
© Copyright JASSS

Nigel Gilbert (1999)

Multi-level simulation in Lisp-Stat
Journal of Artificial Societies and Social Simulation vol. 2, no. 1,
<http://jasss.soc.surrey.ac.uk/2/1/3.html>

To cite articles published in the Journal of Artificial Societies and Social Simulation, please reference the above information and include paragraph numbers if necessary

Received: 18-Jan-99 Published: 31-Jan-99

Abstract

A package of Lisp functions is described which implements a simple multi-level simulation toolkit,
MLS. Its design owes a great deal to MIMOSE. MLS runs within Lisp-Stat. It offers a set of
functions, macros and objects designed to make the specification of multi-level models
straightforward and easy to understand. Lisp-Stat provides a Lisp environment, statistical functions
and easy to use graphics, such as histograms, scatterplots and spin-plots, to make the results of
multi-level simulations easy to visualise.

Keywords:
Multi-level simulation, Social simulation, Lisp, Computer modelling, Social simulation tookit

Introduction

1.1
Multi-level simulation consists of simulating interacting populations where the population attributes
depend on aggregated individual attributes and individual attributes depend on the population
attributes (see Troitzsch 1996 for a tutorial introduction). This package implements a simple multi-
level simulation toolkit, MLS. Its design is based on the functionality of MIMOSE (Moehring,
1996). MLS runs within Lisp-Stat (Tierney, 1990). It offers a set of functions, macros and objects
designed to make the specification of multi-level models straightforward and easy to understand.
Lisp-Stat provides a Lisp environment, statistical functions and easy to use graphics, such as
histograms, scatterplots and spin-plots, to make the results of multi-level simulations easy to
visualise. Lisp-Stat is available for Macintosh, PC and Unix computers and works almost
identically on each. It can be downloaded from several sites on the Internet.

1.2
The MLS package consists of three files: the toolkit itself, mls.lsp, and two examples: a barebones
interacting population example, interpop.lsp, and a simulation of a state education system,
teachers.lsp.

1.3

http://jasss.soc.surrey.ac.uk/2/1/3.html 1 25/08/2014

../../admin/copyright.html
../../JASSS.html
3/Gilbert.html
http://stat.umn.edu/~luke/xls/xlsinfo/xlsinfo.html
3/mls.lsp
3/interpop.lsp
3/teachers.lsp

After starting Lisp-Stat, compile and load the toolkit by evaluating the expression:

(compile-file "mls" :load t)

Creating an MLS model

2.1
There are four steps to create a MLS model:

1. Specify the objects in the model. There will be a hierarchy of objects, one or more at each
level. For example, one might have as objects: the state, school, teacher, student in a four level
model of an education system.

2. Specify the processes which the objects undergo during the passage of simulated time.
3. Specify the initial conditions
4. Specify a function to run the model and graphs etc. to display the output.

The model can then be run.

Each of the steps will now be described in more detail.

1. Specify the objects in the model

For each object, you need to specify its attributes (if any). For example, a teacher might have the
attributes age, sex and status. The teacher object could be defined by typing in the Lisp-Stat listener
window:

(defobject teacher (age sex status))

Alternatively, this could be typed into a file and the file loaded into Lisp-Stat. Another example:

(defobject student (sex maths-mark))

The general form for defining an object is:

(defobject name (list-of-attributes) (list-of-temporary-variables))

Both the list-of-attributes and the list-of-temporary-variables may be omitted.

A history is automatically kept of the values of all attributes. Thus, for instance, you can access the
status of a teacher two time steps ago, or display a graph showing the changing status of a teacher
since the beginning of the simulation. Temporary variables differ from attributes in that no history of
their values is kept.

2. Specify the processes which objects undergo

Each object in the simulation can carry out some computation every time step. This computation
should be specified in a method called :act. So, for example, if we want each teacher to become
one year older at each time step, we would define an :act method for teachers thus:

(defmeth teacher :act () (set-attribute age (+ (prev-attribute age) 1)))

This assumes that the object teacher has already been defined and that it has been given the attribute
age.

The example above uses two MLS functions. Set-attribute sets the value of an attribute. Prev-

http://jasss.soc.surrey.ac.uk/2/1/3.html 2 25/08/2014

attribute recovers the value of the attribute at a previous time step.

The general syntax of these functions is:

(set-attribute name-of-attribute new-value)

(prev-attribute name-of-attribute &optional (time-steps 1))

&optional (time-steps 1) means that the second argument, time-steps, can be omitted and if it
is, it takes the value 1 by default.

Another example of the :act method is:

(defmeth student :act () (set-attribute maths-mark (normal 60 10)))

The function (normal mean st_dev) returns a number selected from a normal distribution with the
given mean and standard deviation.

The function

(attribute name-of-attribute)

returns the current value of an attribute.

The functions mentioned so far access the attributes of the object whose behaviour is being defined
(the teacher or the student, in the examples). There are also functions which access the attributes of
other objects:

(its-attribute object name-of-attribute)

(its-prev-attribute object name-of-attribute &optional (time-steps 1))

3. Specify the initial conditions

The state of each object at the start of the simulation needs to be specified. In particular, some
objects will have other objects at a lower level associated with them. For example, a teacher might
be initialised to have a class of students under its control.

Initialisation is specified by defining an :initialise method for the object. Here is an example of
an initialise method for a teacher which creates a class of 20 students (the method assumes that the
object student has previously been defined, using defobject):

(defmeth teacher :initialise () (create-lowers student 20))

The effect of this is to create 20 student objects as the teacher's "lower objects", that is, on the next
lower level of analysis. As part of the creation of each student, the students' own :initialise
method will be evaluated, so we had better define this too:

(defmeth student :initialise () (set-attribute sex (randomly-choose 'male
'female)))

This method randomly assigns a sex, male or female, to the student. The method does not create any
lower objects: students are at the bottom of the hierarchy of levels in this example.

The :initialise method may set any of the attributes of the initialised object. If attributes are not
set explicitly, they are initialised to nil.

http://jasss.soc.surrey.ac.uk/2/1/3.html 3 25/08/2014

4. Specify a function to run the model and graphs etc. to display the output

Finally, a function needs to be written to set the simulation in motion. This function needs to do three
things:

First, create the top level object. For example, in a simulation with school, teacher, and student
objects, the function will need to create a school object. This will automatically be initialised as it is
created, and its initialise method should have been written so as to create and initialise the school's
teachers. These in turn will create and initialise the students, so creating a school has the effect of
creating the teachers and students within it.

To create a new object, evaluate the function create on it, for example:

(create school)

It might be useful to control how many classes there are in the school and how big each class in the
school is. This can be done by supplying an extra argument to the create function, and defining the
:initialise methods appropriately. For instance:

(defmeth school :initialise (classes class-size) (create-lowers teachers classes
class-size))

(defmeth teacher :initialise (class-size) (create-lowers students class-size))

Now to create a school with 5 classes, each of 25 students, evaluate:

(create school 5 25)

Second, the simulation needs to be driven forwards through time. This is done by sending the
message :step to the top level object. For example, the following fragment runs the school
simulatuon through twenty steps:

(dotimes (s 20) (send school :step))

Third, the results of the simulation need to be output. Often, one wants to observe the behaviour of
all the objects in the simulation. To find the objects, you have to start with the top-level object and
obtain from it the identities of the objects at the next level down. For example,

(send school: lowers)

returns a list of the teacher objects in the school. Each of the teacher objects can then be sent the
same message to obtain lists of the students in their classes.

Once you have a handle on an object, such as a particular student, you can obtain a record of the
changing values of any of its attributes. The function its-history is used for this.

(its-history object name-of-attribute)

returns a list of the successive values of the given attribute of the object over the course of the
simulation.

For example, to find the maths mark at each time step of the student whose object is in the variable
a-student, use

(its-history a-student maths-mark)

The two example files, interpop.lsp and teachers.lsp, include functions showing how the output
from this function can be plotted using the Lisp-Stat plot functions.

http://jasss.soc.surrey.ac.uk/2/1/3.html 4 25/08/2014

3/interpop.lsp
3/teachers.lsp

2.2
To demonstrate the package in use, two examples have been coded from the descriptions provided in
Troitzsch's (1996) tutorial paper. The first (interpop.lsp) shows opinion formation in a homogeneous
population. One hundred people have to make a decision, either 'yes' or 'no'. Initially, opinion is
equally and randomly disttributed through the population. Individuals then change their opinion
according to a formula which includes a coupling coefficient that indicates how strongly the
individual's opinion is tied to that of the prevailing majority. Figure 1 shows the results for 10 runs,
using a coupling coefficient (kappa) of 1.5. The populations all tend to around either 10 or 90 per
cent 'yes' votes, with a similar proportion going to each end point.

Figure 1: Bimodal trends in opinion formation in a homogeneous population

2.3
The second example (teachers.lsp) is taken from Troitzsch's (1996) work on gender desegregation in
German gymnasia. The simulation is based on the assumptions that teachers leaving their jobs are
replaced by men and women with equal overall probability; men stay in their jobs twice as long as
women; and new women teachers are assigned to an individual school with a probability which
depends on the percentage of women among its teachers. Figure 2 shows the resulting distribution
of women teachers to schools for a run involving ten schools, each having an average of 20 teachers.

Figure 2: Simulated distribution of percentages of women among teachers at 10 schools

Tracing in MLS

3.1
To see what is happening as the simulation runs, you can specify that a message is printed in the
Listener window every time the value of a particular attribute changes.

http://jasss.soc.surrey.ac.uk/2/1/3.html 5 25/08/2014

3/interpop.lsp
3/teachers.lsp

3.2
For example, to trace the changing maths-marks of students, evaluate

(mls-trace maths-mark)

The output will look like

Attribute MATHS-MARK of #<STUDENT-0> set to 57.829241873061605

Any number of attributes may be given in one call of mls-trace. To stop tracing an attribute,
evaluate mls-untrace with the name of the attribute, or (mls-untrace) to stop all tracing.

Additional functions in MLS

4.1
In addition to the functions and methods mentioned above, the following are provided:

:from-lowers
This method returns a list of the values of a given attribute from all the objects at the next
lower level. For example,

(send a-teacher :from-lowers 'maths-mark)

would return a list of all the math marks of the students in a-teacher's class.

:num-lowers
This method returns the number of objects at the next lower level. For example,

(send a-teacher :num-lowers)

returns the number of students in a-teacher's class.

(upper-attribute name-of-attribute)

This function returns the value of the given attribute of the object next up in the hierarchy. For
example, when evaluated within the body of a method defined for the student object,

(upper-attribute 'sex)

would return the sex of the student's teacher.

(prev-upper-attribute name-of-attribute &optional (time-steps 1))
This function returns the value at the previous time step of the given attribute of the object
next up in the hierarchy.

Random functions

5.1
In addition to the large number of functions provided by Lisp-Stat for generating random numbers
from distributions, MLS offers the following:

(uniform lo-bound hi-bound)
returns a random number between low and high bounds, drawn from a uniform distribution.

(normal mean standard-deviation)
returns a number drawn from a normal distribution with the given mean and standard
deviation.

http://jasss.soc.surrey.ac.uk/2/1/3.html 6 25/08/2014

(chance odds)
returns true with a probability of 1 in the given odds. Odds must be an integer greater than 1.
For example, (chance 3) will return true once every three times it is evaluated, on average.

(randomly-choose options...)
returns one of the options at random, each with equal probability. For example,

(randomly-choose lust gluttony envy pride)

will return one sin chosen randomly from the list.

(prob probability)
returns true with the given probability (a number less than 1). For example, (prob 0.5)
returns true half the time.

References

MOEHRING, M. (1996). Social Science Multilevel Simulation with MIMOSE, in K.G. Troitzsch,
U. Mueller, G.N. Gilbert and J.E. Doran, Social Science Microsimulation Berlin: Springer

TIERNEY, L (1990) Lisp-Stat: an object-orientated environment for statistical computing and
dynamic graphics, London: Wiley

TROITZSCH, Klaus G. (1996). Multilevel simulation, in K.G. Troitzsch, U. Mueller, G.N. Gilbert
and J.E. Doran, Social Science Microsimulation Berlin: Springer

Return to Contents of this issue

© Copyright Journal of Artificial Societies and Social Simulation, 1998

http://jasss.soc.surrey.ac.uk/2/1/3.html 7 25/08/2014

contents.html
../../admin/copyright.html

	Abstract
	Introduction
	Creating an MLS model
	1. Specify the objects in the model
	2. Specify the processes which objects undergo
	3. Specify the initial conditions
	4. Specify a function to run the model and graphs etc. to display the output

	Tracing in MLS
	Additional functions in MLS
	Random functions
	References

