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Abstract:Many studies show that theacquisitionof knowledge is the key tobuilding the competitive advantage
of companies. We propose a simple model of knowledge transfer within the organisation and we implement
the proposed model using the cellular automata technique. In this paper the organisation is considered in the
context of complex systems whereby the main role in the organisation is played by the network of informal
contacts (informal communication). The goal of this paper is to ascertain which factors influence the e�iciency
and e�ectiveness of knowledge transfer. Our studies indicate a significant role of initial distribution of chunks
of knowledge for the knowledge transfer process, and the results suggest taking action in the organisation to
shorten the distance (social distance) between peoplewith di�erent levels of knowledge, or determining incen-
tives to share knowledge.
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Introduction

1.1 In today’s rapidly changing environment, knowledge is a dominant source of organisation sustainable compet-
itive advantage (Chen 2004; Lyles & Salk 1996; Tsai 2001), thus, the ability to acquire information the knowledge
creation is a large organisations force (Nonaka 1994; Zander &Kogut 1995). Moreover, Nonaka&Takeuchi (1995)
postulate that knowledge is no longer one of the traditional elements of production, but it becomes the only
factor of production, which determines the company’s competitiveness. Therefore, the knowledge transfer is
oneof themost important elements in themanagementprocess, especially, for theorganisational change (Mar-
tinez et al. 2016), the project management (Spałek 2014), and widely understood development. Organisations
which manage changes and adaptations e�ectively will not only survive, but thrive (Brown 2003). Organisa-
tional change is a complex process and includes alterations in technology, structures and/or systems. Itmay be
defined as alterations of existing work routines and strategies that a�ect an entire organisation (Herold et al.
2008).

1.2 Both the organisational change and the development require the transfer of knowledge, which allows people
to acquire knowledge, while the organisations distribute it and properly use it. However, there are substan-
tial barriers which make that the transfer of knowledge within the firm di�icult and complicated (Szulanski
1996). The e�orts to share knowledge are o�en impeded by employees’ tendencies to guard and selectively
share information (Gilmour 2003). Moreover, knowledge transfer needs to span di�erent knowledge holders
and requires a collaborative e�ort of both, the knowledge recipients and senders. A very important element
for an e�icient knowledge transfer is thus a senders’ disseminative capacity and a receivers’ absorptive capac-
ity (Tang 2011). The disseminative capacity can be defined as the network member’s ability to e�ectively and
e�iciently communicate and transmit knowledge to other networkmembers, whereas the absorptive capacity
is the ability of the recipient to receive knowledge. Knowledge canbe either explicit or tacit (Nonaka&Takeuchi
1995). The explicit knowledge is an information that is stored in the form of documents or other media, while
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the tacit knowledge is an information that results from a person’s experience and it consists partly of technical
skills (Novianto & Puspasari 2012). Particularly, the study of transfer of tacit knowledge seems to be interesting,
because this kind of knowledge is di�icult to spread amongmembers within an organisation (Tang 2011; Teece
2000; Tsai 2002).

1.3 Many studies highlight also the importance of social interaction among organisational members in knowledge
exchange (Chen & Huang 2007; Ibarra 1993; Tsai 2002). They suggested that organisational units can leverage
knowledge resources through interacting among them. Furthermore, interactions among organisation mem-
bers are mainly informal, but such informal relations play an increasing role and they are the main source of
influence in organisations in the context of organisation learning, innovation and adaptation processes (Ibarra
1993). Such a point of view indicates the emergence and ‘bottom-up’ approach to knowledge transfer, be-
cause this approach is also postulated in the change process (Butcher & Atkinson 2000; Higgs & Rowland 2005;
Kempster et al. 2014). Moreover, in organisation, knowledge more o�en moves in a horizontal direction and
it is an informal process (Girdauskiene & Savaneviciene 2012) whereas formal sharing of knowledge can reach
much broader populations but may stifle some of spontaneous and creative aspects of the informal sharing
modes (O‘Deal et al. 1999). This informal sharing of knowledge is carried out by informal communication be-
tweenmembers of the organisation, and itsmost important role is to fulfil the employees’ informational needs
(Kraut et al. 1993). Information is exchanged spontaneously and interactively, throughmeetings and conversa-
tions. This type of communication with other members of the group is more o�en used when the work groups
are engaged inmore complex tasks (Van de Ven et al. 1976), and this is the case, when knowledge is transferred
about importantmatters for organisations such as organisation change, project management or widely under-
stood organisation development. This type of communication between members of the organisation there-
fore helps them in learning about each other and their work, it supports both production work and the social
relations that underlie it (Kraut et al. 1993). In this article, knowledge transfer is thus understood as a com-
mon process in a creative organisation, which is mostly implemented informally by sharing knowledge ‘face to
face’ (Girdauskiene & Savaneviciene 2012).

1.4 Knowledge in the organisation as mentioned earlier is very important for the progress and development of
a competitive organisation/enterprise. In the process of acquiring knowledge by organisations, the ability to
transfer knowledge plays a significant role Boone & Ganeshan (2008). Organisations can facilitate knowledge
transfer by facilitating learning in organisations, converting tacit knowledge to explicit knowledge, generating
new knowledge, relevant knowledge management and creating appropriate knowledge Alipour et al. (2011).
An important element for knowledge transfer is also modifying members’ knowledge through training Argote
& Fahrenkopf (2016).

1.5 Despite burgeoning literature on knowledge transfer, relatively little is knownabout how strategic knowledge is
created and exchanged. As behaviours that come from interactions of individuals and groups are characterised
by complexity, dynamics, adaptation andnon-linearity, they are very di�icult for empirical studies. Thismeans,
than virtual simulation can be a useful tool to explore knowledge transfer dynamics. As emphasised by Carley
(1995), one of the important contributions of computational models is that they can be used to demonstrate
gaps in extant verbal theories. Additionally, they enable the researcher to think through how assumptions of
models of agents influence their collective behaviour. The agent-based modelling approach for the study of
knowledge transfer was used for example by Morone & Taylor (2004); Xuan et al. (2011); Hirshman et al. (2011);
Giacchi et al. (2016). These studies concerned mainly the impact of the network properties on the transfer of
knowledge within the network (organisation). In particular Morone & Taylor (2004) using cellular automata
model examined how knowledge spreads in a network in which agents interact by word of mouth commu-
nication. Their results show the influence of network structure upon the knowledge di�usion process. Xuan
et al. (2011), investigated the e�ect of the ‘knowledge-connection’ structure on knowledge transfer within that
network. They showed that the knowledge diversity in the small world network fosters knowledge transfer.
Hirshman et al. (2011) used agent-based simulation based on the homophilymechanism to examine the tiering
e�ects of social ties. They have posited a society in which agents interact with those who are similar to them.
Their studies suggest, that simulation of the emergence of multi-tiered social ties using a homophily model is
possible, and the simulation results correspond to patterns observed in real-world human networks. In the
model proposed by Giacchi et al. (2016) agents (nodes) transfer knowledge based on two criteria: knowledge
distance and confidence. They results show that in a more distributed network configuration the dynamics of
knowledge di�usion and of the confidence level are observable muchmore than a centralised structure.

1.6 The above models concern the impact of agent network properties on the knowledge transfer. Our goal is to
build a knowledge transfer model based on the above and to investigate: what is the role of the initial level
and distribution of knowledge of organisation’s members (knowledge acquired during training, courses etc.)?
Initial knowledge is acquired in a formal way, while it is spread among members of the organisation through
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informal communication. This topic is very interesting because—as mentioned earlier—facilitating learning in
organisations and thereby creating appropriate knowledge is one way of facilitating the acquisition of knowl-
edge by the organisation. Although in many models of knowledge transfer, the population of individuals was
o�en ‘endowed with di�erent levels of initial knowledge’—as pointed out by Morone & Taylor (2004) when de-
scribing themodel of Cowan&Jonard (1999)—the influenceof initial knowledgedistribution in theorganisation
on knowledge propagation and its exchange among members of organisation was earlier not specifically dis-
cussed.

1.7 We propose a model of knowledge transfer based on cellular automaton (CA) (Wolfram 2002; Ilachinski 2001).
In the CA technique the model system is represented as a regular grid of cells. For each site i a scalar variable
si is assigned from finite set of possible states si ∈ S. The ruleF maps the state of i-th cell in time t into state
of this cell i in the next time step t+ 1 basing on states of sites in i-th site neighbourhoodN i

si(t+ 1) = F(N i(t)).

For a square lattice the simplest neighbourhoodN is vonNeumannone,which for discrete coordinates consists
site (i, j) and its four topologically nearest neighbours at (i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1).

1.8 The ruleF is applied synchronously to all sites in the system.
1.9 In our approach we extend a classical definition of CA scalar variable si to the vector oneCi. Formally our set

of states S has 2K elements in {0, 1, · · · , 2K − 1}, however, we prefer to think about a binary representation
of these numbers, i.e. onK-elements long Boolean vectors si = [ci1, c

i
2, · · · , ciK ]bin = Ci. Such representation

yields comfortable interpretationof cik in termsofour conceptualmodeldescribedbelow, however, the rigorous
mathematical and formal definition of the transition functionF become a little bit cumbersome—thus we will
provide its definition in a narrative manner.

1.10 The rest of this paper is organised as follows: The next section presents the model of knowledge transfer (con-
cept of the model, formal model and design of virtual experiments). Subsequently, the results of our simula-
tions are analysed. Then, discussion and conclusions are presented. Finally, we propose future research.

Model Concept

2.1 To allow for analysis of the dynamics of the transfer of knowledge in the perspective of complex systems, in this
paper, a CA model has been proposed. Such an approach was used by Morone & Taylor (2004) to study the in-
formal process of knowledgedi�usion. In this paper, similarly to the cited authors, people exchange knowledge
by means of personal interactions, and as was mentioned earlier, such relationships between the members of
the organisation play a significant role in the transfer of knowledge.

Knowledge

2.2 In knowledge transfer models, knowledge has been represented in several ways: as a stock (each agent has an
initial level of knowledge, which is an integer chosen at random from a given range) (Morone & Taylor 2004), as
a vector (Cowan&Jonard 2004; Xuan et al. 2011; Giacchi et al. 2016), as a tree, where eachnode corresponds to a
bit of potential knowledge (Morone&Taylor 2003) or as a set of facts and agent-to-knowledgematrix (Hirshman
et al. 2011).

2.3 The basic assumption of the our model is a division of transferred knowledge into a certain amount of chunks.
This concept was inspired by the empirical studies of Reagans & McEvily (2003), who proposed the division of
knowledge in the firm into areas (pieces) of expertise knowledge and themodel of Hirshman et al. (2011), where
the transferred knowledge consisted of certain facts (elements, pieces of knowledge). Thus, knowledge in this
model is presentedas a vector consistingof knowledge chunks. The chunksof knowledgeproposedhere canbe
understood in many ways. For example, in the perspective of knowledge management, they may be elements
of tacit knowledge in the organisational model of knowledge creation, proposed by Nonaka & Takeuchi (1995).
In the approach of cited authors, knowledge (and thus also its chunks) applies to both information, beliefs and
expectations. We also assume that, the pieces of knowledge are not related to each other but all together are
needed by the organisation to change the organisational culture, improve organisational performance etc.
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Agent network

2.4 Static regression models of the network parameters impact on the easiness of knowledge transferas shown
by Reagans & McEvily (2003) in empirical studies. They suggest first of all that strong ties and a dense network
facilitate the transfer. Therefore, the adoption of CA model with lattice fully populated by agents as a model
organisation, allows for reflecting a dense network of social interaction, whereas, the von Neumann neigh-
bourhood of four neighbours reflects the network, which takes account only strong ties among agents (as in
the model of Morone & Taylor (2004)). Moreover, the number of strong ties, declared by the Reagans & McEvily
(2003) is on average less than six. Hirshman et al. (2011) point out, that formost people, ‘core discussion groups’
consist of three to five people. The vonNeumannneighbourhood, proposedby thiswork, seems towell approx-
imate the strong ties between agents.

Rules

2.5 The rules in the adopted model are a compromise of di�erent perspectives of the knowledge transfer mech-
anism. First of all, it is assumed that the agents are members of the organisation/community and they have
(at the beginning of the simulation). A certain amount of the common knowledge (chunks of knowledge). This
common knowledge is the result of the organisation’s activities, for example, in the framework of the knowl-
edgemanagement policy. Themodel assumes that each agent with equal probability can absorb each portion
of knowledge ‘o�ered’ by the organisation. The level of probability reflects the quality of the activities of the
formal ‘knowledge leadership’ (e.g., this is the result of investment in the area of knowledge management).

2.6 Secondly, each agent can be a leader of knowledge or a follower. The agent role in the step of interaction de-
pends on the quantity and quality of owned chunks of knowledge. In a single interaction, an agent who has
more knowledge (more chunks) is the leader of knowledge.

2.7 Thirdly, in accordancewith empirical findings of Reagans&McEvily (2003) the transfer of knowledge is e�ective,
if the distance of common knowledge between the source and recipient is small. Also simulations driven by the
homophily principle (‘birds of a feather flock together’) assume that ‘agents are likely to exhibit strong pref-
erences towards agents to whom they are similar’ (Hirshman et al. 2011). The model simplification introduces
blocking the transfer of knowledge between agents (the leader and follower) if a distance of their knowledge
(measured by the di�erence in the number of chunks of knowledge) is larger than one. This approach is not sig-
nificantly di�erent from the opinion exchange model of De�uant et al. (2000) when interaction among agents
is possible only when the distance between agents opinions in one- (Hegselmann & Krause 2002; Malarz 2006;
Zhao et al. 2016; Dong et al. 2016) or two-dimensional (Kułakowski 2009;Malarz &Kułakowski 2014;Malarz et al.
2011) space of opinions is smaller than the assumed confidence level.

2.8 In addition, as in the studies of Morone & Taylor (2004); Xuan et al. (2011) agents give away information for free
(‘gi� economy’).

Computerisedmodel

2.9 The model organisation is a L × L large square lattice with helical boundary conditions with von Neumann
neighbourhoods, i.e. the nearest neighbours of i-th agent (i = 1, · · · , L2) are agents occupying nodes at i± 1
and i±L. The agents occupying virtual positions i = −L+1, · · · , 0 and i = L2+1, · · · , L2+Lmirror opposite
edges of the system, i.e. they are doppelgangers of agents from sites i = L2−L+1, · · · , L2 and i = 1, · · · , L,
respectively.

2.10 Each agent may posses some of the K chunks of knowledge Ci = [ci1, c
i
2, · · · , ciK ] and cik ∈ {0, 1}, where

cik = 0 (cik = 1) indicates that this particular k-th chunks of knowledge is absent (present) in the i-th agent’s
knowledge. Initially (at t = 0), each agent i has each of these knowledge chunks cik=1,··· ,K(t = 0) = 1 with
probability p.

2.11 Every time step agent imay inherit single chunk of information from one of his/her neighbours. The knowledge
transfer is possible if in time t the neighbour n has exactly onemore chunks of knowledge than agent i:

cik(t+ 1) = 1 ⇐⇒ cik(t) = 0, cnk (t) = 1, νn(t) = νi(t) + 1,

where νn(t) and νi(t) are current numbers of chunks of knowledge for agents n and i, respectively. The chunk
of knowledge which is absent inCi but which is present inCn (and thus may be transferred from agent n to
agent i) is selected randomly. The automaton rule described above is applied simultaneously to all agents.
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Algorithm 1
1: INPUT(p,K,M,L) . initialise p,K,M,L

2: for r ← 1,M do . average overM simulations

3: t← 0
4: SETUP(p) . initialise distribution of chunks of knowledge cik(0)
5: RESET . resetNr and Fr and ν

6: for t← 1, T do
7: for all i do . for every agent i
8: loop . for one of the neighbour n
9: if (cik(t− 1) = 0 ∧ cnk (t− 1) = 1 ∧ νn(t− 1) = νi(t− 1) + 1) then
10: cik(t)← 1
11: νi(t)← νi(t− 1) + 1
12: end if
13: end loop
14: end for

15: for all i do . for every agent i
16: Nr(ν

i(t), t)← Nr(ν
i(t), t) + 1

17: for k ← 1,K do
18: if cik(t) = 1 then
19: Fr(k, t)← Fr(k, t) + 1
20: end if
21: end for
22: end for

23: for k ← 1,K do
24: N(k, t)← N(k, t) +Nr(k, t)
25: F (k, t)← F (k, t) + Fr(k, t)
26: end for
27: end for

28: end for

29: for t← 1, T do
30: for all k do
31: OUTPUT(t,N(k, t)/(ML2), F (k, t)/(ML2))
32: end for
33: end for
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The Algorithm 1 presents a pseudo code of program included in Listing 3. The Java applet allowing for system
evolution observation is available in Appendix 4.15.

The design of experiment

2.12 Simulation experiments must be designed to answer a question: how does the level and distribution of ini-
tial knowledge in an organisation influence the acquisition of the required knowledge by their members? This
knowledge acquisition takes place through the transfer of knowledge between the organisationalmembers. To
answer the research question both the e�ectiveness and e�iciency of knowledge transfer are examined. Da�
(1998, p. 663) defines e�ectiveness as ‘the degree to which goals are attained’ and e�iciency as ‘amount of
resources used to produce a unit of output’. In addition, according to Pérez-Nordtvedt et al. (2008), the com-
prehension and usefulness can be construed as reflecting knowledge transfer ‘e�ectiveness’, while the speed
and economy can be understood as reflecting ’e�iciency’ in the knowledge transfer process. It should also be
noted that, the level of adoption of each initiative by the recipient units, is one of themeasure of the knowledge
transfer e�ectiveness (Jensen & Szulanski 2007), and the speed at which the receiver acquires the new insights
and skills, can be understood as reflecting ‘e�iciency’ in the knowledge transfer process (Pérez-Nordtvedt et al.
2008).

2.13 In connectionwith the above definitions, to examine the e�ectiveness and e�iciency of knowledge transfer, we
determine:
• how the initial level (initial concentrationof chunks of knowledge) anddistributionof knowledge through
transfer of knowledge will a�ect the final level of knowledge in the organisation?

• and how long does this process take?

2.14 We also take into account the amount of knowledge that is ultimately needed in an organisation (to change the
organisational culture, launch a newproduct, etc.). As it is known, di�erent organisational processes, organisa-
tional changes require knowledge resources of di�erent sizes. Therefore, studies were conducted for di�erent
sizes of knowledge resources (di�erent number of knowledge chunks). In addition, to check whether the size
of the organisation a�ects the simulated process run, the studies concerns organisations of di�erent sizes.

2.15 In view of the above, as the dependent variable describing an e�ectiveness of knowledge transfer the following
parameters were adopted:

• n(k)— the fraction of agents having k chunks of knowledge,

• n(K)— the fraction of agents having all chunks of knowledge,

• f(k)— the fraction of agents having k-th chunk of knowledge ck,

• 〈f〉— the coverage of any chunks of knowledge ck in agents’ knowledge, i.e. the fraction of knowledge
chunks held by typical member of the organisation.

2.16 Additionally, as the dependent variable describing an e�iciency of knowledge transfer, the time τ necessary for
reaching a stationary state was adopted.

2.17 On the other hand, the following independent variables were chosen in the designed experiments:

• maximal number of chunks of knowledge (K),

• lattice size (L),

• initial concentration of chunks of knowledge (p).

2.18 The following levels of parameters were assumed in the first study:

• K = 4 (transfer of smaller amount of knowledge is required) andK = 8 (transfer of greater amount of
knowledge is required),

• L = 5 (the equivalent of a small organisation),L = 20 (the equivalent of an average organisation)

• and p ∈ {0.2, 0.5, 0.8}.

2.19 We also performed additional experiments (second-fourth experiments) to find the threshold values of the pa-
rameters described in the first study.
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Results

3.1 The results presented in Figures. 1-3 and 5-8 are obtained as a result of procedure of data aggregation from
M independent simulation with di�erent initial distributions of chunks of knowledge Ci for all agents (i =
1, · · · , L2). The program allowing for reproduction of these results is attached in Appendix 4.15 as Listing 3.
The only exception are the results presented in Figure. 4 which were obtained using program listed in Listing 4.
If the number of independent simulationsM is not explicit specified thenM = 100.

Model verification

3.2 The model verification for computer models ‘is defined as checking the adequacy among conceptual models
and computerised models’ (David 2013, p. 138).

3.3 In Listings 1 and 2 the values of Ci for small organisation (L = 5) in several subsequent times steps t < 5
are presented. The vectors Ci between pairs of dashed lines correspond to i = 1, · · · , 5 (in the first row),
i = 6, · · · , 10 (in the second row), etc. The chunks of knowledge inherited in step t are indicated by a red
cross (x). Eleventh lines of the listings contain information on global presence/absence of chunks of knowledge
in organisation. In both examples (Listings 1 and 2) each chunk of knowledge is known at least by one of the
agents. The lines 50–54 show time evolution of the aggregated number F (k) ≡

∑M
r=1 Fr(k) of agents having

k-th chunk of knowledge ck and aggregated numberN(k) ≡
∑M
r=1Nr(k) of agents having exactly k chunks of

knowledge, whereFr(k) [Nr(k)] are numbers of agents having k-th chunk of knowledge ck [numbers of agents
having exactly k chunks of knowledge] in r-th simulation. These values (normalised to the system size L2 and
the number of simulationsM ) will be presented in Figure 1

f(k) ≡ F (k)

L2
=

∑M
r=1 Fr(k)

ML2

and Figures 2, 3

n(k) ≡ N(k)

L2
=

∑M
r=1Nr(k)

ML2
.

3.4 In Listing 1 the system evolution forK = 4 and p = 0.2 are presented. During the first time step the agents
(followers 3, 10, 11, 13, 14, 16, 18, 19, 20, 21 and 23) acquire new chunks of knowledge (c3, c3, c1, c3, c2, c3, c3,
c2, c2, c3 and c4, respectively). These transfers come from local leaders (agents 23, 5, 6, 14, 9, 11, 19, 24, 25,
1, 22). Please note that some agents (11, 14, 19) play both roles and simultaneously send and receive chunks of
knowledge. The transfer of c3 to agent 18 is possible fromagents 19 and23as c183 (t = 0) = 0and ν18(t = 0) = 0
and simultaneously c193 (t = 0) = 1, ν19(t = 0) = 1 and c233 (t = 0) = 1, ν23(t = 0) = 1. Agent 18 chooses an
agent fromwhom he/she randomly inherit c3.

3.5 In Listing 2 the system evolution for the same set of parameters as in Listing 1 is presented. The only exception
is that the value of p is four times larger (p = 0.8 instead of 0.2). The larger value of p results in higher coverage
of chunks of knowledge {F (c1), · · · , F (c4)} = {23, 24, 24, 24} (p = 0.8) instead of {6, 14, 20, 10} for p = 0.2.
Also qualitative di�erence in the number of agentsN(k) possessing k chunks of knowledge is observed as for
p = 0.2 agents with k = K = 4 chunks of knowledge are absent while they are dominant (23/25) fraction of
N(k) distribution for p = 0.8.

3.6 Please note that although in both cases all chunks of knowledge are available in the system the evolution stops
before transfer of all chunks of knowledge to all agents.

3.7 As both, the initial distributions of chunks of knowledge ck among agents and themissing chunks of knowledge
which will be inherited are selected randomly we do not expect any di�erence in f(k) time evolution. And
indeed, curves of f(k) vs. t for various k collapse into single curve for fixed values of L,K and p as presented
in Figure 1.

Main results

First experiment: n(k)

3.8 Initially, the evolution of agents fraction n(k) who have k required knowledge chunks depending on the sim-
ulation time t was examined. The study was conducted according to the experiment design forK = 4 (when
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Listing 1: Examples of model rules application for a small system L = 5 andK = 4 chunks of knowledge for
p = 0.2.

1 # L = 5 , K = 4 , M = 1 , p = 0.200
2

3 # t = 0
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− i =
5 [ 0 1 1 0 ] [ 0 0 0 0 ] [ 0 0 0 0 ] [ 0 0 0 0 ] [ 0 1 1 0 ] 01 02 03 04 05
6 [ 1 0 0 1 ] [ 0 1 1 0 ] [ 0 0 0 0 ] [ 0 1 0 1 ] [ 0 0 0 0] 06 07 08 09 10
7 [ 0 0 1 0 ] [ 1 1 0 0 ] [ 0 0 0 0 ] [ 0 0 1 0 ] [ 0 0 0 0] 1 1 12 13 14 15
8 [ 0 0 0 0 ] [ 0 0 1 1 ] [ 0 0 0 0 ] [ 0 0 1 0 ] [ 0 0 1 0 ] 16 17 18 19 20
9 [ 1 0 0 0 ] [ 1 0 0 1 ] [ 0 0 1 0 ] [ 0 1 1 0 ] [ 0 1 0 1 ] 21 22 23 24 25
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 g l oba l : [ 1 1 1 1 ] = 4
12

13 # t = 1
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 [ 0 1 1 0 ] [ 0 0 0 0 ] [ 0 0 x 0 ] [ 0 0 0 0 ] [ 0 1 1 0 ]
16 [ 1 0 0 1 ] [ 0 1 1 0 ] [ 0 0 0 0 ] [ 0 1 0 1 ] [ 0 0 x 0]
17 [ x 0 1 0 ] [ 1 1 0 0 ] [ 0 0 x 0 ] [ 0 x 1 0 ] [ 0 0 1 0 ]
18 [ 0 0 x 0 ] [ 0 0 1 1 ] [ 0 0 x 0 ] [ 0 x 1 0 ] [ 0 x 1 0 ]
19 [ 1 0 x 0 ] [ 1 0 0 1 ] [ 0 0 1 x ] [ 0 1 1 0 ] [ 0 1 0 1 ]
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21

22 # t = 2
23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 [ 0 1 1 0 ] [ 0 0 x 0 ] [ 0 0 1 1 ] [ 0 0 x 0 ] [ 0 1 1 0 ]
25 [ 1 0 0 1 ] [ 0 1 1 0 ] [ 0 0 x 0 ] [ 0 1 0 1 ] [ 0 x 1 0 ]
26 [ 1 0 1 0 ] [ 1 1 0 0 ] [ 0 x 1 0 ] [ 0 1 1 0 ] [ 0 x 1 0 ]
27 [ x 0 1 0 ] [ 0 0 1 1 ] [ 0 0 1 x ] [ 0 1 1 0 ] [ 0 1 1 0 ]
28 [ 1 0 1 0 ] [ 1 0 0 1 ] [ 0 0 1 1 ] [ 0 1 1 0 ] [ 0 1 0 1 ]
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30

31 # t = 3
32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 [ 0 1 1 0 ] [ 0 0 1 x ] [ 0 0 1 1 ] [ 0 x 1 0 ] [ 0 1 1 0 ]
34 [ 1 0 0 1 ] [ 0 1 1 0 ] [ 0 0 1 x ] [ 0 1 0 1 ] [ 0 1 1 0 ]
35 [ 1 0 1 0 ] [ 1 1 0 0 ] [ 0 1 1 0 ] [ 0 1 1 0 ] [ 0 1 1 0 ]
36 [ 1 0 1 0 ] [ 0 0 1 1 ] [ 0 0 1 1 ] [ 0 1 1 0 ] [ 0 1 1 0 ]
37 [ 1 0 1 0 ] [ 1 0 0 1 ] [ 0 0 1 1 ] [ 0 1 1 0 ] [ 0 1 0 1 ]
38 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39

40 # t = 4
41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 [ 0 1 1 0 ] [ 0 0 1 1 ] [ 0 0 1 1 ] [ 0 1 1 0 ] [ 0 1 1 0 ]
43 [ 1 0 0 1 ] [ 0 1 1 0 ] [ 0 0 1 1 ] [ 0 1 0 1 ] [ 0 1 1 0 ]
44 [ 1 0 1 0 ] [ 1 1 0 0 ] [ 0 1 1 0 ] [ 0 1 1 0 ] [ 0 1 1 0 ]
45 [ 1 0 1 0 ] [ 0 0 1 1 ] [ 0 0 1 1 ] [ 0 1 1 0 ] [ 0 1 1 0 ]
46 [ 1 0 1 0 ] [ 1 0 0 1 ] [ 0 0 1 1 ] [ 0 1 1 0 ] [ 0 1 0 1 ]
47 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48

49 # t | F ( 1 ) F ( 2 ) F ( 3 ) F ( 4 ) | N ( 0 ) N ( 1 ) N ( 2 ) N ( 3 ) N ( 4 )
50 0 | 4 7 10 5 | 9 6 10 0 0
51 1 | 5 10 17 6 | 3 6 16 0 0
52 2 | 6 13 20 8 | 0 3 22 0 0
53 3 | 6 14 20 10 | 0 0 25 0 0
54 4 | 6 14 20 10 | 0 0 25 0 0
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Listing 2: Examples of model rules application for a small system L = 5 andK = 4 chunks of knowledge for
p = 0.8.

1 # L = 5 , K = 4 , M = 1 , p = 0.800
2

3 # t = 0
4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− i =
5 [ 1 1 1 0 ] [ 1 1 1 1 ] [ 1 0 1 1 ] [ 1 1 0 1 ] [ 1 1 1 1 ] 01 02 03 04 05
6 [ 1 1 0 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 0 1 ] [ 1 1 1 1 ] 06 07 08 09 10
7 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 1 0 0 ] [ 1 1 1 1 ] [ 1 1 1 1 ] 1 1 12 13 14 15
8 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 0 1 1 ] [ 1 1 1 1 ] 16 17 18 19 20
9 [ 1 0 1 0 ] [ 1 0 0 1 ] [ 0 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] 21 22 23 24 25
10 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 g l oba l : [ 1 1 1 1 ] = 4
12

13 # t = 1
14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 x 1 1 ] [ 1 1 x 1 ] [ 1 1 1 1 ]
16 [ 1 1 x 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 x 1 ] [ 1 1 1 1 ]
17 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 1 0 0 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
18 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 0 1 1 ] [ 1 1 1 1 ]
19 [ 1 x 1 0 ] [ 1 x 0 1 ] [ x 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21

22 # t = 2
23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
25 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
26 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 1 0 0 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
27 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 0 1 1 ] [ 1 1 1 1 ]
28 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30

31 # t = 3
32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
34 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
35 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 1 0 0 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
36 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 0 1 1 ] [ 1 1 1 1 ]
37 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
38 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39

40 # t = 4
41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
42 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
43 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
44 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 1 0 0 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
45 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 0 0 1 1 ] [ 1 1 1 1 ]
46 [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ] [ 1 1 1 1 ]
47 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
48

49

50 # t | F ( 1 ) F ( 2 ) F ( 3 ) F ( 4 ) | N ( 0 ) N ( 1 ) N ( 2 ) N ( 3 ) N ( 4 )
51 0 | 22 21 20 22 | 0 1 3 6 15
52 1 | 23 24 23 23 | 0 1 1 2 21
53 2 | 23 24 24 24 | 0 1 1 0 23
54 3 | 23 24 24 24 | 0 1 1 0 23
55 4 | 23 24 24 24 | 0 1 1 0 23
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Figure 1: The time evolution of the fraction f(k) of agents having k-th chunk of knowledge ck forK = 8 and
various systems sizes (L=5, 20) and initial concentration and distribution of chunks of knowledge (p=0.2, 0.5,
0.8). The values of f(k) are averaged overM = 100 independent simulations.

JASSS, 21(2) 3, 2018 http://jasss.soc.surrey.ac.uk/21/2/3.html Doi: 10.18564/jasss.3659



 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

0
1
2
3
4

t

k =

n
(k
)
[%
]

L = 5,K = 4, p = 0.2

.8

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30

0
1
2
3
4

t

k =

n
(k
)
[%
]

L = 20,K = 4, p = 0.2

.8

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

0
1
2
3
4

t

k =

n
(k
)
[%
]

L = 5,K = 4, p = 0.5

.8

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

0
1
2
3
4

t

k =

n
(k
)
[%
]

L = 20,K = 4, p = 0.5

.8

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

0
1
2
3
4

t

k =

n
(k
)
[%
]

L = 5,K = 4, p = 0.8

.8

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

0
1
2
3
4

t

k =

n
(k
)
[%
]

L = 20,K = 4, p = 0.8

Figure 2: The time evolution of the fractionn(k) of agents having k chunks of knowledge forK = 4 and various
systems sizes (L=5, 20) and initial concentration and distribution of chunks of knowledge (p=0.2, 0.5, 0.8). The
values of n(k) are averaged overM = 100 independent simulations.
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Figure 3: The time evolution of the fractionn(k) of agents having k chunks of knowledge forK = 8 and various
systems sizes (L=5, 20) and initial concentration and distribution of chunks of knowledge (p=0.2, 0.5, 0.8). The
values of n(k) are averaged overM = 100 independent simulations.
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organisation change requires less knowledge, Figure 2) and for K = 8 (when organisation change requires
more knowledge, Figure 3).

3.9 In both cases, the simulations were conducted for both a small organisation (L = 5), and an average organ-
isation (L = 20) with three levels of initial concentration chunks of knowledge p=0.2, 0.5 and 0.8. As shown
in Figures 2 and 3 the e�ectiveness of the knowledge transfer as measured by n(k) depends on L and p. The
greater p the greater the percentage of agents having a greater number of k portions of all the required chunks
of knowledge. For example, let us look at Figure 2 (le� panel, for L = 5 and K = 4): for p = 0.2 the lack
of agents having all four required knowledge chunks is observed, whereas for p = 0.5, nearly 80% of agents
have four knowledge chunks and for p = 0.8 almost 100% of the agents have all required knowledge chunks.
In addition, to obtain a high enough percentage of the agents havingK portions of knowledge, the value of p
must bemuch greater forK = 8 (Figure 3) than it is forK = 4 (Figure 2). For an average organisation (L = 20),
the level of p = 0.2 is high enough to make agents with all required chunks of knowledge the dominant frac-
tion of agents in the organisation (for p = 0.2, more than 50% of agents have k = 4 of the knowledge chunks,
while agents with k ≤ 2 chunks of knowledge are absent). A similar relationship is observed in Figure 3, that
is, in larger organisations, a smaller value of p is needed to obtain a greater percentage of agents having the k
knowledge chunks.

3.10 Thee�iciencyof the knowledge transfermaybequantitatively describedas a time τr necessary for reaching the
stationary state of the system during the r-th running. The value of τr indicates the number of simulation time
steps necessary for reaching the time point a�erwhich neitherFr(k) (k = 1, · · · ,K) norNr(k) (k = 0, · · · ,K)
undergo any changes. The dependence of the average time τ = M−1

∑M
r=1 τr for small (L = 5) and average

(L = 20) organisation sizes are dependent on the initial fractionof chunks of knowledge p forK = 4 andK = 8
as presented in Figure 4. The results are averagedoverM = 103 independent simulations. The values obtained
for the uncertainties of τ , are:

u(τ) =

√∑M
r=1(τr − τ)2

M(M − 1)
, (1)

which are smaller than symbol size. In the case of a small organisation (L = 5), the knowledge transfer time is
much shorter than for the averageorganisation (L = 20). Furthermore, this time is shorter for a smaller number
of knowledge chunks (i.e., K = 4) than for a larger one (K = 8). It may be also noted, that the knowledge
transfer is most e�icient for large values of p (p > 0.7) when the small number of simulation steps are needed
to achieve a steady state. In this case, i.e. for p > 0.7, the di�erence between the times τ forL = 5 andL = 20
andK = 4 andK = 8 is the smallest.
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Figure 4: The time τ necessary for reaching the stationary state as dependent on initial concentration of chunks
of knowledge p. The results are averaged overM = 103 independent simulations. The error bars are smaller
than the symbols.

Second experiment: n(K)

3.11 In Figure 5 the results of the second experiment are presented. Identical levels of L (5 and 20) as in the first
experiment have been adopted, whereas levels ofK (2, 3, 4, 8) and p (from 0.1 to 0.9 in steps of 0.1) have been
expanded. The basic result of the conducted simulation confirmed, that the dependencies obtained in the first
study are valid. For a larger lattice a relatively lower value of p is su�icient to achieve desired fraction n(K)
of agents having a complete knowledge. Furthermore, as can be seen in Figure 5, the greater the number of
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Figure5: The timeevolutionof the fractionn(K)ofagentshaving total knowledge—i.e. possessingallK chunks
of knowledge (c1, c2, · · · , cK) = (1, 1, · · · , 1). The values of n(K) are averaged overM = 100 independent
simulations.
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knowledge chunksK needed in an organisation, the greater must be initial fraction p of knowledge chunks in
order to make almost all the organisation members fully comprehensive, i.e. having allK desired chunks of
knowledge. Please note however, that for some sets of parameters the full coverage of chunks of knowledge
by all agents becomes impossible. For small organisation (L = 5),K = 8 and p ≥ 0.8 the fraction of agents
with total knowledge reaches 90%≤ n(K) ≤100%. For an average size organisation (L = 20) such level of
agents knowledge is reached for p ≥ 0.6. On the other hand forK = 8 and p ≤ 0.5 (small organisation) and
for p ≤ 0.3 (average organisation) less than 10% of agents posses all chunks of knowledge.

3.12 As can be seen in Figure 5, the e�iciency of knowledge transfer is greater for smaller organisations, i.e. the
stationary state is reached earlier forL = 5 than forL = 20.

Third experiment: n(K) vs. L and p
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Figure 6: The fraction of agents having total knowledge (c1, c2, · · · , cK) = (1, 1, · · · , 1) vs. initial probability p
for various systemsizesLandvarious sizesof total knowledgeK. The results are averagedoverM independent
simulations. The system reaches the stationary state in t < 200 (t < 1000) steps for L < 400 (L > 400). In
sub-figures (c) and (d) the upper part of sub-figures (a) and (b) are displayed (90% < n(K) < 100%).

3.13 The third experiment was designed to precisely analyse the impact of the lattice size L on the investigated
dependent variables. The experiments were conducted forK = 4 andK = 8 (small andmedium-sized organ-
isations) and for the p levels—as in the second experiment. The size of the lattice (organisation) was changed
to the levels L=5, 10, 20, 50, 100, 200, 500 and 1000. The results of average values of n(K) (independent repli-
cates obtained for the simulation from 50 to 1000 runs) is shown in Figure 6. The results are averaged overM
independent simulations as indicated in the picture inset. The system reached the stationary state in t < 200
(t < 1000) steps forL < 400 (L > 400). The bottom part of the figure shows enlarged fragments of the top fig-
ure part. Dependencies shown in the figures, generally confirm the model behaviour obtained in the previous
two studies. First of all, the large size L2 of modelled organisations require a smaller value of probability p for
a full (or nearly full, n(K) ≥ 90%) knowledge into the system.

3.14 Let pC be an initial fraction p of chunks of knowledge which guarantee that half of agents will acquire the total
knowledge. The quantity pC may be treated as characteristic of e�iciency of knowledge transfer complemen-
tary to time τ . In Figure 7(a) the critical values of initial concentration of chunks of knowledge pC as dependent
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on linear systemsizeLarepresented. Thesedependencies become roughly linear in logarithmic scalewhich in-
dicate thatpC(L) ∝ L−γ . The least squaremethod fit results in theexponentγ = 0.4718 . . .andγ = 0.1895 . . .
forK = 4 andK = 8, respectively. Of course, forK = 8 threshold pC is greater than that forK = 4, that is, if
the organisational change requires more knowledge, more individual portions of knowledge at the beginning
of the knowledge transfer (measured by p) must be available in the organisation.

3.15 Consider the bottompanel of Figure 6. As can be seen, for all tested lattice sizesL, a�er reaching themaximum
value of n(K) (which takes place at p = pO), a decrease of the fraction n(K) for each test, is observed. This
decrease takes place until a certain value of p and then n(K) again increases with p. This phenomenon takes
place both forK = 4 andK = 8 and it is a consequence of the assumptions of our model. Agents can acquire
knowledge only fromneighbours, who have exactly onemore of knowledge chunk from them. This shows, that
at some point agents can no longer acquiremore knowledge since neighbouring agents aremuch smarter than
they are.

3.16 The optimal value of initial concentration of chunks of knowledge pO which guarantee themost e�icient trans-
fer of knowledge1, as dependent ona linear systemsizeL, is presented in Figure 7(b). For p = pO thedependen-
cies n(K) presented in Figure 6 have local maximum. In both cases (K = 4, 8) the dependencies pO(L) do not
growwithL. Please note, that forK = 8 and small- or average-sized organisations (L ≤ 20) the dependencies
n(K) vs. p (see Figure 6) growmonotonically with p and pO = 1.

Fourth experiment: 〈f〉

3.17 Subsequently, in the fourth experiment, the e�ectiveness of knowledge transfer expressedby average coverage
of knowledge chunks of agents having any chunk of knowledge ck:

〈f〉 = 1

K

K∑
k=1

f(k),

was analysed. This is a measure which expresses the average number of knowledge chunks possessed by the
system (organisation). Simulationswereperformed forK =2, 3, 4, 5, 6, 7, 8, 16 and for thepandL levels as in the
secondexperiment. In Figure8 theaveragecoverageof chunksof knowledge 〈f〉 forL = 5and long simulations
time T → ∞ as dependent on initial concentration of chunks of knowledge p is presented. As can be seen
in Figure 8, if a greater knowledge K is desired by the organisation, a larger value of p is required to ensure
that almost all members of the organisation will receive all K available chunks of knowledge. For the larger
organisation sizes L the smaller values of p are su�icient for observing the e�ect described above. The latter
is a direct consequence of our model assumptions. Each agent has independently, with some probability p, a
required chunk of knowledge. Agents (the organisation members) acquire initially knowledge spontaneously
and independently. The probability that the agent will have all of the knowledge is the probabilities product
pK of having each of the knowledge chunks. If p = 0.2, the probability that the agent has, for example, all four
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Figure 7: (a) The critical values of initial concentration of chunks of knowledge pC as dependent on linear sys-
tem size L. For p = pC half of agents posses total knowledge. (b) The optimal value of initial concentration of
chunks of knowledge pO which guarantee the most e�icient transfer of knowledge, i.e. giving the largest frac-
tion of agentswithK chunks of knowledge as dependent on linear system sizeL. For p = pO the dependencies
presented in Figure 6 have local maximum. T = 200 (L < 400), T = 1000 (L > 400).
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required knowledge chunks (K = 4) is pK = 0.0016. For a small network (L = 5) initially only a very small
number of agents have all the chunks of knowledgeL2pK = 0.04� 1 and thuswe do not observe such agents
in lines 5-9 of the Listing 1. For the probability p four times larger,L2pK ≈ 10 andwemay expect several agents
with (c1, c2, c3, c4) = (1, 1, 1, 1) at t = 0. And indeed, we can detect fourteen such agents present in lines 5-9
of Listing 2. The deviation of observed and expected values of agents with total knowledge is evidenced in both
small lattice size (L = 5) and extremely low statistical sampling (single realisation,M = 1).

3.18 In Figure8 forK = 2, 3 and4 thedependencies 〈f〉onp increases toacertain thresholdvalueofp (the threshold
value of p is di�erent for variousK), then it decreases, and it increases again. These complex behaviours are
more visible in the larger lattice (L = 20) than in the smaller (L = 5). We see again, that forL = 20 andK ≥ 7
a drop in 〈f〉 is absent.
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Figure 8: The average coverage of chunks of knowledge 〈f〉 = K−1
∑K
k=1 f(k) of agents having any chunk

of knowledge ck for L=5, 20 and long simulations time T → ∞ and various values ofK (K=2, 3, 4, 8, 16) as
dependent on initial concentration of chunks of knowledge p. The values of 〈f〉 are averaged overM = 100
independent simulations.

Discussion and Conclusions

4.1 We have investigated a CAmodel to study the transfer of knowledge within an organisation. The transfer of ex-
isting knowledge is studied since the acquisition of such knowledge is the key to build competitive advantage
of companies (Szulanski 1996). Moreover, the knowledge is in the organisation, as emphasised by Grant (1996).
Our goal was to answer the research question: how does the level of initial knowledge in an organisation in-
fluence the acquisition of the required knowledge by their members? To answer this question, we performed
simulations

• for various initial knowledge (p), which is in the organisation,

• for di�erent sizes of knowledge resources (K),

• for model organisations of di�erent sizes (L).
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4.2 As we have shown previously, the larger size of the organisation L, the smaller initial fraction p of knowledge
chunks amongmembers of the organisation is necessary for reaching (in series of knowledge transfers) the re-
quired level of knowledgebyalmost allmembersof theorganisation. ThevalueL2pK is alsoanaveragenumber
of agents iwho initially have all chunks of knowledge (i.e. νi(0) = K). In otherwords, to obtain finally a similar
level of knowledge saturation among agents for larger organisations we need fewer agents with all portions of
knowledgebefore the transfer of knowledgewill startwhen compared to the smaller organisations. In addition,
in the larger organisation it is more likely that the required knowledge will be acquired by almost all the mem-
bers of theorganisation. This phenomenon results from the assumptions of themodel, as explainedabove. The
condition for the e�ective transfer in ourmodel, is having all knowledge chunks by at least one individual. If the
organisation is small and the initial concentration p of chunks of knowledge is low, it is possible that no person
has all of the knowledge chunks. Furthermore, in our model, we assumed that agents (organisation members)
can acquire knowledge only fromneighbours, who have exactly onemore knowledge chunk than they have. As
it was shown at some point they can no longer acquire knowledge, since all agents in the neighbourhood are
much smarter than them. The adoption of such a way of knowledge transfer is sometimes not fully e�ective.
This is particularly visible in the graphs of Figure 6(c-d) and Figure 8. The radical model assumption that the
transfer takes place only between agents, who di�er in a single chunk of knowledge, may result in the inability
to achieve the full knowledge of the organisation. This phenomenon suggests taking action in the organisa-
tion to shorten the distance (social distance) between people with di�erent levels of knowledge (educational
attainment), or working out incentives to share knowledge.

4.3 The simulation results shown in Figure 8 suggest a decrease in the e�ectiveness of knowledge transfer with ris-
ing probabilities p for the initial individual portions of knowledge. However, this surprising phenomenon can
be explained on the basis of the assumed rules of transfer and assignment of ‘knowledge’ by agents. Undoubt-
edly, the dynamics of the knowledge transfer depends on the initial parameters adopted in the model. The
probabilities of initial appearance of agentswith k chunks of knowledge are given by the Bernoulli distribution:

BK(k) =

(
K

k

)
pk(1− p)K−k. (2)

For example, let us assume a simple example of K = 2—when only two chunks of knowledge are required
in the modelled organisation. The products B2(2)B2(1), B2(1)B2(0) and B2(2)B2(0) provide probabilities of
meeting the respective types of agents pairs (and theprobabilities of the knowledge transfer or lack of it) for the
two neighbouring grid cell (i, j) in the first step of the simulation. Namely, these products reflect probabilities
of appearance of pair of agents with (k = 1 and k = 2), (k = 1 and k = 0), (k = 2 and k = 0) chunks of
knowledge, respectively. For the first two pairsB2(k1)B2(k2) the transfer of knowledge is possible, while in the
third case it is forbidden by the assumedmodel rules. These probabilities products are presented in Figure 9.
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Figure 9: The estimatedprobabilities of acts of knowledge transfer (dotted anddashed lines) and lack of it (solid
line) in the first step of simulation as dependent on the initially concentration of chunks of knowledge p.

4.4 For p ≥ 0.5 we can observe the strong increase of the possibility of the transfer of useful information from
agents with two chunks of knowledge to those who have just one. Although the number of pairs blocking the
knowledge transfer decreases, the drastic decrease of the possibility of obtaining knowledge by agentswithout
any chunks of knowledge from those who have single chunk of knowledge is simultaneously observed. Hence,
in further steps, the increase of the number of pairs potentially blocking the knowledge transfermay occur and
consequently the system does not reach the state of ‘full knowledge’. It seems that this reasoning justifies the
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results shown in Figure 8 forK = 2. Please note however, that our reasoning has a rather ‘mean field’ character
and it neglects totally the spatial correlations among agents. The latter are crucial in a CA technique and thus
our interpretation remains only qualitative.

4.5 E�iciency is understood here as the time τ needed to achieve a stable state of the system. The larger the or-
ganisation, the longer the time τ of knowledge transfer. This time depends also on the number of knowledge
chunksK. The more knowledge is needed to be transfer, the time of this process is longer.

4.6 As it was postulated by Reagans & McEvily (2003), e�ective knowledge transfer is a very important part of the
knowledge management. Without knowledge of the critical factors related to the e�ective transfer of knowl-
edge, managers may have a problem with supporting the exchange of knowledge (Levin et al. 2004). Our find-
ingsprovidepractical guidance formanagers in the context of knowledge transferwithinanorganisation,where
the knowledge of all its members is needed to change organisation, organisational culture, etc. Our simulation
shows that, the state of knowledge at the beginning of the transfer is very important.

4.7 Thehigher the initial level of knowledge in theorganisation, the greater the chance that almost allmemberswill
have the requisite knowledge they need tomake the changes. As we have shown, this takes place in particular
with our assumption that the knowledge transfer takes place in themanner described in this article, i.e. when a
small distance of knowledge between the recipient and the sender is established. Therefore, managers should
conduct courses and training for their employees to increase the level of knowledge in the organisation.

4.8 Further, if agents transfer knowledge when others have one more knowledge chunk than them, the transfer
of knowledge is more e�ective when knowledge is spread more evenly betweenmembers of the organisation,
i.e. when there are few agents with a large distance of knowledge from others. Although in our description the
correlations between knowledge of neighbouring agents are neglected, it is clear that an organisational struc-
ture should allow agents of small di�erences of knowledge to work together. Themore people will possess the
required knowledge (which is needed to change organisation, organisational culture, etc.) the more e�ective
and e�icient transfer of knowledge will be.

4.9 Knowledge transfer is also influenced by the size of the organisation and the knowledge resources. The greater
size of the organization and greater the necessity for more chunks of knowledge increase time of the knowl-
edge transfer. It is also related to the assumed model of knowledge transfer and the probability of the initial
appearance of agents withK chunks of knowledge (as explained in paragraph 4.3, see Figure 9). In a larger or-
ganization there aremore agentswith a smaller distanceof knowledgebetween them,whichmeans that agents
more o�en (and therefore longer) exchange knowledge among themselves. A similar situation occurswhen the
larger number of chunks of knowledge should be transferred in the organization. A larger number of chunks
of knowledgeK results in more knowledge exchange processes among agents (members of the organization).
Moreover, the more chunks of knowledge are required for organizational change, the larger the initial level p
of knowledge in organisation is necessary tomake almost all members of organisation fully comprehensive i.e.
having all desired chunks of knowledge.

4.10 AsHarari et al. (2014)pointout, theknowledge transfer consistsof twodimensions: seekingoutknowledge from
others and sharing one’s knowledge with others. On the one hand, employees strive to enhancing their own
knowledge, on the other hand, they should share knowledge with those who need it. Inside the organisation,
knowledge transfer involves therefore, actively communicating toothers andactively consulting others to learn
what they know.

4.11 In the model presented, we assume that employees are willing to share knowledge with their closest neigh-
bours, if the knowledge distance between them is small. These can be teams of employees—formal groups and
informal groups when employeesmeet for example on breaks, dinner, etc., but communication between them
is informal. This assumption results in quite e�ective knowledge transfer (as shown in the previous section).
Additionally, Alipour et al. (2011) postulate, that themanager should design a structure, inwhich organisational
members can share their information, experience, and their knowledge. The structure based on close formal
or informal contacts between employees seems to be a good solution. Close relationships between employ-
ees (they know each other well) have a positive e�ect on their openness and trust, and this leads to positive
behaviours such as sharing knowledge (Krylova et al. 2016). Managers should, therefore, support the creation
of informal groups between employees as well as ensure good co-operation in formal sta� teams to develop
informal communication.

Further research

4.12 This is a preliminary study on the transfer of knowledge within the organisation. The results suggest further
development of the model that will contain more variables describing the transfer of knowledge within an or-
ganisation.
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4.13 Firstly, we were going to describe the way of knowledge transfer by another or modified rules. For example, it
seems interesting to investigate the transfer of knowledge consisting in acquiring knowledge from individuals
who have other pieces of knowledge (not necessarily have more knowledge than a learning agent) and/or ac-
quiring knowledge from the wisest individuals in the neighbourhood (knowledge leaders). This will allow the
comparison of di�erent variants of the model and examine how a di�erent knowledge transfer rules influence
e�ectiveness and e�iciency of this process (Kowalska-Styczeń et al. 2018).

4.14 Secondly, because our research shows a significant role of an initial knowledge level and distribution in the
organisation, it seems to be interesting to study the company’s policy involving the di�erent training strategies
for their employees. Undoubtedly managers could be interested in an identification of relationships between
the range and scope of training and on quality of knowledge transfer. For example, the knowledge whether do
training for a wider range of employees, or for a smaller number of units; whether to train comprehensively a
few people, or teach di�erent skills of a larger group of employees, it may prove to be very valuable.

4.15 Thirdly, studying the e�ects of strong and weak ties to the transfer of knowledge, is very interesting (Uzzi 1997,
1999; Hansen 1999). It is related to the introduction of social distance and the di�erent neighbourhood size in
ourmodel—here restricted to the smallest possible, i.e. von Neumann neighbourhoodwhere interactions only
with the nearest neighbours are considered (Paradowski et al. 2017).
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Appendix A: Java applet presenting system evolution

http://www.zis.agh.edu.pl/knowledge_transfer/

Appendix B: Program code listings

The variables names used in program codes presented in Listings 3 and 4 correspond directly to symbols used
in main text body, i.e. p, L, K, T, M, F_k, N_k, tau correspond to p, L, K, T , M , F (k), N(k), τ , respectively.
The two-dimensional matrices old and new keep Boolean representation of agents chunks of knowledge cik at
times t− 1 and t, respectively. irun counter corresponds to rwhile L2 stands forL2. The rand(idum) procedure
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generates uniformly distributed random numbers from [0, 1) interval and idum is a seed of the generator. The
variables avetau and avetau2 allows for estimation of uncertainties u(τ) [see Eq. (1)]. Please manipulate (com-
ment/uncomment) lines 168-179 or 171-182 for pretty printing of program output forK 6= 4 in Listings 3 and 4,
respectively.

Listing 3: Fortan77 code allowing for direct reproduction of the results presented in Figures 1-3.

program main
imp l i c i t none
rea l p , rand
l o g i c a l old , new , g l oba l

5 in teger L , L2 , K ,M, T , numchunks , Nglobal , F_k , N_k ,
& i , j , kk , i run , idum , i t e r , nlockomp , t r a n s f
parameter ( L =5 , L2=L∗L , K=32 ,M=100 , T=200)
dimension old (−L + 1 : L2+L , K ) , new(−L + 1 : L2+L , K ) , t r a n s f ( K ) ,

& numchunks(−L + 1 : L2+L ) , g l oba l ( K ) , F_k ( K , 0 : T ) , N_k ( 0 : K , 0 : T )
10 data idum / 1 /

read ∗ , p
pr in t ∗ , ’ # L= ’ , L , ’ K= ’ ,K , ’ M= ’ ,M, ’ p= ’ , p

15 do i t e r =0 ,T
N_k ( 0 , i t e r )=0
do j = 1 , K
F_k ( j , i t e r )=0
N_k ( j , i t e r )=0

20 enddo
enddo

c ######################################################################
do 999 i r un = 1 ,M

25

Ngloba l =0
do j = 1 , K

g l oba l ( j ) = . f a l s e .
enddo

30

i t e r =0
C −−− i n i t i a l d i s t r i b u t i o n o f competences −−−

do i = 1 , L2
numchunks ( i )=0

35 do j = 1 , K
old ( i , j ) = . f a l s e .
new ( i , j ) = . f a l s e .
i f ( rand ( idum ) . l t . p ) then
old ( i , j ) = . true .

40 new ( i , j ) = . true .
g l oba l ( j ) = . true .
numchunks ( i ) = numchunks ( i ) + 1

endi f
enddo

45 enddo

do j = 1 , K
i f ( g l oba l ( j ) ) Ng loba l = Ng loba l +1

enddo
50

do i = 1 , L
numchunks(−L+ i ) = numchunks ( L2−L+ i )
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numchunks ( L2+ i ) = numchunks ( i )
do j = 1 , K

55 old (−L+ i , j ) = o ld ( L2−L+ i , j )
o ld ( L2+ i , j ) = o ld ( i , j )

enddo
enddo

60 do i = 1 , L2
N_k ( numchunks ( i ) , i t e r ) = N_k ( numchunks ( i ) , i t e r ) + 1
do j = 1 , K
i f ( new ( i , j ) ) F_k ( j , i t e r ) = F_k ( j , i t e r ) + 1

enddo
65 enddo

do 998 i t e r = 1 , T
C −−− one t ime s t ep o f the system e v o l u t i o n −−−

70 do 777 i = 1 , L2

i f ( numchunks ( i ) . eq . numchunks ( i−L )−1 ) then
nlockomp=0
do j = 1 , K

75 i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i−L , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
enddo

80 i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

endi f
85 endi f

i f ( numchunks ( i ) . eq . numchunks ( i +L )−1 ) then
nlockomp=0
do j = 1 , K

90 i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i +L , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
enddo

95 i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

endi f
100 endi f

i f ( numchunks ( i ) . eq . numchunks ( i −1)−1) then
nlockomp=0
do j = 1 , K

105 i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i −1 , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
enddo

110 i f ( nlockomp . gt . 0 ) then
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kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

endi f
115 endi f

i f ( numchunks ( i ) . eq . numchunks ( i + 1 ) − 1 ) then
nlockomp=0
do j = 1 , K

120 i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i + 1 , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
enddo

125 i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

endi f
130 endi f

777 enddo

C −−− synchronous system update −−−
135 do i = 1 , L2

numchunks ( i )=0
do j = 1 , K
old ( i , j ) = new ( i , j )
i f ( o ld ( i , j ) ) numchunks ( i ) = numchunks ( i ) + 1

140 enddo
enddo

do i = 1 , L
numchunks(−L+ i ) = numchunks ( L2−L+ i )

145 numchunks ( L2+ i ) = numchunks ( i )
do j = 1 , K
old (−L+ i , j ) = o ld ( L2−L+ i , j )
o ld ( L2+ i , j ) = o ld ( i , j )

enddo
150 enddo

do i = 1 , L2
N_k ( numchunks ( i ) , i t e r ) = N_k ( numchunks ( i ) , i t e r ) + 1
do j = 1 , K

155 i f ( new ( i , j ) ) F_k ( j , i t e r ) = F_k ( j , i t e r ) + 1
enddo

enddo

998 enddo
160

999 enddo

pr in t ∗ , " "
pr in t ’ ( a6 , a66 , a72 ) ’ , ’ # i t | ’ ,

165 & ’ F ( c_1 ) , . . . , F ( c_K ) | ’ ,
& ’N ( 0 ) , . . . , N ( K ) −− data aggregated from M run ings ’
do i t e r =0 ,T

c K = 3 2 :
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c p r i n t ’ ( i 4 , a2 , 3 2 i8 , a2 , 3 3 i 8 ) ’ , i t e r ,
170 c K = 1 6 :

c p r i n t ’ ( i 4 , a2 , 1 6 i 8 , a2 , 1 7 i 8 ) ’ , i t e r ,
c K = 8 :
c p r i n t ’ ( i 4 , a2 , 8 i 8 , a2 , 9 i 8 ) ’ , i t e r ,
c K = 4 :

175 pr in t ’ ( i4 , a2 , 4 i8 , a2 , 5 i 8 ) ’ , i t e r ,
c K = 3 :
c p r i n t ’ ( i 4 , a2 , 3 i 8 , a2 , 4 i 8 ) ’ , i t e r ,
c K = 2 :
c p r i n t ’ ( i 4 , a2 , 2 i 8 , a2 , 3 i 8 ) ’ , i t e r ,

180 & ’ | ’ , ( F_k ( j , i t e r ) , j = 1 , K ) ,
& ’ | ’ , ( N_k ( j , i t e r ) , j =0 ,K )
enddo

end

Listing 4: Fortan77 code allowing for reproduction of data presented in Figure 4.

1 program tau
imp l i c i t none
rea l p , rand
l o g i c a l old , new , g loba l , change
in teger L , L2 , K ,M, T , numchunks , Nglobal , F_k , N_k , F_k_old , N_k_old ,

6 & i , j , kk , i run , idum , i t e r , nlockomp , t r an s f , tau
rea l avetau , avetau2
parameter ( L =20 , L2=L∗L , K=4 ,M=100 )
dimension old (−L + 1 : L2+L , K ) , new(−L + 1 : L2+L , K ) , t r a n s f ( K ) ,

& numchunks(−L + 1 : L2+L ) , g l oba l ( K ) , F_k ( K ) , N_k ( 0 : K ) ,
11 & F_k_old ( K ) , N_k_old ( 0 : K )

data idum , avetau , avetau2 / 1 , 0 . 0 , 0 . 0 /

read ∗ , p
pr in t ∗ , ’ # L= ’ , L , ’ K= ’ ,K , ’ M= ’ ,M, ’ p= ’ , p

16

c ######################################################################
do 999 i r un = 1 ,M
pr in t ∗ , ’ # i r un = ’ , i r un

21 pr in t ∗ , " "
pr in t ’ ( a6 , a66 , a72 ) ’ , ’ # i t | ’ ,

& ’ F ( c_1 ) , . . . , F ( c_K ) | ’ ,
& ’N ( 0 ) , . . . , N ( K ) ’

26 N_k_old (0 ) =0
do j = 1 , K
F_k_old ( j )=0
N_k_old ( j )=0

enddo
31

Ngloba l =0
do j = 1 , K

g l oba l ( j ) = . f a l s e .
enddo

36

i t e r =0
C −−− i n i t i a l d i s t r i b u t i o n o f competences −−−

do i = 1 , L2
numchunks ( i )=0
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41 do j = 1 , K
old ( i , j ) = . f a l s e .
new ( i , j ) = . f a l s e .
i f ( rand ( idum ) . l t . p ) then
old ( i , j ) = . true .

46 new ( i , j ) = . true .
g l oba l ( j ) = . true .
numchunks ( i ) = numchunks ( i ) + 1

endi f
enddo

51 enddo

do j = 1 , K
i f ( g l oba l ( j ) ) Ng loba l = Ng loba l +1

enddo
56

do i = 1 , L
numchunks(−L+ i ) = numchunks ( L2−L+ i )
numchunks ( L2+ i ) = numchunks ( i )
do j = 1 , K

61 old (−L+ i , j ) = o ld ( L2−L+ i , j )
o ld ( L2+ i , j ) = o ld ( i , j )

enddo
enddo

66 do i = 1 , L2
N_k ( numchunks ( i ) ) = N_k ( numchunks ( i ) ) + 1
do j = 1 , K
i f ( new ( i , j ) ) F_k ( j ) = F_k ( j ) + 1

enddo
71 enddo

998 i t e r = i t e r +1
C −−− one t ime s t ep o f the system e v o l u t i o n −−−

76 N_k (0 ) =0
do j = 1 , K
F_k ( j )=0
N_k ( j )=0

enddo
81

do 777 i = 1 , L2

i f ( numchunks ( i ) . eq . numchunks ( i−L )−1 ) then
nlockomp=0

86 do j = 1 , K
i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i−L , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
91 enddo

i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

96 endi f
endi f
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i f ( numchunks ( i ) . eq . numchunks ( i +L )−1 ) then
nlockomp=0

101 do j = 1 , K
i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i +L , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
106 enddo

i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

111 endi f
endi f

i f ( numchunks ( i ) . eq . numchunks ( i −1)−1) then
nlockomp=0

116 do j = 1 , K
i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i −1 , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
121 enddo

i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

126 endi f
endi f

i f ( numchunks ( i ) . eq . numchunks ( i + 1 ) − 1 ) then
nlockomp=0

131 do j = 1 , K
i f ( ( . not . o ld ( i , j ) ) . and . o ld ( i + 1 , j ) ) then
nlockomp=nlockomp +1
t r a n s f ( nlockomp )= j

endi f
136 enddo

i f ( nlockomp . gt . 0 ) then
kk =1+ nlockomp∗ rand ( idum )
new ( i , t r a n s f ( kk ) ) = . true .
goto 777

141 endi f
endi f

777 enddo

146 C −−− synchronous system update −−−
do i = 1 , L2
numchunks ( i )=0
do j = 1 , K
old ( i , j ) = new ( i , j )

151 i f ( o ld ( i , j ) ) numchunks ( i ) = numchunks ( i ) + 1
enddo

enddo

do i = 1 , L
156 numchunks(−L+ i ) = numchunks ( L2−L+ i )
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numchunks ( L2+ i ) = numchunks ( i )
do j = 1 , K
old (−L+ i , j ) = o ld ( L2−L+ i , j )
o ld ( L2+ i , j ) = o ld ( i , j )

161 enddo
enddo

do i = 1 , L2
N_k ( numchunks ( i ) ) = N_k ( numchunks ( i ) ) + 1

166 do j = 1 , K
i f ( new ( i , j ) ) F_k ( j ) = F_k ( j ) + 1

enddo
enddo

171 c K = 3 2 :
c p r i n t ’ ( i 4 , a2 , 3 2 i8 , a2 , 3 3 i 8 ) ’ , i t e r ,
c K = 1 6 :
c p r i n t ’ ( i 4 , a2 , 1 6 i 8 , a2 , 1 7 i 8 ) ’ , i t e r ,
c K = 8 :

176 c p r i n t ’ ( i 4 , a2 , 8 i 8 , a2 , 9 i 8 ) ’ , i t e r ,
c K = 4 :

pr in t ’ ( i4 , a2 , 4 i8 , a2 , 5 i 8 ) ’ , i t e r ,
c K = 3 :
c p r i n t ’ ( i 4 , a2 , 3 i 8 , a2 , 4 i 8 ) ’ , i t e r ,

181 c K = 2 :
c p r i n t ’ ( i 4 , a2 , 2 i 8 , a2 , 3 i 8 ) ’ , i t e r ,

& ’ | ’ , ( F_k ( j ) , j = 1 , K ) ,
& ’ | ’ , ( N_k ( j ) , j =0 ,K )

186 change = . f a l s e .

do j =0 ,K
i f ( N_k ( j ) . ne . N_k_old ( j ) ) change = . true .

enddo
191

do j = 1 , K
i f ( F_k ( j ) . ne . F_k_old ( j ) ) change = . true .

enddo

196 i f ( change ) then
N_k_old ( 0 ) = N_k ( 0 )
do j = 1 , K
F_k_old ( j ) = F_k ( j )
N_k_old ( j ) = N_k ( j )

201 enddo
goto 998

e l se
tau = i t e r
avetau = avetau + 1 . 0∗ tau

206 avetau2 = avetau2 + 1 . 0∗ tau ∗ tau
pr in t ∗ , tau
goto 999

endi f

211 999 enddo

avetau = avetau / ( 1 . 0 ∗M)
avetau2 = avetau2 / ( 1 . 0 ∗M)
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pr in t ∗ , p , avetau , sqrt ( ( avetau2−avetau ∗ avetau ) / ( 1 . 0 ∗M− 1 . 0 ) )
216 end

Notes

1i.e. giving the largest fraction of agents withK chunks of knowledge
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