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Abstract: Spatial agent-basedmodels (ABMs) canbepowerful tools forunderstanding individual level decision-
making. However, in an attempt to represent realistic decision-making processes, spatial ABMs o�en become
extremely complex, making it di�icult to identify and quantify sources of model sensitivity. This paper im-
plements a coastal version of the economic agent-based urban growth model, CHALMS, to investigate both
space- and time-varying sensitivities of simulated coastal development dynamics. We review the current state
of spatially- and temporally-explicit global sensitivity analyses (GSA) for environmental modeling in general,
and build on the innovative but nascent e�orts to implement these approaches with complex spatial ABMs.
Combined variance- and density-based approaches to GSA were used to investigate the partitioning, magni-
tude, and directionality ofmodel output variance. Time-varying GSA revealed sensitivity ofmultiple outputs to
storm frequency and cyclical patterns of sensitivity for other input parameters. Spatially-explicit GSA showed
diverging sensitivities at landscape versus (smaller-scale) zonal levels, reflecting trade-o�s in residential hous-
ing consumer location decisions and spatial ‘spill-over’ interactions. More broadly, when transitioning from a
conceptual to empirically parameterizedmodel, sensitivity analysis is a helpful step to prioritize parameters for
data collection, particularly when data collection is costly. These findings illustrate unique challenges of and
need to perform comprehensive sensitivity analysis with dynamic, spatial ABMs.

Keywords: Global Sensitivity Analysis, Variance Decomposition, Time-Varying Sensitivity Analysis, Spatial Un-
certainty, Coastal Hazards

Introduction

1.1 Spatial agent-basedmodels (ABMs) are capableof investigating theemergenceof complexphenomena, suchas
land-use change, that result frommany distributed interactions between heterogeneous agents and their envi-
ronment, which are not well represented by top-down statistical or general equilibriummodeling approaches
(Irwin et al. 2009; Huang et al. 2014). Many spatial ABMs are characterized by multi-level and nonlinear inter-
actions, emergent behavior, and path-dependent outcomes (Brown et al. 2005; Ten Broeke et al. 2016). While
these features are o�en desirable to capture salient features of real systems, model complexity makes it di�i-
cult to deconstruct sources ofmodel output sensitivity in relation to variation in inputs. This task is particularly
important when transitioning from a conceptual to empirically parameterized model. When data collection is
costly, suchasattainingbehavioral data forABMs fromsurveys, sensitivity analysis is abeneficial step to identify
parameters responsible for model sensitivity and prioritize data collection e�orts to constrain those variables.
This paper demonstrates the synergies of integrating two di�erentmethods for sensitivity analysis to achieve a
comprehensive investigation of spatial and temporal sensitivities of an established conceptual ABM formoving
towards a more empirically groundedmodel.

1.2 Standardized methods for sensitivity analysis for ABMs are still developing (see Ten Broeke et al. 2016; Thiele
et al. 2014), but there is awealthof knowledge todraw from in thebroader environmentalmodeling field. Global
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sensitivity analysis (GSA) is a relatively well-developed methodological area for investigating how variation in
model inputs leads to model output variation (Brugnach 2005; Cariboni et al. 2007; Marino et al. 2008; Pianosi
et al. 2016; Sarrazin et al. 2016). GSAs are implemented through a set of mathematical techniques designed to
quantify the relative contributions of and propagation of uncertainty from individual model parameters and
their interactions with other parameters through a comprehensive sweep over the parameter space (Ligmann-
Zielinska & Sun 2010; Pianosi & Wagener 2015). This is distinct from simple one-factor-at-a-time (OAT) meth-
ods, which are more suitable for exploring individual parameter e�ects on outcomes (e.g., scenario analysis)
(Ten Broeke et al. 2016). A wide array of GSA methods exist that range from simple parameter perturbation
to variance decomposition, and are designed for equally diverse purposes ranging from model fitting to un-
derstanding the robustness of model outcomes across parameter values (Pianosi et al. 2016; Ten Broeke et al.
2016). GSAmethods have recently been reviewed in detail in by Pianosi et al. (2016). A variety of GSA techniques
for specifically analyzing spatial and/or temporal model sensitivities have also been developed and reviewed
elsewhere in detail (Saltelli et al. 2008, 2010; Lilburne & Tarantola 2009). However, these GSA methods may
not be su�icient to address the unique challenges of ABMs (Ten Broeke et al. 2016), and the few recent e�orts
to apply GSA methods to spatial ABMs demonstrate the inadequacy of any single existing GSA method (e.g.,
Lilburne & Tarantola 2009; Ligmann-Zielinska & Sun 2010; Saltelli et al. 2010; Ligmann-Zielinska et al. 2014b,a;
Thiele et al. 2014). Thus, understanding of the sensitivities of many spatial ABMs in use today remains limited
(Ligmann-Zielinska & Sun 2010).

Variance- and density-based GSA

1.3 Two broad approaches to GSA, variance- and density-based, have been most o�en applied to spatial envi-
ronmental models. Variance-based GSA quantifies the sensitivity of outcome variance attributed to variabil-
ity in model inputs, and has the advantage of being bothmodel independent and relatively easy to implement
through the calculationof variance sensitivity indices (Ligmann-Zielinska&Sun2010; Saltelli et al. 2010; Pianosi
& Wagener 2015). However, the generation of su�icient model output to obtain accurate sensitivity estimates
with variance-based approaches can be computationally expensive, particularly for sophisticatedmodels with
high levels of parameter interactions (e.g., Baroni & Tarantola 2014) required 7,168 model evaluations for 5 un-
certain inputs. Additionally, variance-based analysis assumes output variance is a reliable sensitivity measure,
but this may not be the case when model outcomes display skewed or multi-modal distributions (Pianosi &
Wagener 2015).

1.4 Non-normal outcome distributions are commonly observed in complex systems due to a wide range of nonlin-
ear, spatial processes (e.g., agglomeration), such as economies of scale or path-dependenceof development lo-
cationdue to infrastructureprovision (Brownet al. 2005;Manson2007). In these situations, variance-basedGSA
may be misleading, but density-based methods for GSA, which are ‘moment-independent’, are useful. Model
sensitivity is determined by comparingmodel output distributions generated by di�erent input parameter val-
ues, rather than comparing specificmoments of output distributions (i.e., variance)when variation in one input
is fixed (Pianosi & Wagener 2015). Pianosi & Wagener (2015) have developed a density-based sensitivity index,
PAWN, which uses di�erences in cumulative distribution functions (CDFs) of model output with both variable
and fixed input values to quantify model sensitivities. A particular advantage of this approach is that model
sensitivities can be investigated within particular parts of a given model output distribution, which is impor-
tant for contexts with low probability-high impact events. While density-based approaches cannot (as of yet)
provide insight into the dynamics ofmodel sensitivities, they can validate and complement variance-based ap-
proaches in situations with model output that is not normally distributed (Pianosi & Wagener 2015). However,
density-based approaches have seen limited use in the environmental modeling domain and have not been
applied in a spatial context.

Space- and time-varying GSA

1.5 The GSAmethods reviewed thus far are most commonly used as ‘final snapshot’ analyses of model outcomes,
which are inadequate to fully explore sensitivities of complex ABMs (Richiardi et al. 2006; Ligmann-Zielinska &
Sun 2010). Analyzing only the final state of model outcomes does not provide insight into the relative and vary-
ing importance of particular parameters throughoutmodel execution, andpotential for synergistic interactions
between model parameters leading to locally or globally nonlinear behavior (Ligmann-Zielinska & Sun 2010).
Furthermore, temporally and/or spatially distributed inputs andoutputsmakeGSAbasedonMonteCarlometh-
ods used for conventional environmentalmodels are conceptually challenging and computationally expensive
to implement for ABMs (Lilburne & Tarantola 2009).
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1.6 Spatial GSA has received considerably more attention than time-varying GSA, and has been led by the geo-
graphic information sciences (GIScience) and hydrologicalmodeling communities. Early e�orts to analyze spa-
tial sensitivities ofmodels relied onmethods of simplifying space in order tomake analysesmore computation-
ally tractable. For example, Hall et al. (2005) divided themodel’s spatial domain into distinct zones, each char-
acterized by spatially aggregated scalar inputs, to which GSA techniques were independently applied. In cases
where input parameters vary across space, GSA may be applied to each individual grid cell or point (e.g. Tang
et al. 2006), but the e�ects of spatial interactions onmodel outputs may not be captured (Lilburne & Tarantola
2009). An alternative approach entails randomly or purposely selecting a subset of grid cells or points onwhich
GSA can be carried-out (e.g. Avissar 1995; Dubus & Brown 2002; Lilburne et al. 2003). In this sub-sampling ap-
proach, a cluster analysis can be used to identify spatial regions that are internally consistent and distinct from
other regions andmay therefore display di�erent sensitivities (Lilburne & Tarantola 2009).

1.7 Progress in time- and space-varying GSA for ABMs has been advanced largely by Ligmann-Zielinska and col-
leagues. Ligmann-Zielinska et al. (2014b) introduced a multi-scale, variance-based approach to GSA in which
sensitivity analyseswere conducted to understand variability inmodeled nutrient loadings at the regional level
aswell as for individual lakes. The regional scale GSA identified the input factors, such as fraction of agricultural
land converted to fallow and farmers’ decision-making rules, which where the sources of regional variation,
while the lake-level analyses demonstrated sensitivity to watershed-specific parameters, such as value of pro-
duction and prioritization of land characteristics. Ligmann-Zielinska & Sun (2010) examined time-varying GSA
of a land-use ABM to understand how the contribution of particular input tomodel output uncertainty and sen-
sitivity waxed and waned through model execution. They found that spatial outcomes, such as the size of the
largest contiguously developed area, showed varying sensitivity throughoutmodel execution due to feedbacks
among landscape characteristics, such as perceived scenic beauty and land values, that varied as development
patterns changed.

1.8 This paper advances previous work by integrating time- and space-varying GSA using variance- and density-
based approaches in tandem. We illustrate this integrated approach for ABMs through application to a coastal
version of a generalized economic urban growth ABM, CHALMS (Magliocca et al. 2011, 2012). Coastal land-use
patterns are particularly complex due to interactions between consumer locational preferences and risks of
storm-induced property damages, which are influenced by processes that are o�en disconnected in time and
space. ABMs have the capability to provide insights into the trade-o�s between coastal amenities and storm
damage risks individuals might make in their location decisions (e.g., Filatova et al. 2011; Filatova & Bin 2014),
but parameterizing the decision rules (e.g., utility function) in such context is di�icult and can be amain source
of model uncertainty. Thus, we use a suite of GSA methods to investigate whether sensitivities are more pro-
nounced at particular times in a coastal region’s development and/or in particular locations on the landscape
(e.g., along the coast versus further inland). These analyses determine the extent towhich input parameters for
coastal amenity values, homeowner locationpreferences, and storm frequency and severity settings contribute
to variability in the area developed, number of houses built, and diversity of the housing stock over time and
across several ‘spatial zones’ within the landscape. As with all GSA methods, results do not establish causal
relationships between model inputs and outputs. In the case of variance-based GSA, directionality of model
output variance cannot be established. For density-based GSA, information about dynamics of model output
variance are lost. However, combining the two types of GSA approaches can identify key parameters responsi-
ble for sensitivity of model outputs and, in some cases, indicate the direction, timing, and spatial structure of
model sensitivities in response to parameter perturbations – thus acting as a proxy to study model causality.
Such outcomes are essential for advancing model development from a conceptual to empirical spatial ABM.

1.9 The remainder of this paper proceeds as follows. The next section provides a brief overview of the coastal
CHALMSmodel (Section2). The followingsectionsdescribe the time-andspatially-varyingGSAs thatarecarried-
out by varying seven keymodel inputs (Section 3). Spatial and temporalmodel sensitivities are then presented,
followed by a discussion of the benefits of and limitations to GSA for spatial ABMs.

Coastal CHALMS overview

2.1 The ABM presented here is a version of the CHALMS model (Magliocca et al. 2011, 2012) adapted to a coastal
landscape. The model simulates the conversion of undeveloped land to residential housing through spatial
and utility- or profit-maximizing decisions by residential housing consumers, a representative developer, and
landowners (Figure 1). A full model description using the Overview, Design concepts, and Details + Decision-
Making (ODD+D; Grimm et al. 2010; Müller et al. 2013) is provided as a supplemental document. The main ob-
jective of the original version of CHALMS is to understand which landscape features and agent interactions are
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most important for explaining the timing and location of residential housing development. In the coastal ver-
sion presented here, the influence of coastal amenities and risk of property damage from storms is also consid-
ered. To do this, CHALMS explicitly links housing and land markets to simulate endogenous, coupled market
prices. Understanding spatially explicit and time-varying dynamics that result from land and housing market
interactions is essential for evaluating potential outcomes of land-use policies (e.g., zoning; Magliocca et al.
2012).

Figure 1: Conceptual map of agent and market interactions in CHALMS. The numbers indicate the (counter-
clockwise) time sequence of events within one simulated time period (t). Agents (grey box italics) are labeled
with the underlying conceptual model that governs their behavior. Modified fromMagliocca et al. (2011).

Landscape andmodel initialization

2.2 The simulated landscape is a stylized representation of a developing coastal region, i.e., does not represent
any particular geographic area. Land acquisition and, in part, residential location decisions are based on two
landscape attributes: distance to a central business district (CBD), which influences travel costs to places of em-
ployment, and proximity to the coastline from which consumers derive utility in the form of a natural amenity
(Figure 2). Potential damages from storm impacts are also related to proximity to the coast (decreasing with
distance from the coast) and the annual probability of storm occurrence. Travel costs increase linearly with dis-
tance from the CBD at a rate of $ 25.85 per cell (based on annual travel assumptions, see Magliocca et al. 2011
for details). Natural amenities related to proximity to the coast (Benson et al. 1998; Bourassa et al. 2004; Bin
et al. 2008) decay nonlinearly as distance from the coast increases (Figure 2). Spatially-varying expected costs
associated with property damages from coastal storms are a function of both proximity to the coast (Figure 2)
and the annual probability of storm occurrence (Costanza et al. 2008). The model is executed for 20 discrete
time steps (one model time step equals a year) over a gridded cellular landscape of 6,400 cells (80 by 80) and
each cell is equivalent to one acre. The simulation time span was chosen based on the assumption that the
development process would experience minimal fundamental changes over 20 years (e.g., from financing in-
novations), and the spatial extent was chosen to minimize any spatial boundary e�ects on development given
the simulation time span. For the exception of the selected experimental parameters, all sources of stochastic-
ity (e.g., assignment of agents’ price predictionmodels, learning time horizon, income) are held constant using
a random number seed.

2.3 Themodel is initialized with a developed CBD that contains a mix of housing types on lots of either 0.25, 0.5, 1,
or 2 acres and house sizes of 1,500 or 2,500 square feet (Figure 2). All new houses that are built over the course
of model execution are a combination of one of these existing house and lot sizes (i.e., no new housing types
are introduced). At the beginning of the simulation, the same number of consumers are initialized as there are
number of houses in the CBD. Consumers are heterogeneous in their incomes and preferences for house size,
lot size, and proximity to the coast. Consumer incomes and housing and location preferences are randomly
drawn from uniform distributions. Undeveloped land is subdivided into 64 100-acre parcels (10 by 10 cells)
that are regularly distributed across the landscape (Figure 2). Each undeveloped parcel is assigned to a single
landowner agent.
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Figure 2: Landscape initialization with underlying storm cost and coastal amenity functions.

Agent decision-making processes

2.4 The formalization of agent decisions and market transactions are identical to those in the original CHALMS
framework and described in detail in Magliocca et al. (2011). Developer and landowner agents form expecta-
tions of future land prices in the land market based on observed prices in the past and relative location in the
landscape (seeAgentPrediction inODD). Landmarket transactionsarebasedon thebilateral transaction frame-
work developedby Filatova et al. (2009). The developer forms a bid price for each undevelopedparcel based on
spatially explicit expected rents for housing, and landowners form asking prices based on their expected value
of the land in its most profitable use (e.g., agriculture versus residential housing). If the developer’s bid price is
higher than the landowner’s asking price, then a transaction occurs and the entire parcel transfers ownership.

2.5 Given observed land purchase prices, the developer ranks each housing type from highest to lowest expected
return (i.e., expected rents net of construction and land costs) given distance to the CBD and coast in every
owned and/or undeveloped cell in existing land holdings or newly acquired parcels. The housing type with the
highest expected return in a given cell is built first, with others following in remaining owned and undeveloped
cells in the order of descending expected returns. Housing construction of a given type continues until asmany
houses of that type are built as the developer expects will be demanded by consumers, or all vacant land is
developed. Newhouses are assigned the closet distance from the CBD andhighest coastal amenity value of any
cell in the new lot’s footprint. New and existing vacant houses are then o�ered for sale in the housing market
with an asking price equal to the developer’s expected rent for the given housing type and location.

2.6 New housing consumers are introduced into the ‘consumer pool’ of existing consumers at the start of each
time step at a rate of ten percent a year. Each consumer c generates utility from housing and a composite non-
housing good, x. Each house i is characterized by its size, hi, its lot size, li, and an amenity that is a function
of the distance from the coast, a(di), where di is house i’s distance from the coast. We assume that the utility
function has a standard Cobb-Douglas structure:

U(i, c) = xαchβc

i l
γc
i a(di)

δc ; s.t.:αc + βc + γc + δc = 1 (1)

2.7 A consumer has income, I , pays (annualized) price, Pi, for house i, and pays travel costs, ψi, which depend
on house i’s distance from the central business district (CBD). Consumers also face an annual probability, ρ, of
property damage fromcoastal storms. Whena stormoccurs, it imposes a cost, whichweassume is apercentage
of the house’s value. The percentage varies with the house’s distance from the coast, C(di); where δCi

δdi
< 0

Thus, the budget constraint is given by:

I = x+ Pi(1 + ρC(di)) + ψi (2)

2.8 In this version of the model, we assume that consumers know the probability of a storm and the costs they
will incur if a storm takes place. We also abstract from considerations of insurance. Both assumptions will be
relaxed as a focus of future research.

2.9 Consumers place bids on all houses that generate positive utility and are thus within their budget constraints
givenaskingprices. Eachconsumerobserves thenumberofother consumersplacingbidson their setofprospec-
tive houses and adjusts their bid according to competition levels. If there are more bids than there are houses
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being bid on, then bid prices are adjusted upwards. If there are fewer bids than there are houses being bid on,
then bid prices are adjusted downwards. Bid adjustments are designed to reflect the relative supply of and
demand for housing and quantify competition with the housing market. Houses are assigned to consumers
with the highest bids for each house. If a consumer has thewinning bid onmultiple houses, then the consumer
chooses the house that generates the highest utility given the winning bid prices. Consumers that locate in a
house are assigned a residence time drawn randomly froma normal distribution (µ = 12.5, σ = 11 time steps).
When residence time is exceeded, the consumermoves-out, re-enters the consumer pool, and thenewly vacant
house is put back on themarket. Consumers that do not locate a�er three consecutive time steps are removed
from the consumer pool.

Space- and Time-Varying Global Sensitivity Analysis

3.1 Theoverall objectiveof the followingGSAmodel experiments is to elucidate theextent towhichparameters and
their interactions contribute to variability in model outcomes. These experiments do not to establish causality
between any particular parameter and development patterns in any particular location or single model real-
ization. The intent is to illustrate the utility of combining variance- and density-based GSA approaches, rather
than to draw conclusions about any particular coastal systems.

Variance-based GSA

3.2 Variance-basedGSAdecomposes the variance (V ) of a selectedmodel output (Y ) from theperturbations ofk =
7model inputs (Table 1) into the contributions of single (Vi) and combinations of model inputs with increasing
dimensionality (Ligmann-Zielinska & Sun 2010):

V =
∑
i

Vi +
∑
i<j

Vij +
∑

i<j<m

Vijm + · · ·+ V1:k (3)

3.3 where Vi is the contribution of model inputXi to the overall variability in model output, and Vij , for example,
is the variance in model output due to interactions between model inputsXi andXj . Variance decomposed
thusly is then used to calculate first-order (Si) and total-e�ect (STi) indices for everymodel input i in i = 1 : k:

Si =
vi
v

=
vXi [EX−i(Y |Xi)]

V (Y )
(4)

STi =
V (Y )− VX−i

[EXi
(Y |X−i)]

V (y)
= Si + Sij + Sim + Sijm + · · ·+ Si:k (5)

The proportion of model output variance (V ) attributed to input i independent of other inputs (k − 1) is given
by Si, and STi describes the overall contribution of input i and its interactions with other inputs to the overall
model output variance (Ligmann-Zielinska & Sun 2010; Saltelli et al. 2010). The contributions to variance in
model output Y of all inputs other than i is represented by the expression VXi [EX−i(|Xi)].
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Input Description PDF Statistics

Storm Frequency (Mf ) Probabilityof a coastal stormofa fixed
severity occurring in any given year.

D (0.0065, 0.7143)

Storm Severity (Ms) Intercept of distance from coast dam-
age function in Figure 2 in units of per-
cent of property value.

N (10, 5)

Coastal Amenity (Ao) Utility derived from coastal amenity. N (500,000, 125,000)
Amenity Decay Rate (r) Rate of decline in coastal amenity

value with distance from the coast.
N (0.1, 0.05)

Heterogeneity AmongAmenity Prefer-
ences (δc)

Range of consumer preference for
coastal amenity. Maximum of range is
specified.

U (0.9, 0.1)

Travel Costs (ψi) Cost per mile traveled to CBD. N (1.30, 0.65)
Discount Rate (R) Economic discount rate used to annu-

alize land and housing prices.
N (0.05, 0.025)

Table 1: Description of selected uncertain model input parameters and their distributions used for quasi-
random sampling (refer to text for explanation). TEYhe probability density function (PDF) column specifies
whether the distribution used was discrete (D), continuous and normal (N ), or continuous and uniform (U ).
Descriptive statistics specify theminimumandmaximumvalues (D orU ), ormean and standard deviation (N ).

3.4 We follow the time-varying GSA method developed by Ligmann-Zielinska & Sun (2010), which is based on the
quasi-random Sobol estimation procedure (Saltelli 2002; Lilburne & Tarantola 2009) and implemented using
a sequential estimation algorithm in Matlab developed by Tarantola (2013). In addition, building on the ap-
proaches by Hall et al. (2005), Lilburne & Tarantola (2009), and Ligmann-Zielinska et al. (2014a), spatially dis-
tributed sources of sensitivity are investigated at the regional (aggregate) scale as well as in several represen-
tative sub-regions within the landscape (fine-scale). For time-GSA, Si and STi are calculated for every time
step to determine to what extent particular parameters are stronger or weaker drivers of model outcomes over
time. For space-GSA, the landscape is divided into five ‘zones’ (i.e., sub-regions) based on their perceived value
for development relative to their proximity to the coast (Figure 3). In preliminary experimentation, each zone
showed internally consistent yet distinct development dynamics from other landscape regions. The CBD is ex-
cluded from analysis because the selected model outputs – number of houses built, percent developed area,
and diversity of the housing stock – remain constant over the course of model execution in that location.

Density-based GSA

3.5 The density-based GSA approach developed by Pianosi &Wagener (2015), PAWN, is bothmethodologically and
conceptually complementary to the variance-based GSA methods. PAWN is based on the comparison of con-
ditional and unconditional CDFs of model output. The unconditional CDF is simply the distribution of model
outputs generated from all parameter values used in the Sobol estimation procedure for the variance-based
GSA. The conditional CDF is generated by fixing the value of one input parameter while letting other parameter
values vary. Fortunately, this approach can be applied to existing datasets (i.e., using the same simulation data
for both variance- and density-based analyses) by groupingmodel executionswith similar input parameter val-
ues, which can then be treated as ‘fixed’ value sub-sets from the parameter distribution (Pianosi & Wagener
2015). Conditional distributions account for changes in outcome distribution when variability from a particular
parameter (or parameter group) is removed, and thus the distance between the conditional and unconditional
distributions is ameasureofoutput sensitivity. The significanceof thedistancebetweenconditional anduncon-
ditional distributions is tested with the Kolmogorov-Smirnov (KS) statistic (Kolmogorov 1933; Smirnov 1939).

3.6 Fixedgroupsare specifiedherebysub-settingeach inputparameterdistributiongeneratedby thequasi-random
Sobol estimation procedure into ten equal-frequency quantiles, and thus the ‘fixed’ value for each quantile
group is the median of the quantile. Conditional CDFs are then created by removing one parameter group at a
time to observe the e�ect on model outcome distributions. All conditional CDFs are then plotted against the
unconditional CDF and the KS statistic is calculated for each fixed value and compared against the critical value
of the KS statistic at confidence level of 0.05. KS statistic values exceeding the critical value indicate a statisti-
cally significant influence of the parameter at the given fixed value. Importantly, this analysis is applied only to
finalmodel outcomes, as no spatial or temporal details about parameter sensitivities are provided. Thus, PAWN
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is a complement to variance-based in that it provides insight intowhere in parameter distributions sensitivities
in model outcomes are produced.

Experimental approach

3.7 A key consideration when conducting GSA is the number of model executions required to obtain accurate sen-
sitivity estimations. Estimations of sensitivity indicesSi andSTi are calculated froma number of base samples
(N ), which each contain k+ 2 quasi-random parameter samples used for sequential estimation, and bring the
total number ofmodel executions required toN(k+2) (Tarantola 2013). The larger the N, themore precise the
sensitivity estimates, but practically the selection ofN depends on the computational cost of themodel. Rela-
tively inexpensive models can have anN in excess of 500, but more expensive models may have anN on the
order of 30-100 (Tang et al. 2006). Additionally, as the complexity and nonlinearity of a given model increases,
so too shouldN . For this study, anN = 100 is selected for a total of 900 model executions as a compromise
between estimation accuracy and computational demand. A singlemodel execution using the parallel comput-
ing toolbox in Matlab requires roughly 90 minutes run-time, which results in a total of 1,350 hours of run-time
on amulti-threaded 3.20 GHz AMD Opteron™ Processor 6328.

Input parameter distributions

3.8 Seven independentmodel input parameters are used (Table 1): storm frequency, storm severity, maximumnat-
ural amenity value at the coast (Ao; Figure 2), rate of coastal amenity decrease with distance from the coast (r;
Figure 2), range of consumer preference for coastal amenity (δc, Equation 1), travel costs to CBD (ψi, Equation 1),
and economic discount rate. The economic discount rate is used by the developer to calculate the profitability
and formulate future asking prices of particular housing types given observed housing and land prices. Table 1
describes the probability density functions (PDFs) used for quasi-random sampling.

3.9 For all normally distributed inputs we assume a standard deviation of half themean to ensure su�icient pertur-
bations of parameter values. Probabilities of storm occurrence (Mf ) are aggregated fromCostanza et al. (2008)
across all storm severity categories for the Atlantic coast to estimate discrete annual probabilities of storm oc-
currence of any severity. Storm severity (Ms) is varied independently by modifying percent loss of property
value (Figure 2). Storm frequency and severity are decoupled in this way for use with an expected cost frame-
work for resolving consumer location decisions. Consumer preferences for coastal amenities (δc, Equation 1)
are randomly drawn from a uniform distribution of varying range. For the purposes of exploring model output
sensitivities to this formalization, the quasi-randomsampling procedure is applied to themaximumof the pref-
erence distribution (e.g. [0.1, 0.9] vs. [0.1, 0.5]) to explore the e�ects of amore or less heterogeneous and strong
preference for coastal amenities among the consumer agent population.

Output parameter selection

3.10 Three model outputs are selected for sensitivity analyses: number of houses, percent developed area, and di-
versity of the housing stock. The first two outputs relatemainly to spatial patterns of development and provide
measures of the cumulative e�ects of household location decisions over time. The diversity of the housing
stock, or housing stock evenness, at each period is measured using Shannon’s entropy. This index describes
the relative likelihood of a particular house type being built in a given period. In other words, as the distribu-
tion of housing types in the overall housing stock becomes more even (Shannon entropy approaches 1), each
housing type is equally likely as any other to be built and housing o�erings are essentially random. Conversely,
as the distribution of housing types in the overall housing stock becomes more uneven (Shannon entropy ap-
proached 0), a particular housing type (or set of housing types) is more likely to be o�ered reflecting relatively
more desirable and/or profitable housing types. Such ameasure can be related to self-reinforcing and/or path-
dependent processes in the development process.

Results

4.1 The complete set of model outputs included temporally and spatially explicit land-use maps giving the loca-
tions, types, and prices of housing, consumer preferences and incomes, and transaction prices for land. Se-
lectedmodel outputs were aggregated within each of the sub-regional ‘zones’ (Figure 3) and sensitivity indices

JASSS, 21(1) 12, 2018 http://jasss.soc.surrey.ac.uk/21/1/12.html Doi: 10.18564/jasss.3625



were calculated every time step for each zone. Figure 4 shows an example of variation in development patterns
with low and high coastal amenity decay rates (r) for two selected model executions. Note that a perturbation
in only this input parameter resulted in large variation in the location of development.

Figure 3: Division of modeled landscape into distinct ‘zones’ for spatially explicit GSA.

Figure 4: Example of simulated development patterns at the end of model execution with extreme low (a) and
high (b) values of coastal amenity decay rate (r).

Sequential sensitivity estimation errors

4.2 The accuracy of sensitivity indices depends on the selection of N (Saltelli et al. 2008), however the optimum
N is o�en not known a priori for complex models. Using the quasi-random Sobol sampling method and al-
gorithm for sequential estimation of sensitivity indices developed by Tarantola (2013), the root mean squared
error (RMSE) of first-order sensitivity was calculated for eachmodel execution to track convergence of sensitiv-
ity estimates to a moving average for each selected model output (Figure 5). Given the computation expense
of the coastal CHALMS model, RMSE values below 15 percent (RMSE= 0.15) were deemed satisfactory (Saltelli
et al. 2008). RMSE values for the number of houses built and percent developed area (Figure 5a and 5b) for all
input parameters were generally less than the threshold for all model executions, except for slight increases
in variability due to discount rate. In the case of housing stock evenness (Figure 5c), variability due to storm
frequency and discount rate were above the RMSE threshold by the final model execution. However, RMSE val-
ues were relatively stable, fluctuating around their overall mean values through all model executions. Hence,
N = 100 samples were su�icient to conduct both GSAs on these model outputs.
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Figure 5: Root mean squared error (RMSE) of first-order sensitivity indices for the (a) number of houses, (b)
percent area developed, and (c) housing stock evenness (i.e. housing stock diversity) at the landscape level.

Spatial and temporal GSA

4.3 For variance-based GSA, time-dependent first-order (Si) and total e�ect (STi) sensitivity indices are plotted
cumulatively at the regional and zonal levels for each selected model output. These are paired with outcome
variance from density-based GSA presented as CDF and KS statistic plots of regional outputs from input pa-
rameters. For interpretation of variance-based sensitivity indicators, the e�ects of model inputs are additive
when interactions are linear and the sum of Si nears 1 (Ligmann-Zielinska & Sun 2010). As non-additive be-
havior increases, the proportion of variance attributed to interactions among parameters increases, the sumof
Si decreases, and areas plotted as white in Si plots increase. Regionally, variance in houses built and percent
developed area was mostly additive, while variance in housing stock evenness was mostly due to parameter
interactions. For all outputs, no single input parameter was consistently influential over time, as sensitivity in-
dices oscillated frequently as the development process unfolded. Furthermore, sensitivity profiles at the zonal
levelwerequite di�erent fromoneanother and regional profiles, which emphasized the importanceof studying
spatial as well as temporal global sensitivity.

Number of houses built

4.4 At the regional level, storm frequency (Mf ) was responsible formuch of the variance (Si) observed in the num-
ber of houses built (Figure 6) a�er seventh model time step. On average, amenity preference (δc), travel costs
(ψi), and discount rate (R) accounted for an average of 50% of total variance (STi) when interacting with other
factors. Closer inspection with density-based GSA shows that outcome variance from storm frequency at the
regional level is driven exclusively by the highest probability storm climate (Figure 7a). Additionally, the dis-
count rate consistently influenced the number of houses built, with high and low discount rates andmoderate
discount rates tending to lead to fewer andmore houses than the global average, respectively (Figure 7b).

JASSS, 21(1) 12, 2018 http://jasss.soc.surrey.ac.uk/21/1/12.html Doi: 10.18564/jasss.3625



Figure 6: Time-varying first-order (Si) and total e�ect (STi) sensitivity indices for the number of houses built are
color-coded for the contribution of each model input. Regional results are plotted in the first row, while zonal
results are plotted on the lower two rows.

4.5 Zonal sensitivities were quite di�erent than those at the regional level. Discount rate (R) and travel costs (ψi)
were almost entirely responsible for variance in the number of houses built in zone 1. Storm frequency was
not influential in any zone, whereas the other input factors alternated in importance over time. Inputs amenity
preference, amenity decay rate, travel costs, and discount rate are all influential factors in consumers’ deci-
sions to locate in proximity to either the CBD or coast, as well as interacting strongly to drive housing and land
prices. For example, competition for coastal property in zone 4may have pushed consumers inland and driven
development in zone 1.

Figure 7: Simulated unconditional (red line) and conditional (grey lines) cumulative density functions (CDFs)
(top row) andKolmogorov-Smirnov (KS) statistic and threshold values (dashed lines) (bottom row) for the range
of parameter values of storm frequency (a) and discount rate (b) and their e�ect on the number of houses built.
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Percent developed area

4.6 At the regional level, storm frequency was responsible for much of the variance observed in the percent of de-
velopedarea (Figure8) a�er seventhmodel timestep. Just as for thenumberof housesbuilt, density-basedGSA
revealed that thehighest storm frequencywasmostly responsible for regional variance. Less areadevelopedon
average with high and low discount rates, whilemoderate discount rates lead tomore developed area than the
global average. Figure 9a and 9b also show that higher values of amenity preference and decay rate influenced
the percent developed area, with increased preferences for amenities and faster decay of amenity values led to
less developed area overall. However, because the relative di�erences between STi and Si were large at various
time steps formodel inputs other than storm frequency,we conclude that all contributed significantly to overall
variance through their interactions with other model parameters (i.e., non-additive; Ligmann-Zielinska & Sun
2010).

Figure 8: Time-varying first-order (Si) and total e�ect (STi) sensitivity indices for the percent developed area
are color-coded for the contribution of each model input. Regional results are plotted in the first row, while
zonal results are plotted on the lower two rows.

4.7 Zonal sensitivities were quite di�erent from those at the regional level, as no single model input was consis-
tently important over time across all zones. All zones exhibited cyclical patterns of influence on variance with
one or two parameters dominating in any single time step. In general, travel costs and discount rate consis-
tently accounted for 20% to 40% of variance, while amenity- and storm-related decreased and increased in
importance, respectively, moving from inland to coastal zones. Unlike the number of houses, storm frequency
remained important at the zonal level for the percent developed area. This suggests that increased storm fre-
quency tends to modify the density of housing, because variance in developed area is high and the number of
houses is comparatively insensitive to storm frequency changes.
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Figure 9: Simulated unconditional (red line) and conditional (grey lines) cumulative density functions (CDFs)
(top row) andKolmogorov-Smirnov (KS) statistic and threshold values (dashed lines) (bottom row) for the range
of parameter values of amenity preferences (a) and amenity decay rate (b) and their e�ect on the percent de-
veloped area.

Housing stock evenness

4.8 Sensitivity of housing stock evenness was mainly driven by interactions among inputs at both regional and
zonal levels (Figure 10). The sum of Si values averaged 50% throughout model execution at the regional level.
Similarly, STi values were relatively evenly distributed among all of the model inputs further reinforcing the
importance of input interactions for housing stock outcomes. Density-based GSA was particularly revealing
in this context. Higher amenity preference and lower amenity decay rate values tended to create more even
housing stocks (Figure 11a and 11b). Both of these conditions provide more overall amenity value across the
landscape,whichmediated thee�ectsof incomeand locationdi�erences that tend to favor somehousing types
over others. For example, ceterus paribus, higher income consumers tend to preferentially occupy houses on
larger lots, and high density housing tends to occur in close proximity to the coast due to higher profit margins.
Discount rates also demonstrated directional influences of housing stock evenness, with lower rates leading to
more even housing stock (Figure 11c).
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Figure 10: Time-varying first-order (Si) and total e�ect (STi) sensitivity indices for housing stock evenness (i.e.
diversity) are color-coded for the contribution of eachmodel input. Regional results are plotted in the first row,
while zonal results are plotted on the lower two rows.

Figure 11: Simulated unconditional (red line) and conditional (grey lines) cumulative density functions (CDFs)
(top row) andKolmogorov-Smirnov (KS) statistic and threshold values (dashed lines) (bottom row) for the range
of parameter values of amenity preferences (a), amenity decay rate (b), and discount rate (c) and their e�ect on
housing stock evenness.

Discussion

5.1 Space- and time-varying GSA revealed input parameter interactions di�ered over both time and spatial scales
and across selected model outputs. For the exception of housing stock evenness, the sum of first-order e�ects
at the regional scale ranged from 70% to 100%,meaning that a high proportion of output variance at that scale
was additive. However, there were instances in particular zones and at various points during model execution
that the sum of first-order e�ects dropped to 20-40% across all model outputs, indicating the importance of
localized spatial interactions in the development process. For example, storm frequency was highly interactive
with other inputs in non-coastal zones, specifically in Figures 8 and 10, which could be indicative of spatial ‘spill-
over’ e�ects from high land and/or housing prices in the coastal area (Irwin & Bockstael 2002). In other words,
market dynamics in one part of the landscape influenced development in adjacent areas of the landscape, i.e.,
‘spill-over’.

5.2 Furthermore, input interactions over time were apparent in the cyclical patterns of variance observed at both
regional and zonal levels. Cyclical patterns were observed in total-e�ect indices for all regional level outputs as
inputs alternated in importance of driving output variance over time. Two intrinsic features of the model that
reflect land and housing markets characteristics explain the emergence of these patterns. Land markets have
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been described as “thin markets" (Irwin & Wrenn 2014), meaning market transactions occur at relatively low
frequency and are geographically dispersed, as opposed to other markets (e.g., financial) which tend to have
many more transactions and more continuous price dynamics as a result. Additionally, the discrete nature of
land parcels and housing options over which agents make decisions create discontinuous land and housing
market dynamics. Such cyclical behavior is o�en attributed to delayed feedbacks created by a time lag be-
tween a change and the e�ects of that change on the rest of the system (Manson 2007). This form of complexity
is important to represent in ABMs, particularly when investigating spatially-explicit interactions that operate
unevenly over time across the landscape. The relative regularity of the cyclic patterns is explained by the con-
stant, imposed rate of population growth and fixed landowner parcel sizes. In other words, demand for land
and amount of landpurchased tomeet that demandwere relatively steady over time, which produced a consis-
tent (although not deterministic) cyclic structure inmodel sensitivity. Time-varying GSA enabled the detection
of these interactions via their e�ects on output variation.

5.3 Sensitivities of housing stock evenness, in particular, illustrated the highly complex and nonlinear nature of
market processes. Housing stock diversity results from many short timescale feedbacks between structural
features of land and housing markets (e.g., transaction costs, construction costs) and behavioral features of
landowners, developers, andhousingconsumers (e.g., priceexpectations, locationpreferences, risk tolerances).
Sensitivity indices showedthat themajorityof variance inhousingstockdiversitywasdue to interactionsamong
input parameters and model features (Figure 10). Application of conventional OAT approaches to sensitivity
analysis would not have detected the importance of input interactions in such emergent phenomenon, and
may have even generated misleading conclusions about the magnitude and relative importance of housing
stock evenness sensitivity to particular input parameters.

5.4 The relatively large di�erences in sensitivities across zones, coupled with evidence of the importance of inter-
actions for explaining variance, suggest that housing stock diversity is potentially a locally path-dependent and
regionally state-dependent phenomenon. Page (2006, p. 95) defines a state-dependent process as one inwhich
the outcome at any time depends only of the state of that processes at a given time, and di�erent states that
lead to the same future state are equivalent. In this context, the relative proportion of di�erent housing types
present in the overall housing stock at any given time, described here as the evenness of the housing stock us-
ing Shannon entropy, can be considered the housing stock state. A path-dependent process is one in which the
outcome at any time depends on both past states and their order of occurrence Page (2006, p. 97). At the zonal
level, housing stock evenness was generally the result of path-dependent processes. Local spatial interactions
and market forces made it more likely that a particular housing type would be built in each zone if it had been
built there previously (Figure 12). In contrast, regional level housing stock evenness tended to become more
even over time, suggesting that regional housing stock diversity was the result of state-dependent processes.
Feedbacks from the regional land and housing markets stabilized overall housing diversity over time and en-
sured that roughly similar housing stocks consistently emerged at the regional level regardless of the order in
which particular housing typeswere built in di�erent locations. Such complex, cross-scale dynamicswould not
have been detectable with conventional sensitivity analyses.

Figure 12: Average and standard deviation trend lines for housing stock evenness for each time step of model
execution.

5.5 While space- and time-varyingGSA is anappropriate analytical tool for complex ABMs, its applicationpresents a
number of conceptual and computational challenges that conventionalmethods do not. The number ofmodel
executions required for GSA can be exponentially higher than for conventionmethods. Su�icient sample size is
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critical to producing accurate estimates, with more uncertain outputs potentially requiring (many) more than
other outputs. Given the computational expense, the analyst is faced with a trade-o� between extended pro-
cessing time and estimation accuracy. Sequential estimation techniques, such as the Sobol method used here
(Tarantola 2013), have the potential to optimize the number of model executions performed (Tang et al. 2006).
However, this method prohibits parallel model executions, which can lead to exorbitant run times for compu-
tationally expensive models. Here, we selected a large number of initial base samples based on the literature
(Tang et al. 2006; Ligmann-Zielinska & Sun 2010; Tarantola 2013), generated quasi-random parameter samples
beforehand, executed eachmodel run in parallel, and evaluated convergence of sensitivity estimates post-hoc
(Section 4.2). This approach required 1,350 hours of run-time as opposed to approximately 9,000 hours that
would have been required if model execution had been performed in sequence.

5.6 One of the benefits of GSA is the identification of uncertain input parameters that contribute insignificantly to
output variance, and thus can be fixed without changing overall model output (Ligmann-Zielinska & Sun 2010;
Ligmann-Zielinskaet al. 2014a). However, as this analysis demonstrated, inhighly nonlinear ABMs, itmaynotbe
possible to identify and fix such parameters because of their highly interactive nature. If particular parameters
can be specified empirically, such as travel costs and discount rate, this may eliminate sources of uncertainty
even though themodel is sensitive to these parameters. In contrast, some input parameters towhich themodel
is highly sensitive, such as the spatial distribution of amenity values and consumers’ location preferences for
coastal amenities, are likely to be heterogeneous across consumers and di�icult to estimate empirically. In
such cases, GSA is a useful tool for describing model sensitivities even if it does not ultimately lead to reduc-
ing model sensitivities through parameter fixing. In either case, GSA can identify parameters responsible for
significant output variance, which then become priorities for data collection when developing an empirically
parameterized model.

Conclusions

6.1 Although the CHALMSmodel is initialized with stylized parameter values and landscape configuration, this ap-
plication of combined variance- and density-based GSA highlighted issues that apply to both theoretically- and
empirically-based spatial ABMs. Variance-based GSA can be extremely computationally expensive, particularly
whenmodel outcomes are highly uncertain and require thousands ofmodel executions to obtain accurate sen-
sitivity estimates. As we demonstrated here, an iterative process in which quasi-random input parameters are
generated a priori, model executions are performed in parallel, and estimation error is calculated post-hoc is
a promising alternative to sequential model execution and sensitivity estimation for models with equally or
more complex behavior than CHALMS. Density-based GSA using PAWN (Pianosi & Wagener 2015) also provides
insight into themagnitudeanddirectionality ofmodel sensitivities, and it canbeapplied toexistingmodel data,
eliminating the need for additional model executions.

6.2 Thecomputational cost ofGSAmethods for complexmodels is dauntingbutnecessary. Onceamodel is capable
of producing nonlinear and adaptive behaviors, such as path-dependent development patterns, a threshold
is passed beyond which model outcome variability, and therefore the number of model executions required
for GSA, is not reducible (Brown et al. 2005; Manson 2007). Such a gradual approach is both pragmatic, given
the computational demands required, as well as necessary in order to implement comprehensive sensitivity
analysis of complex ABMs.

6.3 Spatially and temporally explicit variance-basedGSAandcomplementarydensity-basedGSAhave thepotential
to deepen understanding of the sensitivities of complex, dynamic ABMs. Uncertainty in input parameters con-
tributes not only to sensitivity of model outcomes, but also to spatially- and temporally-varying sensitivities in
model dynamics. One of themain advantages of ABMs over other top-downmodeling or statistical approaches,
particularly for studying land-use change, is to explicitly model the time path, or evolution, of emergent phe-
nomenon. However, interpretation of results remains more challenging than for conventional methods, espe-
ciallywhenABMspossessmanynonlinear characteristics, suchaspath-dependence (Brownet al. 2005;Manson
2007). This emphasizes the need for parsimony in model design. Even simple models can produce complex
behavior (Sun et al. 2016), but the task of GSA is made easier and more e�icient if the number of uncertain
parameters (or overall number of parameters) can be reduced.

6.4 TheABM research community is engaged in anongoingdebate about themost appropriate SAmethods. Specif-
ically, Saltelli et al. (2008) and Ligmann-Zielinska et al. (2014a) have concluded that variance-based GSA is the
most appropriate method for process-based models characterized by parameter interactions and emergence.
Conversely, Ten Broeke et al. (2016), recommend OAT over regression-based and GSA methods, because, they
argue, these other methods consider only averaged parameter e�ects, masking nonlinear model mechanics.
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In light of our findings here, we agree with ten Broeke et al. on this point. Variance- and density-based GSA
methods used alone are not su�icient for understanding model mechanics, because they fail to address ei-
ther the directionality or dynamics of parameter e�ects on model outcomes, respectively. However, also clear
from our findings is that accounting for parameter interactions is essential for understanding and quantifying
the full scope of model behavior driven by uncertain parameters. Because OATmethods do not consider inter-
action e�ects, they will always be limited to partial examinations of model outcome space. Emergent model
behaviors resulting fromunique, simultaneous combinations of twoormoreparameters cannot be capturedby
perturbing one parameter at a time. Only global approaches that consider the full range of all uncertain param-
eters within a single analysis can rigorously investigate such behaviors. Furthermore, we have demonstrated
that pairing complementary GSA methods can address the remaining criticisms of GSA methods. Specifically,
density-based GSA can reveal which parts of individual parameter distributions are associated withmodel out-
put sensitivities, and how robust model outcomes are to various parameter combinations within and across
multiple parameter distributions (i.e., hotspots within the global parameter space). The prevalence (or some-
times dominance) of parameter interactions in ABMs requires the comprehensiveness that GSA methods pro-
vide, and restricts OATmethods to a useful means of model exploration.

6.5 The unique combination of GSA methods implemented here enriched our understanding of how our assump-
tions about parameters values a�ectedmodeled dynamics. Highly sensitive model outputs were identified for
future model experiments in which the sampling space will be refined, and data collection e�orts will be tar-
geted to constrain parameters that produce model sensitivity. Critical sources of model sensitivities were also
identified across space and over time that lead to new research questions. For example, the influence of storm
frequencywas stronger in certain locationsandatdi�erent timesduring simulation runs. This leads to theques-
tion: how does the timing of storms – earlier or later in simulations, which impact less ormore developed area,
respectively – a�ect development dynamics? Ultimately, these are the types of questions that comprehensive
GSA can raise, and force us as modelers to deepen our understanding of complexity in land-use ABMs.
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