is a person’s expectation of being exposed to a threat, while perceived severity is
the personal assessment of how harmful the consequencewould be if the threat actually happens (Grothmann
& Patt 2005).

3.15 OMOLAND-CA implements risk assessment as follows. Perceived probability is determined by a household’s
confidence level when predicting current rainfall, while perceived severity is determined by potential impact of
the current climate pattern (i.e., onset and amount) on agricultural practices. Therefore, following Grothmann
&Patt (2005), a household assesses risk by combining perceived probability and severity, calculated as follows:

R =
1

1 + exp
(
−x(P ∗ S − ζ)

) (3)

whereR is risk assessed, S is perceived severity, x is an exponential parameter,P is perceived probability, and
ζ is a risk elasticity parameter.
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Adaptation appraisal

3.16 Adaptation appraisal in the MPPACC framework has three components: perceived adaptation e�icacy, per-
ceived self-e�icacy, and perceived cost e�icacy (Grothmann & Patt 2005). Perceived adaptation e�icacy in-
dicates a household’s estimated e�ectiveness of its adaptive measures for averting threats, and is a function
of household attributes (age, sex, income, education level, access to technology, and household size). Several
studies (e.g., Deressa et al. 2009; Mertz et al. 2009; Nhemachen & Hassan 2007) indicate that household size,
age of the household head, wealth (bothmonetary and livestock size), and access to technology are significant
in determining the adaptive capacity of rural households in most African countries in general, and in Ethiopia
in particular.

3.17 Perceived self-e�icacy denotes a person’s perceived ability to perform adaptive responses, and relates particu-
larly to ahousehold’s past experience in responding to climate variability, which is acquired through experience
or learning (Grothmann & Patt 2005; Kaufmann et al. 2009). Perceived cost e�icacy denotes the cost of apply-
ing adaptive responses, and is related to agriculture production costs. These three factors a�ect the adapta-
tion appraisal of a household in di�erent ways. An increase in perceived adaptation and perceived self-e�icacy
increases adaptation appraisal, while an increase in perceived cost e�icacy decreases adaptation appraisal.
Accordingly, adaptation appraisal is calculated as follows:

AA = αAE + βE − γCE (4)

where AA is the adaptation appraisal, AE is perceived adaptation e�icacy, E is perceived self-e�icacy, CE is
perceived cost e�icacy, and α, β, and γ are coe�icients indicating the significance of each variable.

Adaptation intention and decision

3.18 A strengthof theMPPACCmodel is that it explicitly distinguishesbetween intention andactual behavioral adap-
tation (Grothmann & Patt 2005). Adaptation intention focuses on an individual’s intent to adapt, while behav-
ioral adaptation is an individual’s actual implementation of adaptation measures. Adaptation intention refers
to an individual’s estimated consequence of risk and adaptation, calculated as follows:

AI =
1

1 + exp[−b(µR ∗AA − ξ)]
(5)

where AI is adaptation intention, µ denotes the intensity of cognitive mediation processes, ξ is a cognitive
bias parameter, and b is an exponential parameter. The level of adaptation intention indicates an individual’s
commitment to perform an adaptation measure. A small value indicates lack of objective adaptive capacity,
while a large value indicates significant capacity.

3.19 A household’s realization of intention depends on a threshold. If adaptation intention is lower than the thresh-
old, maladaptation occurs; if equal or greater, then adaptation will be implemented. When maladaptation oc-
curs, the household applies the same measure every season, so maladaptive agents will not realistically dif-
ferentiate between current and normal climate conditions, behaving as though rainfall in each season were
“normal.” By contrast, adaptive households consider possible alternatives to minimize climate variability risk,
allocating resources within their capacity, in line with climate variability.

Climate change experience and learning

3.20 Rural households can learnabout climate variability andpotential adaptivemeasures frompast experiences, by
imitation, or from instructors (Kaufmann et al. 2009). However, because training and farm extension activities
are limited, rural households usually acquire knowledge about climate change impacts from their experience
and by imitating neighbors (Kniveton et al. 2011). In the model, if a household is willing to apply adaptation
measures, the household will tend to learn more frommore experienced neighbors. A household’s adaptation
experience is expressed as follows:

Et = Et−1 + γφΨ
HADP

HT
+ ε (6)

whereEt is the adaptation experience of a household at time t,Et − 1 is the household’s previous adaptation
experience, γ is a learning rate parameter, φ is the household’s ingenuity level,Ψ is a dummy variable (0 if the
household is amaladaptive agent, 1 otherwise),HADP is the number of neighboring adaptive households, and
HT is total number of neighboring households.
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LIvelihood options

3.21 Households in the model sustain their livelihood by engaging in farming and/or herding, as in the real world
(Gebresenbet & Kefale 2012). Since, in the SouthOmoZone, o�-farm activity is very limited and its contribution
to household income is negligible (Gebresenbet & Kefale 2012), it is not considered as a livelihood option in
this model. Income generated from either or both is determined by the amount of household labor applied
to each activity, household assets (i.e., farmland, livestock), climatic conditions, and biophysical environment
conditions. Households thatallocatenecessary inputs for each livelihoodoption receivemore return than those
who do not.

3.22 Farming households execute activities such as land preparation, planting, and harvesting. To accomplish these
and allocate needed resources, households determine a date for executing each activity. The preparation date
is determined by a household’s expectation of rain onset (as discussed in Section 3.2). Households that expect
early rains will prepare their farmland earlier than will others. A�er land preparation, households search for
the best time to plant crops. Since planting requires su�icient moisture for crops to germinate, estimating the
plantingdate is critical for cropproduction in rain-fedagriculture (Ati et al. 2002; Lauxet al. 2009;Odekunleet al.
2005). A�er determining an onset date, a household chooses a date with at least a small amount of moisture
equivalent to minimum e�ective rain (MER), and considers this as the ideal planting date. The final farming
activity is harvesting. Households harvest their crop anytime the crop reaches its length of growing period
(LGP). The date chosen for harvesting depends on the urgency of the household to collect their harvest. At
harvesting time, the household calculates its farm income and updates its wealth status in proportion to total
yield produced.

3.23 Herding activity relates to livestock production. Within the model, herds are fed only by grazing, and herds’
movement in search of grazing is considered to be an adaptive mechanism (Coppolillo 2000; McCabe 1990).
Households decidewhere tomove in order to increase productivity andminimize hazards by considering vege-
tation level and proximity of the grazing area to their campsite. Households keep close to their campsite during
a good wet season, but can move far in search of better vegetation in a bad dry season. Within the model,
we assume that adaptive households possess a better understanding of their surrounding environment than
do maladaptive households, since the latter have limited vision and information about their surrounding ar-
eas. Adaptive agents have information about vegetation conditions in distant locations and adjust their travel
distance by comparing vegetation in the surrounding areawith that in other areas. This simplification is not un-
realistic. For instance, McCabe (2004) found that herders with greater adaptive capacity travel longer distances
in time of drought than those households who do not have su�icient resources. Each household calculates the
income it can receive from its herd.

Labor allocation

3.24 Within the model, a household’s labor requirement is covered by its ownmembers. However, the allocation of
labor – in a given period and to each activity – depends on a household’s attributes and environmental situa-
tion. For instance, labor allocation is a function of farmland for crop production, number of livestock, family
size, climatic condition, amount of available labor, and household’s wealth status. Each household determines
the proportion of labor to be allocated for a given livelihood option by comparing the expected return of each
livelihood option (i.e., herding, farming). Household labor allocation to each livelihood option is proportional
to expected return.

Consumption and change in wealth

3.25 A household accumulates wealth produced by all livelihood options, meeting minimal nutritional subsistence
requirements. In addition to consumption expenses, households may have other expenses directly related to
livelihood activities. Such expenses are occasional and demand-based. For instance, farming households opt-
ing for adaptationmay have to spend on fertilizer, high-yield seeds, or new farmland. Similarly, herding house-
holdswhoopt to adaptmust spend to restock their herd. Eachday, households calculate their net accumulated
wealth as:

Wt = Wt−1 +Rt − Et (7)

whereWt is the net wealth at the end of the period,Wt−1 is the previous year’s wealth,Rt is the total revenue
of the household at time t, andEt is the total expense of the household at time t. A household requires positive
wealth to subsist; otherwise it leaves its area andmigrates to nearby towns.
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Crop production

3.26 Crop growth depends on soil, water, air, and sunlight (Allen et al. 1998). In themodel this is simplified by having
crop growth depend only on water and soil quality (fertility), as follows:

Gt = Gt−1 + ωqm (8)

where Gt denotes crop size at time t, ω is a growth rate parameter, q is soil quality of the land, and m is a
moisture index. The moisture index mmeasures the di�erence between parcel moisture (rainfall) and optimal
crop water requirement, which varies depending on type of crops and crop size (Allen et al. 1998; Araya et al.
2011). In the model, two water sources are included: rainfall, which is the main source of moisture in the study
area, and river irrigation. For the latter, the moisture index has a value of 1, since the river provides su�icient
water throughout the growth period. The value ofGt ranges between 0 and 1, where 0 indicates that the crop
has not yet germinated or has died, while 1 indicates that the crop is mature and ready for harvest.

3.27 Crop yield is determined by crop growth rate, length of growing period, and cropmanagement, as follows:

Y = Gt qkal (9)

where Y denotes crop yield, Gt is the growth level at time t, q is a parameter denoting the maximum crop
yield per hectare, k is a harvesting date factor (indicating the di�erence between the ideal harvesting date and
current harvesting date), l is a labor factor, and a is the area of cultivated land per hectare. A crop reaching
harvesting period (or near themaximum length of its growing period) providesmaximumyield. The harvesting
date factor depends on the household agents’ decision when to harvest.

Updatememory

3.28 At the end of each season, households update their memory. Each household compares its predictions of cli-
mate indices with the observed climate situation of the season andmakes appropriate changes to its memory.
As households update their memory, they discard the oldest information because their memory capacity is
limited (Kennedy 2012).

Livestock production

3.29 Livestock is modeled as a single herd unit and is measured as a Tropical Livestock Unit (TLU), a commonmea-
sure used throughout the region (Gryseels 1988). In the model, livestock reproduce or die depending on the
householdmanagement capacity and availability of forage, which in turn depends onweather, soil quality, and
number of livestock consuming forage at a given time. The livestock size at a given time is given by:

Ht = Ht−1 + βvlα (10)

whereHt is herd size at time t, Ht − 1 is herd size at time t − 1, l is the proportion of labor allocated by the
household, β is a parameter indicating herd growth rate, v is herd biomass index, andα is the adaptive capacity
of thehousehold. Climatic variationa�ects the rateof livestock reproductionas it a�ects theherdbiomass level,
which indicates that in goodweather conditions livestock reproducemoreo�en than in badweather conditions
(McCabe 1987; Niamir-Fuller 2000; Terefe et al. 2010).

Vegetation growth

3.30 Vegetation growth depends on the amount ofmoisture and soil fertility. In this study, only rainfall is considered
as the main factor that influences grass growth, but the influence of soil and other factors is covered by using
elevation and normalized di�erence vegetation index (NDVI) data as a proxy (seeGulden et al. 2011). Equation 11
is determined as:

Vt = Vt−1 + φγRf

(
1 − Vt−1

Vmax

)
(11)

where Vt is vegetation at time t, Vt−1 is vegetation at time t − 1, Vmax is maximum vegetation a parcel can
produce, Rf is Moisture Index, φ is vegetation growth rate parameter, and γ is Elevation Index. These indices
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determine the amount and rate of grass growth in a given parcel. The moisture index is developed based on a
regression analysis of NDVI and rainfall of the study area. The elevation index is used as a proxy for shrub and
tree competition and its value is inversely proportional to elevation. This is mainly due to the fact that in high
moisture areas, trees and shrubs compete with grasses and inhibit the growth of grasses.

Simulation Results

Model setting and scenarios

4.1 Before presenting themodel scenarios and results, we feel that it is important to discuss our attempts formodel
verification. Verification is the process of ensuring that a simulation is implemented as intended by the concep-
tual model (Crooks & Heppenstall 2012). Verification of OMOLAND-CA was performed by conducting four pro-
cedures: code walkthroughs, debugging, profiling, and parameter sweeps. These tests insured that we made
no logical errors in the translation of the model into code and there were no programming errors. No anoma-
lies have been detected since the above verification procedures were carried out, so we feel confident that the
model behaves as it is intended and it matches its design.

4.2 We nowmove onto a set of scenarios designed to answer our research questions. As the South Omo Zone has
exhibited various climatic shocks in the past, it is evident that the resilience of the rural households (and of
the environment) is threatened by the intensity and frequency of the climatic shocks. The following scenario
simulations therefore focus on exploring the e�ect of changes in climate indices on rural households in the
South Omo Zone and how households cope with di�erent climatic shocks. As the rainfall directly a�ects the
environment, particularly vegetation growth and crop production (as discussed in Section 3), the possibility
of sustaining large human and livestock populations varies with climate variation. In particular, we focus our
analysis on understanding how climate change a�ects the adaptive capacity of rural households, and how they
might manage to survive under extreme climatic events. Below we report on four scenarios that answer our
research questions. These are as follows, in order of increasing realism: (1) a base scenario based on “normal”
climate conditions, (2) the e�ect of rare extreme events on rural households, (3) the e�ects of consecutive ex-
treme events on rural households, and finally (4) the e�ect of erratic extreme climatic events, which resembles
the real rainfall pattern of the study area.

4.3 In scenario 1 we began the simulation by creating a mean annual rainfall with “normal” onset and amount for
the entire region. We generated themean annual rainfall by calculating themean of 109 years (1901 to 2009) of
monthly rainfall data. We assume that thismean annual rainfall is an indicator of the “normal” (or “good year”)
climatic conditions for the region and consider it as the baseline scenario. We then ran the simulation keeping
this mean annual rainfall the same every year, indicating that the climate condition of the region is “normal.”
By carrying out this scenario our intention was to help us understand how rural households interact with the
environment and how their characteristics and livelihood decision-making a�ect their probability of survival
(or their success). Moreover, it allowed us to explore the carrying capacity of the environment to sustain the
livestock and human population under “normal” climatic situations.

4.4 In the second scenario, we introduced droughts as extreme events. We assessed three di�erent frequencies
of drought: a drought every 5, every 10, or every 15 years. For each occurrence of drought, we assessed the
following severity levels: 50%, 70%, and 90% from changes to the mean. In each extreme event year, we de-
creased the rainfall amount by the assigned severity level from themeanannual rainfall while keeping theother
years “normal.” Due to the nature of the model, any change in climate, particularly the occurrence of extreme
events, will a�ect the growth of crops and grasses, and ultimately a�ect rural households by enhancing or dis-
rupting their production systems. This scenario therefore allows us to explore the resilience of rural households
to such events and their capacity to respond. By doing this, we explored the implications of extreme climatic
events on the adaptive capacity of rural households. In the third scenario, we increased the frequency of ex-
tremeevents by allowing consecutive occurrences; i.e., droughts occurring for two consecutive years in every 5,
10, or 15 years. Our aimwith this scenario was to explore the implication of consecutive occurrences of extreme
events: specifically, how a household’s resource base might be altered by extreme events and to what extent a
household copes with long-term extreme events.

4.5 Finally, the fourth scenario explored rural households’ resilience to “real life” erratic climatic conditions. The
actual rainfall pattern of the study area is erratic and incorporates both good and bad years. It shows high
variation not only year to year but also month to month. We used actual rainfall patterns of the Zone for this
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scenario. We utilized 50 years of rainfall data from 1949 to 2009. We chose 50 years as consistent with most
other agent-based land-use and land-cover changemodels (Entwisle et al. 2008; Parker et al. 2003).

4.6 In each scenario, the main agents considered were the rural households residing in the South Omo Zone. All
simulation runs were for 18,250 iterations (each iteration step is a day and 18,250 iterations are approximately
50 years). We ran a set of 30 simulations for each scenario and report the mean value of these runs (default
values are presented in Table 1). In the next sectionwe report specifically on the livestock crops and population
changes.

Results

(1) Base scenario under “normal” climate situation

4.7 Under a “normal year” scenario, household numbers increased over time and reached 155,916 a�er 50 years,
as shown in Figure 6a. The total population increased by 47% over the simulation period and the population
density changed from 0.03 to 0.16 people per sq. kilometers. The “normal” climatic condition throughout the
simulation favored both livestock and crop production. As shown in Figure 4c, per capita livestock numbers
increased sharply in the first 10 years and started stabilizing as they reached ecological capacity. The trend in
crop production also showed an ascending trend, but not as significantly as livestock, as indicated in Figure 6d.
The overall success of households under this climatic scenario can be seen bymonitoring the rate of migration
over the simulation period. Figure 6b shows the number of households and population migrating from the
systemdue to lossofwealth. Althoughpopulationdensity increasedover time, households seem favoredby the
“normal” climatic condition and all but a few were able to sustain their livelihood. However, as the simulation
period continued, households with large family sizes were especially vulnerable to migration as their resource
base was easily diminished through consumption, even though the climate conditions were relatively normal.

Figure 6: Household dynamicswith “normal year” scenario: a) household and population number over time, b)
number of peoplemigrating to nearby towns c) number of livestock (TLU) per person, d) crop (MEQ) in kilogram
per person. (Note: We used MEQ (maize equivalent) to aggregate all crop types into a single unit by converting
the price of each crop tomaize; e.g., 1KG of wheat = 1.67 MEQ; 1KG of te� = 2.5 MEQ, 1KG of sorghum = 0.8 MEQ).

(2) The e�ect of rare extreme events on rural households

4.8 In the second scenario, we introduced droughts with various intensity and frequency to explore the adaptive
capacity of rural households. The impact of extreme climatic events on rural households was pronounced as
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frequency and intensity increased. The impact can be seen clearly as we account for the number of people
who migrated to nearby towns, as shown in Figure 7. A change in climate clearly a�ected households, espe-
cially when droughts occurred over shorter periods. Households who did not accumulate wealth to support
them beyond a year were forced to leave their area and migrate to nearby towns as more episodes of drought
occurred.

Figure 7: Populationmigrationover timewithdi�erent climatic conditions: a) 50%reduction, b) 70% reduction,
c) 90% reduction of rainfall with di�erent drought frequencies.

4.9 Droughts also a�ected livestock numbers in the system. Change in TLU per person was dramatic, as the fre-
quency and intensity of droughts increased. Although the droughts occurred once every 15 years, the TLU per
person decreased by 30% to 90% as intensity increased from 50% to 90%as shown in Figure 8a, b, and c. How-
ever, as the simulation progressed, the numbers slowly recovered and reached 20 TLU per person as a conse-
quence of more “normal” or favorable climatic years, until the next drought year occurred. Another striking
result was the impact of a drought as it occurred more frequently. In the situation where a drought occurred
once every 5 years, the number of TLU per person decreased dramatically andwas di�icult to recover from, be-
cause livestock growth depends on the amount of vegetation available in the surrounding area, which is highly
correlated with rainfall amount.

Figure 8: Livestock growth over time with di�erent climatic conditions: a) 50% reduction, b) 70% reduction, c)
90% reduction of rainfall with di�erent drought frequencies.

(3) Consecutive extreme events on rural households

4.10 Because droughts o�en last longer than a year, we incorporated this in the model. In Figure 9 and 10, one can
see how prolonged droughts a�ected the asset capital of rural households, forcing them to migrate rapidly
as the simulation progressed under di�erent frequencies of occurrences. In all cases, the number of people
migrating in this scenario was significantly greater than in scenario 2. For instance, as compared to scenario
2, about 35,000 additional people migrated in scenario 3 when drought occurred for two consecutive years in
every 10 yearswith 90% intensity. The impact of such types ofmulti-year drought events can drain households’
resources for coping and recovery. Hence, households could no longer sustain their livelihood andwere forced
to migrate in significant numbers.
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Figure 9: Population migration over time with consecutive drought occurrences: a) 50% reduction, b) 70% re-
duction, c) 90% reduction of rainfall with di�erent drought frequencies.

Figure 10: Livestock growth over time with consecutive drought occurrences: a) 50% reduction, b) 70% reduc-
tion, c) 90% reduction of rainfall with di�erent drought frequencies.

(4) The e�ect of erratic extreme climatic events

4.11 In the “real world,” climatic conditions are unpredictable; in our study area there are some good and some
bad years with pronounced occurrences of drought. Such erratic rainfall patterns have a direct implication
for the rural household decision-making and their productive systems, particularly with respect to crop and
livestock production. The implication of this can be seen as we observe the model results from “erratic years”
scenario runs (Figure 11). Population andhousehold numbers increased over time as the simulation progressed
(Figure 11a), aswas the case in scenario 1. However, now the rate of growth slowed as the number of households
migrating to nearby towns increased over time (Figure 11b).

4.12 Another surprising result from this scenario was the trend of livestock and crop production in the Zone. As
shown in Figure 11c, TLU per person decreased over time while MEQ per person showed an increasing trend
(Figure 11d). A similar observationwas reported by Samuel (2013): most pastoralists in the South Omo Zone are
increasingly adoptingcultivation tocompensate for livestock losses. This canbeexplainedby theunpredictable
nature of the rainfall pattern, which a�ected the recovery rate of livestock per household and, therefore, more
households were encouraged to engage in crop production. Although more households engaged increasingly
in crop production, the spatial distribution of crop pattern in the Zone was not homogenous. Even in areas
where the biophysical and climate conditions were similar, the choice of each household to engage in farming
showed significant variation as shown in Figures 12 and Figure 13.

4.13 Figure 14 allows us to assess how rural households within the model made their predictions and how their
judgment aligns with the real seasonal rainfall outlook. Specifically, Figure 10b shows that almost throughout
the simulationperiod,more than 60%of the rural households predicted the onset of rainfall as late onset, while
the rest predicted the seasonal outlook of rainfall as normal or early onset. When we compare howmuch their
prediction aligns with the real seasonal pattern of the rainfall, the proportion significantly lowered to below
50% inmost simulation periods, with a few exceptions.

4.14 The prediction of the amount of seasonal rainfall is shown in Figure 15. In the first 30 years of the simulation
period, theproportionof households that predicted seasonal rainfall as “normal” accounted formore than50%
of the total households. However, the number dropped significantly a�er 30 years, as most of the households
assumed the rainfall amount likely to be below normal. The level of accuracy of household prediction of the
amount of rainfall, however, showed a declining trend as the variability of the rainfall increased over time. As
shown in Figure 15b, the proportion of rural households that correctly predicted based on past experience was
higher in the first 30 years than in the last 20 years. As discussed in Section 3.3, a rural household forecasts
seasonal rainfall based on the previous three years of rainfall for the season. Due to limited access to public
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Figure 11: Household dynamics in the “erratic climate” scenario: a) household and population number over
time, b) number of households and peoplemigrating to nearby towns, c) number of livestock (TLU) per person,
d) crop (Maize Equivalent-MEQ in kilogram) per person.

climate prediction information and high dependency on traditional prediction methods, the probability of a
rural household accurately forecasting both rainfall onset and amount is very low. Such an information flaw
ultimately a�ects the way in which rural households respond to climate variability.

Discussion and Conclusions

5.1 In brief, our results provide answers to the research questions that motivated the OMOLAND-CA model, as fol-
lows: Under which climate change conditions are households pushed beyond the limits of survival? Under
which conditions that exceed current erratic changes in the frequency and intensity of drought events? How
do various mixes of herding and farming a�ect household well-being under climate change conditions? Un-
doubtedly, mixed strategies provide a superior survival advantage for households facing the harsh challenges
of climate change in the Omo Zone and similar environments. What role do factors such as households’ abil-
ity to accurately predict weather events have on livelihoods and adaptation to climate change? A critical role
is played by a household’s ability to accurately predict drought changes, although accomplishing this is very
di�icult. Each answer has important details and caveats, as demonstrated by simulation results in the four
scenarios created for answering our research questions. Climate change has the potential to greatly a�ect the
socioeconomic dynamics of rural households that rely on subsistence agricultural systems. In the South Omo
Zone of Ethiopia, rural household livelihoods depend heavily on rain-fed agriculture systems and any variation
in climate can a�ect the population in many ways. The OMOLAND-CA model presented in this paper demon-
strates how climate variability influences the dynamics of such a rural population through the operationaliza-
tion of the MPPACC framework. The model suggests that rural households’ adaptation to climate change is
highly influenced by their adaptive capacity and their expectation of future climatic situations. While the rural
communities in the South Omo Zone are better o� in normal climate conditions, and they can survive if the
current climate conditions persist. The occurrence of successive episodes of extreme events even a�er good
climatic years, however, results in substantial damage to their assets (livestock and crop) and consequently
a�ects their adaptive capacity, forcing them to migrate to nearby towns in greater numbers. The model also
demonstrates that rural households could achieve a strong resource base with relatively continuous good cli-
mate years. Such accumulation of resources assists rural households to withstand droughts which have a high
degree of intensity.

5.2 The magnitude of livestock losses under severe extreme climatic events reported in scenarios 2 and 3 is not
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Figure 12: Frequency of farming over 12-year intervals in the erratic rainfall scenario.

uncommon in pastoral areas such as the South Omo Zone. Previous studies (e.g., McCabe 1987, 2004; Oba
2001) have shown that in times of severe drought, livestock losses can reach 90%. For instance, McCabe (1987)
investigated livestock losses for four pastoral families in Turkana, Kenya, during the drought of 1979-1983, re-
porting losses of 63% cattle, 45% camels, and 55% small stock with respect to total family possession before
the drought. Moreover, droughts can also reduce the number of rural households, by triggering migration to
nearby cities to seek employment (Oba 2001).

5.3 Rural households utilize di�erent mechanisms to forecast the onset and amount of seasonal rainfall. In most
cases, they base their prediction on rainfall pattern of previous years (Luseno et al. 2003). The OMOLAND-
CA model captures such rural household forecasting behavior by mapping previous rainfall patterns to the
decision-making of the households on when to start the next cropping activities. However, in the “real world,”
due to limited access to public climate prediction information and high dependency on their traditional predic-
tion methods, the chance of the rural household accurately forecasting the rainfall onset and amount is very
low (Luseno et al. 2003), consistent with our simulation results. Such an information flaw ultimately a�ects the
way the rural households respond to climate variability.

5.4 Ourmodeling approach complements current e�orts in agent-basedmodeling, specifically with respect to rep-
resenting richer socio-cognitive behavior of agents along with integrating geographical information systems
(GIS) into such models. This represents a significant methodological thrust in computational social science
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Figure 13: Frequency of crop planted per hectare.

Figure 14: Rural household onset prediction: a) seasonal onset prediction by households, b) proportion of
households that correctly predicted seasonal onset.

Figure 15: Rural household amount of rainfall prediction: a) seasonal amount of rainfall prediction by house-
holds, b) proportion of households that correctly predicted seasonal amount of rainfall.
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and geospatial modeling more generally (Crooks & Heppenstall 2012). The OMOLAND-CA model explicitly rep-
resented the socio-cognitive behavior of agents, and utilized various spatial datasets to represent the di�erent
model entities. However, there are still gaps that need to be addressed to develop a better understanding of
the adaptive behavior of rural households when challenged by climate change. The currentmodel passes face-
validity tests, since its processes and outcomes are reasonable and plausible (see Hailegiorgis 2013, for more
details). E�orts were alsomade to ensure themodel matched existing spatial and demographic patterns in the
Zone, and the rules of the agents were based onwhat is ethnologically known about the inhabitants of the area
(as discussed in Section 3). However, more rigorous empirical validation is necessary to ensure the robustness
of the emerging patterns and their dynamic nature. The challenge here, which is seen in many similar agent-
based models, is that there is o�en not enough data to carry out such validation and this is compounded for
models that are developed in less developed countries where data scarcity is even more prevalent (Mahabir
et al. 2016). Future directions for model development should therefore focus on improving behavioral repre-
sentations of rural households with regards to seasonal climate outlooks and adaptation strategies, along with
morewidespread data collection. For instance, it would be interesting to explore thewillingness of rural house-
holds to adopt new agricultural technology and climate adaptation measures, as rural systems are likely to be
influenced by the emergence of new technologies, market opportunities, financial incentives, and land-use
policies (Kaufmann et al. 2009). It would also be interesting to explore how rural households’ trust and their re-
actions to information pertaining to seasonal climate outlooks, particularly frommeteorological centers of the
region, as improved information on seasonal climate outlooks could play an important role in the adaptation
responses of rural communities (Bharwani et al. 2005), thereby mitigating e�ects of climate change.

5.5 Finally, althoughwe did notmodel directly the demographic dynamics of households, we didmodel births and
deaths in individual households, which a�ects the amount of labor assigned to each livelihood option. Family
cohesion and cooperation in forming a large groupmight be another adaptivemechanism among agropastoral
societies. This is another potential direction for future research with OMOLAND. From the above discussion,
it is clear that many avenues of future research are possible; however, this study plays an important role in
pioneering these issues and laying foundations for additionalwork to capture the complexdynamicsof coupled
human-natural systems under conditions of climate change.
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