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Abstract: In this paper, we describe a process of validation for an already published model, which relies on
the M2M paradigm of work. The initial model showed that over-confident agents, who refuse to communicate
with other agents whose beliefs di�er from theirs, disturb collective learning within a population. We produce
a simplified model that we analyze using probabilistic methods, and which enables us to better explain the
process that operates in our firstmodel, and demonstrates that this process is indeed converging. Tomake sure
that the convergence time is meaningful in the context we consider (not just for an infinite number of agents
living for an infinite time), we use the analytical model to produce very simple simulations and assess that the
result holds in finite contexts.
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Introduction

1.1 In this paper, we present research where analytical results obtained in a simplified model are used to enhance
our understanding of an already existing social simulationmodel. This shows that two techniques, agent-based
modeling andprobabilistic analysis, canbeused jointly in somesettings toprovide further insights about a con-
ceptualmodel. Here the originalmodelwas built to attain a theoretical understanding of abstract stylized facts.
In the present paper, we will explain the di�erences between the modeling approaches, and how the second
model, althoughmuch simpler, draws attention to the role of an important parameter we had not tested in the
first version of the simulationmodel. We believe that this comparison betweenmodels can be of interest to the
model-to-model research community. Indeed, we show that an analytical model can explain some properties
of a simulation model and that it can also identify properties of the model that have an important impact on
the results.

1.2 The first simulationmodel (wewill refer to it as ’RT2012’) enabledus to show that thepresenceof over-confident
agents in apopulation can slowdowncollective learning (Rouchier &Tanimura 2012). The applicationwehad in
mind concerned the coordination of agents using a resource collectively. We consider a contextwhere the di�u-
sion of knowledge is important to reduce ine�iciency and where knowledge di�usion depends on the success
of the agents, which in turn depends on the quality of their belief. A correct belief is close to the reality of the
environment and an incorrect belief is wrong in many dimensions. In the analytical model (’AM’) we represent
the accuracy of the beliefs in amuch simplerway. Thus it is not necessarily the case that all the results obtained
in this setting carry over to the simulation model.

1.3 In this new paper, we present RT2012 briefly but readers should refer to Rouchier & Tanimura (2012) for details.
We then develop the analyticalmodel which is shown to capture themain features of the originalmodel but, as
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mentionedabove, in a greatly simplifiedbelief environment; proof of AM is placed in anappendix, but intuitions
are developed in themain text. These results provide intuitions about themechanismof RT2012, but also draws
attention to some important features that would not have been tested in the simulations otherwise. As a short
variation, we show that the analytical model can itself be simulated, in finite time and with finite population
sizes, and that the time required for convergence is not too great. Combined, these two approaches allow us to
identify a number of problems that arise in our dynamics of collective learning. We can then draw conclusions
about the interest of using di�erent modeling approaches to obtain a deeper knowledge of the processes at
stake - which is one of the main claims of the M2M (model-to-model) research trend.

M2M

1.4 Since the beginning of the century, theM2Mapproach, as developed in two special issues in JASSS, has focused
on the relation among models and the possibility of creating interactions between them (Hales et al. 2003;
Rouchier et al. 2008). This approach is all the more important since computerized simulation models can be
subject to numerous errors, in the coding phase as well as in the simulation itself which relies on machine
approximations (Polhill et al. 2005). This can translate into wrong interpretations of the results in regard to
the dynamics of the target system. Several techniques have been used to enhance the robustness and level of
generality of computer models.

1.5 To assess the quality of the simulation results, whether they are already published or not, replication is the
most widespread technique (although it is still possible to consider that it is not used enough (Wilensky & Rand
2007)). Replication enables us to criticize the imperfect quality of description of the model or results in a pa-
per (Rouchier 2003), whose incompleteness makes it impossible to reproduce the dynamics of the formally
described model. It can also, in a more fundamental way, show that some exposed results just do not hold,
like Edmonds & Hales (2003). They have also been used to extend model validity by focusing on parameters
di�erent from those in the original papers, as one has frequently done in the case of opinion dynamics (i.e.,
Urbig et al. 2008)). Failed replication and the response by the original modeler can also give rise to interesting
and fundamental methodological discussions, like the "De�uant discussion" (Meadows & Cli� 2012; De�uant
et al. 2013) (which reminds us that a simulator has to be aware of the importance of time to be able to draw
conclusions), or the "Macy discussion" (Will & Hegselmann 2008; Macy & Sato 2008; Will 2009) (which reminds
us all that devil is in the details).

1.6 A more di�icult research agenda is the one that proposes to identify classes of models which display similar
dynamics (Cio�i-Revilla & Gotts 2003). This fundamental approach has the ambition to slowly build a theory
of complex dynamics through the identification of common processes among seemingly di�erent models that
have common characteristics, although, at first sight, their fields of application are very di�erent. To sustain
this research trend (and also to solve the problemof incomplete description ofmodels), a description protocol,
the ODD protocol (Polhill et al. 2008), has been proposed and has since gained recognition and been widely
used in various applications. This protocol also enables us to compare structurally di�erent models that deal
with the same type of target system but with di�erent modeling choices (Polhill et al. 2007). In general, exact
explicitness, transparency and the open access to simulationmodels havebeen considered themost important
basis for sharing scientific knowledge produced by simulation (see openabm.com and Janssen et al. (2008)).

1.7 Sometimes, research on the validation of generally identifiable social dynamics has also relied on the link be-
tween agent-basedmodels andwhat can be described under the generic term of analytical models. The idea is
to show that results that are observed through simulations can be proven to hold in a given set of situations, of-
ten described inmore abstract terms (like in our case, whichwill be described later, with a population of agents
whose size goes to infinity and who interact over a number of periods that also goes to infinity). As seen in the
previously citeddiscussion about theDe�uantmodel, the convergence time canbe extremely long, and the risk
is to stop a simulation too early, believing that a steady state has been reached, whereas a new state could be
attained if time was, for example, doubled. Maybe one answer to this very general problem could be provided
by Grazzini (2012) who discusses, for cases where it is impossible to explicitly write the equations that regulate
the evolution of the system, how tools fromnon parametric statistics can be used to detect whether time series
generated by agent basedmodels are stationary and stem from an ergodic process.

1.8 The issue of connections between models has been apprehended in di�erent ways. The most straightforward
approach is to comparedi�erent existingmodels and to lookat the similarity of their results, likeKlüver&Stoica
(2003) studying behaviors in a network and showing that results are similar. In the same spirit, Edwards et al.
(2003) demonstrate that an aggregate and a distributedmodel of opinion di�usion converge onlywhen there is
just one attractor but diverge if there are two. Some authors decided to go from an already established simple
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modelwhichcanbe treatedanalytically, and to relax thehypotheses tocheck if the results remain similar. This is
the type of result obtained by Vila (2008), who starts out with a deterministic Bertrand competitionmodel, and
then adds assumptions about agents’ behavior using a genetic algorithm - in the end, he obtains similar results
with both tools, showing that loyalty should emerge in this competitive setting. An integration of statistical and
agent-based models is achieved by Silverman et al. (2013), who thus succeeds in producing predictions and
explanations of demographic phenomena in parallel.

1.9 It is also possible to make the link between ABM and analytical work by first running simulations and then cre-
ating from the model a simplified generalization, as in Cecconi et al. (2010) who show that for the congestion
model they study, it would not have been possible to construct an analytical model without having previously
studied simulation dynamics. The complementarity of these approaches is such that insights from the simu-
lations are crucial for developing the analytical model which in turn extends certain aspects of the simulated
model. Moreover, the simulations capture fluctuations over time whereas the analytical model focuses on av-
erage quantities. This paper is the one that is the closest to the research we present here, especially in the way
the modeling phases are articulated.

The simulationmodel

1.10 The model that has already been published, RT2012 (Rouchier & Tanimura 2012) (as an evolution of a previous
model and analysis (Rouchier & Shiina 2007)) shows that, in a particular setting, overconfident agents can pre-
vent a whole population from learning when learning is social, in the sense that it includes influence among
agents. The model is based on simulations that take place in a universe whose "objective reality", as well as
the representation that agents have of this environment, take the shape of a culture vector as in Axelrod’s work
(1997). The properties of our environment, as well as the agents’ beliefs, are hence a string of 10 bits taking 0 or
1 as value. Agents are boundedly rational: they have to act on this environment, and this action is also the only
way for them to acquire information about its characteristics: when they succeed in their action, they can infer
that their representation is correct, andwhen they fail theyknowtheyhave some incorrectbeliefs. Theaccuracy
of individual beliefs is defined as the fraction of "correct bits"; the accuracy of the collective belief is defined as
the average accuracy. The actions undertaken by the Agents do not have any impact on the characteristics of
the environment which stay unchanged in the time-scale of the simulation.

1.11 We also add an influencemechanism to this simple feed-back learning, namely that agents have to act by pair,
and thus choosewhowill "lead the action" anddefine the right representation used to choose the action. Since
wewant to test the influenceofheterogeneityof self-confidence,webuildouragentsaccordingly; heterogenous
in this dimension, as well as in their representation of the environment (randomly drawn at initialization).

1.12 The way a time-step takes place is such that:

1. randomlypaired, agents firstdecidewhichbelief touse fororganizing their action: theagentswithhighest
confidence is the one who leads the action and uses his belief

2. according to the accuracy of the belief (its adequacy to real characteristics), the agents are more or less
successful in their action: note that we do not actuallymodel the action, but a probability of success - the
probability of success is linear with respect to the accuracy of the belief of the leading agent.

3. when an action is successful, the agent who led the action influences the other one by transforming his
belief (only one bit is transformed at a time).

1.13 The main result of our study is that the presence of some very confident agents, who on average overestimate
their knowledge and cannot be influenced by others, slows down, and can even completely stop, the learning
of the society as a whole. One can identify thresholds in the number of overconfident agents, that produce dif-
ferent patterns in the simulations. In particular, results depend on the probability of meetings between agents
that can influence each other.

1.14 Two criticisms can be directed at this first model. First, it is rather complex: the "Axelrod-type setting" gives
rise to dynamics that are hard to anticipate, as he notes himself. Perhaps due to its complexity, this type of
opinionmodel has not produced as vast a literature, as, for example, the De�uant influencemodel has. Hence,
the validity of our results cannot be checked in coherence with a large number of related dynamics that could
have been documented otherwise.

1.15 We thus had to check if our result was robust, and to understand some of the underlying mechanisms behind
it. We decided to study an analytical model that would share the main features of our model, and test the
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stability asymptotically with respect to time and population size. The three features - that learning takes place
through influence, that accurate knowledge increases the ability to influence, and that communication can be
restricted - have hence been included in a much simpler model for which it is possible to identify steady states
of the system and characterize the conditions under which they occur.

A Simplified Model of Belief Evolution

Defining themodel

2.1 In this section, we study analytically a simplified version of belief evolution in the presence of confident agents.
Admittedly some of the richness and complexity of the initial model is lost due to the simplifications. How-
ever studying the simplified model should allow us to shed some light on the mechanisms that operate in the
previous one. To make the model tractable, we retain only the most basic features of our situation: there are
several possible beliefs which are more or less correct. Beliefs that are more correct increase the probability
of successful actions and thus of convincing ones peers. Agents’ confidence in their own beliefs prevent them
from engaging in joint actions with others whose beliefs are too di�erent.

2.2 The main simplification will concern the belief environment. Beliefs about the environment take values b ∈
{0, 1, ...,K}. We will assume that the true state of the world is K, which means that the di�erence K − b
measures the degree of error in the agents belief compared to the true state of theworld. An agentwhose belief
isK knows the true state of the world, an agent whose belief is 0 is maximally mistaken about the true state
of the world. This belief space is one dimensional, as opposed to the multi-dimensional one in the general
model. The belief environment presented here is not a special case of that in Rouchier & Tanimura (2012)). The
di�erence is not just a quantitative reduction in complexity but a qualitative di�erence. Nowagentswhose level
of error is the same necessarily hold the same beliefs which was not necessarily the case in the more complex
belief environment, agents could be "equally wrong " if they had the same number of incorrect bits, but not
necessarily mistaken in the same way if their errors concerned di�erent bits.

2.3 Let us now define what ismeant by the confidence of an agent in this setting. An agent is (over)confident about
his own belief if he refuses to be influenced by others whose beliefs are too di�erent from his own. For any
two agents, we can define the distance between their beliefs. An agent’s confidence is equal toK minus the
maximal distance inbeliefs forwhichheaccepts to engage in anactionwith (and thuspossibly be influencedby)
another agent. Thus, the higher an agent’s confidence, the lower his tolerance of (or at least his willingness to
be influenced by) those whose beliefs are di�erent from his own. An agent with confidenceC will only interact
with other agents whose beliefs are at most at distance K − C from his own. For example, if an agent has
confidence 0, it means that he is willing to interact with anyone whose beliefs are at mostK steps away from
his own. SinceK is thehighest possibledistance inbeliefs, in otherwordshe interactswith everybody regardless
of their beliefs. If an agent has confidenceK he only interacts with those whose beliefs are at distance 0 from
his own beliefs, in other words he will never change his mind. Consider an example whereK = 7. Suppose
that an agent has confidence 5 and that his ownbelief is 4. An agent of confidence 5will only interactwith those
whose beliefs are at distance at most 7− 5 = 2 from his own, i.e. he will interact with agents whose beliefs are
2, 3, 4, 5, 6. We note that it is not relevant to consider levels of confidence higher thanK since the agent with
confidenceK is already maximally intolerant.

2.4 Then the simplest non-trivial case that we can analyze is whenK ≥ 2. Indeed, ifK = 1, then if the level of
confidence is1, no agentswithdi�erent beliefs interact and if the confidence is0, weare in the trivial casewhere
everyone interacts. In the caseK = 2, the possible non trivial levels of confidence are 0, inwhich case the agent
is willing to be influenced by anybody and 1, in which case the agents with beliefs 0 and 2 do not communicate.
Wewill analyze the long run state of the system, depending on the confidence levels of the agents. We note that
the caseK = 2 is particularly simple for the following reason: agents of confidence 1 form an isolated system
in the sense that they are not influenced by the agentswith confidence 0, although they influence these agents.
Therefore, we will analyze a systemwith only agents with confidence 1. If there are agents of confidence 1who
remain in state 0, it is obvious that the agents of confidence 0 cannot a�ect the beliefs of these agents but that
they will be unilaterally a�ected by the former. Therefore, to show that the social learning process does not
converge towards perfect knowledge, it is su�icient to show that this is the case when we restrict our attention
to the agents with confidence 1.

2.5 The analytical model, as well as the simulated one, is non ergodic, meaning that the initial conditions and the
realizations of random variables during the dynamics will have an impact on the long run state. The choice of
non ergodicity is voluntary. Many social phenomena indeed depend in a crucial way on initial conditions.
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Figure 1: There is no influence between type 0 and type 2 agents. Influence is more important from type 1 to
type 0 than the opposite, since influence increases with the accuracy of knowledge. This holds for influence
between type 1 and type 2 agents.

2.6 Given that the long run outcome that is reached - represented by an absorbing state - depends on initial condi-
tions and random realizations, we will restrict our attention to the case where the number of agents is large. In
this case we canmake some statements about long run behavior that will hold with high probability. In partic-
ular, we show on the one hand that the presence of confident agents qualitatively alter the long run dynamics.
Without confident agents, all agents will learn the true state with high probability. This merely captures the in-
tuition that since informed agents aremore convincing, otherswill adopt their beliefs rather than the otherway
around. In the presence of confident agents, we showhowever, thatwith high probability, a non zero fraction of
the agents will continue to hold incorrect beliefs. Froma quantitative point of view, whether or not this fraction
is large depends on a number of model parameters including the initial proportions of beliefs, whose role we
will also establish.

2.7 We will consider a system in which all agents have confidence 1. Updating is asynchronous and interactions
appear through random mixing. We note that the constraint imposed by the confidence implies that agents
with beliefs 0 and 2 never influence each other even if they meet (see Figure 1). Therefore any encounter that
modifies beliefs necessarily involves an agent with belief 1.

Model and notation

2.8 Let N be the number of agents. Because we are interested in asymptotics with respect to population size
we want to be able to compare the states of systems of di�erent size. To this e�ect, we define a state as an
(n0, n1, n2) ∈ Q3 such thatn0 +n1 +n2 = 1. The triplet (n0, n1, n2) represents the fractions of the population
of agents who have beliefs 0, 1 and 2 respectively, which we refer to as "level 0", "level 1", and "level 2" agents.
In a population of sizeN , the number of level i agents is then given byNni. We will only consider values ofN
for whichNni is a natural number for i = 1, 2, 3. Note thatNni = Ni(0), the initial number of agents in level i.

2.9 We now need to describe how the beliefs of the agents evolve over time due to the interactions. We thus intro-
duce random variables whose evolution can be identified with that of the belief evolution as long as the latter
has not reached a steady state.
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2.10 For i = 0, 2, we define the quantitiesNi(t) in the following way:

N2(t) = N2(0) +

s=t−1∑
s=0

As1Zs=1

N0(t) = N0(0)−
s=t−1∑
s=0

Bs1Zs=−1

2.11 Since there is a total ofN agents, we deduce that the number of agents who hold belief 1 is given by

N1(t) = N −N0(t)−N2(t)

2.12 The factors that determine thebelief evolution are as follows: The variables (Zs)s≥1 canbe seenasdetermining
whether the agent with belief 1 encounters an agent with belief 2 (Zs = 1) , 0 (Zs = −1), or an agent who also
has belief 1 (Zs = 0) at time s ≥ 1. The probability of encountering an agent with belief 2 or 0 depends on the
proportion of agents in the population: P (Zt = 1) = N2(t)

N ,P (Zt = −1) = N0(t)
N . When two agents with belief

1 meet, nobody changes beliefs.

2.13 Suppose that Zs = 1, or in other words that an encounter occurs between an agent with belief 1 and an agent
with belief 2. There are three possible outcomes of this encounter which we model by a random variable As
that takes the values 1, 0,−1 with probability p2, 1 − p2 − p1, p1. The case As = 1: the agent with belief 1
is persuaded by the agent with belief 2 and changes his belief to 2, thus becoming a level 2 agent, the case
As = −1: the agent with belief 2 is persuaded by the agent with belief 1 and changes his belief to 1, and finally
the case As = 0: neither agent manages to convince the other one and no one changes his belief. Similarly,
whenZs = −1, an encounter occurs between a level 1 agent and a level 0 agent. The three possible outcomes
are determined by a random variable Bs which takes the values 1, 0,−1 with probability p1, 1 − p1 − p0, p0.
Similarly, ifBs = 1, the level0agent changeshis belief to1 , ifBS = −1, the level1agent changeshis belief to0.
The probability pi is equal to the probability that the agent at level i influences his partner times the probability
that he is chosen to be the leading agent in the interaction (this probability is always 1/2 since all the agents
have the same confidence).

2.14 Since we want to capture the fact that better knowledge of the environment makes an agent more convincing,
we will require that p2 > p1 > p0, or equivalently that E(A) = p2 − p1 > 0 and E(B) = p1 − p0 > 0. This
corresponds to the fact that the expected evolution of beliefs favors a transition towards better knowledge.

2.15 Theevolutionof beliefs occurs at each step in timeand ismodeledwith the two sequences of variables (As)s≥1,
and (Bs)s≥1. The variables in the sequence (As)s≥1 are independent and identically distributed. The variables
in the sequence (Bs)s≥1 are also independent and identically distributed (the laws of the variables in the two
sequences are not necessarily the same). Moreover, the variables in the sequence (As)s≥1 are independent
from those in the sequence (Bs)s≥1.

2.16 Wenote that the system (N0(t), N2(t))which evolves as a function of the randomvariables (Zs)s, and (As)s≥1,
(Bs)s≥1 is well definedwithout reference toN1(t) but it only coincides with that of the belief evolution as long
asN1(t) > 0.

Asymptotic behavior and results

2.17 Having defined above the quantities (N0(t), N1(t), N2(t)) which represent the number of agents with belief
0, 1 and 2, we will be interested in the steady states that this system can reach. A steady state is a state which is
permanent in the sense that the beliefs will not evolve anymore. There are four possible steady states:Ni(t) =
N for some i = 0, 1, 2. This corresponds to a situation where all agents hold identical beliefs i. The fourth
absorbing state is that where there are no longer any agents with belief 1. In this case, communication barriers
will prevent influence between the agents with belief 0 and 2. This absorbing state occurs whenN1(t) = N −
N0(t) − N2(t) = 0. An absorbing state of this type can be written as (N0(∞), 0, N2(∞)) such thatN0(∞) +
N2(∞) = 1. We note there cannot be any other type of steady states because if there are still agents who
have belief 1 and at least one agent whose belief is di�erent from 1, an encounter can occur and with positive
probability the agent whose belief is not 1 changes his belief to 1 in contradiction with the assumption that we
were in a steady state.
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2.18 As said before we assume that better knowledge of the environment translates into greater ability to convince.
In other words the expected evolution of beliefs makes it more likely tomove from 0 to 1 and from 1 to 2 than in
the reverse direction. In other wordsE(A) > 0 andE(B) > 0. For this reason, it is easy to see that when the
number of agentsN is large, absorbing states will be eitherN2(∞) = N , that is, all agents have learned the
true state of the world, or states of the last type whereN1(∞) = 0. The other two states require flows that are
in contradiction with expected behavior and are untypical in large populations.

2.19 Wewill begin by showing thatwithout the presence of communicationbarriers due to thepresence of confident
agents, with high probability, all the agents in a su�iciently large population will eventually learn the correct
state of the environment provided that we start from an initial condition where a positive fraction of agents
know the true state of the world (proof in appendix). This case can be seen as a benchmark with which we can
compare the results we obtain when we introduce confident agents in the influence process. We will show that
the presence of confident agents leads to a qualitative di�erence in the long run outcome. Now, starting from
any initial condition where each belief is held by a positive fraction of the population, we reach a steady state
where a significant proportion of the agents are permanently stuck with their incorrect beliefs.

Proposition 1. For any initial condition such that n0 > 0, n2 > 0, and for any δ > 0, there existsN0 such that if
N > N0, the probability is at least 1− δ thatN0(∞) ≥ (1− E(B)

N )βN+Nδ > 0.

2.20 Moreover, we cananalyzehowdi�erentmodel parameters influence the fractionof agentswho remain in a state
of low knowledge:

Proposition 2. N0(∞)/N the asymptotic fraction of agents that remain in level 0 is:

• increasing in n0 (assuming that an increase in n0 is compensated by a decrease in n1, holding n2 constant)

• increasing in n2 (assuming that an increase in n2 is compensated by a decrease in n1, holding n0 constant)

• increasing inE(A)

• decreasing inE(B)

2.21 The proof of this proposition can be found in the section on comparative statics at the end of the paper.

2.22 The lower bound in the proposition allows us to identify factors that lead to ine�icient collective learning. On
one hand, we can see that if E(A) << E(B), the number of agents who are asymptotically in a state of low
knowledge is close to n0. In other words, most of the agents who were initially in a state of low knowledge
will remain in a state of low knowledge. The lower bound also depends on the initial condition (n0, n1, n2).
We note that a higher initial value of knowledge does not necessarily lead to better long run outcomes. For
example, (n0, n1 − t, n2 + t) can lead to worse long run learning than (n0, n1, n2).

Main intuitions behind results

2.23 Themechanism that accounts for the described outcome is quite intuitive. Absorbing states whereN0(∞) > 0
occur because there are no longer any agentswith belief 1who ensure the communication. The fact that a posi-
tive fractionof agents remain in level 0 is explainedby the encounter probabilities alone. SinceE(B) > 0, there
is an expected flow out from level 0. Since encounters occur uniformly at random, eventually the population in
level 0 is very small in size whereas that in level 2 has grown outstandingly. The probability of encountering the
remaining agents in level 0 is very low. However, there are other important factors that determine whether a
larger, non negligible fraction of the population will remain in the low state of knowledge. It is only in this case
that we can really say that social learning is ine�icient. When E(A) is large compared to E(B) it means that
typically the net rate of agents whomove from belief 1 to belief 2 is greater than the net rate of moves from 0 to
1. If the number of agents initially in belief 1 is not too large compared to the number of agents in level 0, it is
likely that all agents with belief 1 move to belief 2 before most of the agents in belief 0 move to belief 1. Clearly,
the long run outcome also depends on the relative sizes of the populations with beliefs 0, 1 and 2. However,
the most interesting observation is probably that in the simplified belief environment the fact that agents with
correct beliefs are muchmore convincing does not improve social learning in the population as a whole.
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Values of P1 15 20 30 40 50 60 70

P2 = 70 469.31 429.34 326.88 193.15 60.6 3.09

P2 = 80 472.3 442.28 360.1 255.62 132.05 34.82 1

P2 = 90 475.29 450.34 383.3 293.58 188.15 87.49 19.29

Table 1: Average number of non-knowledgeable agents at the end of a simulation (average over 100 simulation
runs), starting with 500 agents at each level at initialization. P0 = 10, P1 < P2. The higher P1 the better the
learning; the higher P2 the worse the learning, which is counter-intuitive.

A simulationmodel based on the analytical model

2.24 The analytical results we provide are asymptotic, meaning that they are valid when the number of agents and
time-steps tend to infinity. It is natural to make such assumptions to obtain analytical results, but it is not
necessarily the time scale that is relevant in relation to the socio-environmental dynamics we are dealing with
in our story. Hence, we copied the logic of the analytical model into a new simulation model, which greatly
simplifies the previous one. Themodel was written with NetLogo and can be found with a short description at:
https://www.openabm.org/model/4756/version/1/view.

2.25 At initialization, agents are created and attributed a level of knowledge (0,1 or 2). Whenever an encounter be-
tween two agents occurs, each of the agents is drawn to be the leader with probability 1/2. The probability
(expressed in what follows as a percentage) that the leader influences the follower is then respectivelyP0,P1,
and P2 for agents of knowledge level 0, 1 and 2. We have P0

2 = p0,
P1
2 = p1,

P2

2 = p2, since the transition
probabilities defined in the previous sections are given by the probability that each agent is chosen to be the
influencer in the encounter times the probability that he actually influences his partner.

2.26 The value of the probability to influence is initialized for each level of knowledge, with the constraint thatP0 <
P1 < P2, since the most knowledgeable agents are those who influence most as described in both previous
models. At each time-step, a level 1 agent is chosen and another agent is picked among level 0 and level 2
agents. One of these two agents is chosen randomly as the leader and we determine, using the associated
probability, whether he will influence the other agent. If so, the level of knowledge of the influenced agent
changes and becomes the same as that of the leader. The simulation stops when no agent of level 1 remains.

2.27 In our dynamics, we do not considermeetings between agents that cannot result in a change of opinion for the
agents involved, and since we are in a setting with agents who are self-assured (with communication barrier),
a level 1 agent is always chosen first.

2.28 What we can expect from the simulation, if we assume that it will behave like the analytical model althoughwe
now consider a finite population size, is that:

1. We keepmany agents in the bad knowledge situation when (P1− P0) < (P2− P1)

2. If we fix the probabilities, it is better to have the initial N2(0) not too high compared to N1(0), so as to
achieve complete learning

Varying probabilities

2.29 We first ran simulations with 500 agents at each level, varying the probability to influence. The results can be
observed in figures 2 to 5. In the first setting, both di�erences between probabilities are equal, and thus level
0 agents who do not learn are numerous (fig. 3). In the case when P2 − P1 = 8 and P1 − P0 = 52, all level
0 agents get to level 2 in almost all simulations (fig. 2); whereas if the di�erence of probability is the same,
with value 30, there are still many level 0 agents at the end of the simulation (fig. 3). Of course, if P2 − P1 >
P1 − P0 then there are still many level 0 agents at the end (e.g. fig 4). Finally, it is only when the di�erence
(P1 − P0) − (P2 − P1) is really large that we can bring all agents to learn in most simulations. In all other
cases, there are still agents of level 0 at the end (e.g. fig. 2, fig. 4 and fig.5). These results are summarized in
table 1, where an increase in P2 holding other probabilities constant reduces global learning, and an increase
in P1 holding other probabilities constant increases global learning. What we can conclude from this set of
simulations, is that our first expectation is realized in the simulation model.

2.30 Hence we can see that the result holds, and that the most important element is the relative ability to convince
of agents at level 2 and 1.
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Figure 2: This image shows the final setting of a simulation (in the center), with green agents being level 2
agents and red ones being level 0 agents. The dynamics of the number of agents at each level can be seen on
the top right graph, where the yellow curve represents the number of level 1 agents.This case is with a su�icient
di�erence of probability for both influence interaction: during the whole simulation there are enough level 1
agents to bring all level 0 agents to knowledge, and then they also turn to level 2 agents at the end.

initial value initial value initial value non-knowledgeable agents

N0 = 500 N1 = 500 N2 = 500 3.5

N0 = 200 N1 = 800 N2 = 500 0.8

N0 = 800 N1 = 500 N2 = 200 5, 6

N0 = 500 N1 = 800 N2 = 200 0.2

N0 = 500 N1 = 200 N2 = 800 21.4

Table 2: Average number of non-knowledgeable agents at the end of a simulation (over 100 simulation runs for
each value). We keep P0;P1;P2 = 20; 70; 80which is a situation where learning is good. Increasing the num-
ber ofN0(0) reduces learning, but increasing the numberN2(0) has an even stronger e�ect on the reduction
of learning. This is in line with our analytical result but is rather counter-intuitive.

Initial number of agents

2.31 In the secondsetof simulations,wekeptprobabilitiesunchanged, usingwhatwaspreviously a favorable setting
with P0 = 20%, P1 = 70% and P2 = 80% and we vary the initial number of each group of agents. We first
keep 500 level 2 agents and vary the other values, and then keep the number of level 0 agents at 500 and vary
the others, while keeping their sum constantly equal to 1000.

2.32 These results show that the influence of the initial number of agents in each category is also important in a finite
population, and follows the rule that has been established in the analytical model, even when the time steps
and number of agents are finite.

2.33 Some aspects of these global results are rather counter-intuitive, such as the fact that better transmission of
good information leads to worse collective learning. This can be observed in the former table where, for in-
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Figure 3: This image shows the final setting of a simulation (in the center), with green agents being level 2
agents and red ones being level 0 agents. The dynamics of the number of agents at each level can be seen on
the top right graph, where the yellow curve represents the number of level 1 agents. This case is with the same
di�erence in probability (P2-P1=P1-P0) : the number of level 1 agents drops too quickly, since they gain more
knowledge, and then they can no longer influence the level 0 agents.

creasing values of P2 we also produce a final number of non-knowledgeable agents which increases. Here,
dyadic good learning does not imply collective good learning.

Discussion

3.1 The new analysis we conducted, re-writing the idea of our model with a newmethodology, confirms the main
result of the previously published work.

3.2 If we define an individual with high confidence as having di�iculty learning from those whose beliefs are too
di�erent from his own, then the presence of overconfident agents, who believe that they are correct when they
are not, does have a significant negative impact on the level of collective learning.

3.3 In this context, which gives rise to a communication barrier between agentswith di�erent beliefs, the result had
been shown in a complex environment, through simulation. Here we show that it holds asymptotically (very
large number of agents and repeated interactions) with a simplified representation of the environment. By
using the analytical model to build new simulations with amoderate number of agents, we can also check that
this simplifiedmodel can be used in contexts that can be interpreted as real-life situations, where convergence
occurs in a population of reasonable size and a�er a reasonable number of pairwise interactions.

3.4 Themechanismwe identified in this study canbeexplained in a simpleway: agents refuse to communicatewith
others when beliefs are too far apart. Initially "moderate" (moderately knowledgeable) agents ensure interac-
tions between the informed and the ignorant. However these agents eventually adopt the views of the better
informed agents since the latter are more convincing. However a group of agents with very low knowledge
is le� behind and no intermediate agents are le� to ensure communication between them and the informed
agents. In some sense, all those whose initial beliefs are not too incorrect in the beginning will learn the true
state quickly but the others are le� behind. It is interesting to note that the rapid initial success of the informed
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Figure 4: This image shows the final settingof a simulation (in the center), with greenagents being level2agents
and red ones being level 0 agents. The dynamics of the number of agents at each level can be seen on the top
right graph, where the yellow curve represents the number of level 1 agents. Here the relative influence of level
2 agents is much higher than the relative influence of level 1 agents, and this results in very bad learning in the
group.

agents may not be e�icient for learning in the population as a whole in the long run. Themoderately informed
agents learn quickly but this leaves the mistaken agents isolated and creates polarization.

3.5 It is interesting to note thatwhat causes the bad learning dynamics ismainly the lack ofmoderately knowledge-
able agents, rather than the lack of highly informed agents, or a high number of agents whose initial beliefs are
incorrect. It is not necessarily good for global outcomes that perfectly knowledgeable agents exert a strong
influence, and thus that the power of persuasion increases toomuch with the quality of knowledge.

3.6 We can express su�icient conditions for bad collective learning:

• if the initial fraction of agents with an intermediate level of knowledge is small

• the likelihood of persuading ones partner is convex with respect to the level of knowledge

3.7 The analytical study of a simplifiedmodel is what allowed us tomake thismechanism visible, and thus to show
that communication barriers is a major issue in the management of collective learning. However, the result
about convexity which holds in the simplified model does not necessarily hold in a more complex representa-
tion of the belief environment. Indeed, as can be seen in Rouchier & Tanimura (2012), the convexity and concav-
ity do not produce straightforward properties, since increasing the convexity by starting from a linear reaction
to the environment does reduce learning, but moving from the linear to the concave case does as well. In our
complex setting the best learning occurs when the success of transmission of good information is linear in the
quality of this information. Intuitively, in the new setting this can be seen as corresponding to a situationwhere
(P1 − P0) = (P2 − P1), but it is rather clear that it is not possible to translate the representation in one
model to the other as easily. Hence, the main result can be explained and proved, but the same is not true for
the more detailed properties of the original model. Indeed, one has to bear in mind that the main di�erence
between RT2012 and this analytical model is the notion of "correct" and "incorrect" beliefs. In the complex
setting, there is one way to be correct, but many ways to be incorrect.
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Figure 5: This image shows the final settingof a simulation (in the center), with greenagents being level2agents
and red ones being level 0 agents. The dynamics of the number of agents at each level can be seen on the top
right graph, where the yellow curve represents the number of level 1 agents. (P1 − P0) − (P2 − P1) is not
high enough to have complete circulation of knowledge in the group.

3.8 As is usually the case in a model-to-model comparison process, the analytical model is very di�erent from the
initial simulation model, and requires a completely newway of phrasing the problem. This second step can be
made onlywhen the simulationmodel has provided uswith some intuitive hypothesis that can then be verified
in amuch simpler setting. Developing a newmodel which conserves important features of the original one but
ismore tractable is an interesting creative challengewhichalso requires findingappropriate analyticalmethods
for studyingmodels and problems originated in agent basedmodeling. In our case, where there is randomness
in the encounters that occur and in their outcomes, it was natural to take a probabilistic approach, focusing on
"typical" outcomes in the long run.

Appendix: Proofs

No communication barrier randomwalk

Let us first consider the casewhere there are no communication barriers. In this situation, dynamics end in one
of three possible statesN0(∞) = N,N1(∞) = N orN2(∞) = N . Let us show that ifN is su�iciently large,
with high probability we reach an outcome where all agents learn the true state of the world., i.e. the last case.
We will be interested inN2(t) the number of agents with a correct belief. Let us consider only the transition of
agents in and out of level 2. We disregardwhether the agentswho are not in level 2 are in level 0 or level 1. When
an encounter occurs between an agent in level 2 and an agent in level 1, the probability that the agent in level
1 moves to level 2 is p2, the probability that an agent in level 2 moves to level 1 is p1 and the probability that
nobody moves is 1 − (p1 + p2). Conditioning on the event that someone moves, the probability of moving to
level 2 is p2/(p1 + p2) and the probability of moving to level 1 is p1/(p1 + p2). (the steps where nobodymoves
a�ect convergence time but not themovement of the dynamics and can be ignored). Similarly we can consider
the probability of moving from level 0 to level 2 and conversely, when a movement occurs, the probability of
moving to level 2 is p2/(p0 +p2) and that ofmoving to level 0 is p0/(p0 +p2). The probability ofmoving to level
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2 is higher for the agents at level 0 than for those at level 1. Thus the probability that an agent in level 0 or level
1 moves to level 2, in a step where movement actually occurs, is greater than p2/(p1 + p2). Let us consider the
modified dynamicswhere any agent in level 0 or 1moves to level 2 with probabilityPR =: p2/(p1 +p2) and the
probability that anagent in level 2moves to level 0or 1 (wedonot carewhichone it is) isPL =: 1−PR. Under the
modified dynamicsN2(t) defines a simple one-dimensional randomwalk onZ with probabilities (PR, 1−PR)
wherePR > 1/2. Let us identify the initial positionn2N with the position 0 in the randomwalk onZ. The event
N2(t) = N(n1 + n0)means that all agents are in level 2, and the evenN2(t) = 0 is the event where all agents
are in level 0 or 1 in the steady state. Define the stopping times τn1+n0

= inf{t > 0|N2(t) = (n1 + n0)N} and
τ−n2

= inf{t > 0|N2(t) = −Nn2}. The absorbing state isN2(∞) = N exactly when the random walk hits
Nn1 + Nn0 before it hits−Nn2, or in other words when τn1+n0

< τ−n2
. Now this is a well known gamblers’

ruin problem. Since ( 1−PR

PR
) < 1, we have

P (τn1+n0
< τ−n2

) =
( 1−PR

PR
)Nn2 − 1

( 1−PR

PR
)N(n0+n1) − 1

→n→∞ 1. (1)

Proposition 3. The probability that we reach a steady state with only level 2 agents is bounded below by

P (τn1+n0
< τ−n2

) =
( 1−PR

PR
)Nn2 − 1

( 1−PR

PR
)N(n0+n1) − 1

→n→∞ 1. (2)

Consequently, in absence of communication barriers, the probability of reaching this state goes to 1 as the popu-
lation size increases.

Communication barrier

Let us give an expression for the expected value of the number of agents in level 2 at time t + 1 given then
number of agents in level 2 at time t. The number changes only if an agent in level 1 meets an agent in level
2. The probability that this occurs is N2(t)/N . When such a meeting occurs, the number of agents in level 2
increases by 1 with probability p2 and decreases by 1 with probability p1, with p2 − p1 =: E(A). Therefore, we
haveE[N2(t+1)|Ft] = N2(t)

N E(A)+N2(t) = (1+ E(A)
N )N2(t).Similarly, the agents in level 0 evolve according

to:

E[N0(t+ 1)|Ft] = −N0(t)
N E(B) +N0(t) = (1− E(B)

N )N0(t).

Consequently,wecandefine twomartingales (Ñ2(t))t≥0 = ( N2(t)
1+E(A)/N)t )t≥0 and (Ñ0(t))t≥0 = ( N0(t)

1−E(B)/N)t )t≥0.

We will now define events that say essentially that the sequences behave typically at time t:

E2(t) =: N(n2 − ε)(1 +
E(A)

N
)t < N2(t) < N(n2 + ε)(1 +

E(A)

N
)t (3)

E0(t) =: N(n0 − ε)(1−
E(B)

N
)t < N0(t) ≤ N(n0 + ε)(1− E(B)

N
)t (4)

We omit the dependence on ε in the notation for convenience.

Note that we can also write

E2(t) =: Ñ2(0)−Nε < Ñ2(t) < Ñ2(0) +Nε (5)
E0(t) =: Ñ0(0)−Nε < Ñ0(t) < Ñ0(0) +Nε. (6)

To obtain an upper bound on the probability that the sequences are not typical in this sense, we will apply the
Azuma-Hoe�ding inequality which we recall:

Lemma1. (Azuma-Hoe�ding inequality) Let (Xt)t≥0 beamartingalewithboundeddi�erences : |Xt+1−Xt| ≤ tk
thenP (|Xt −X0|a) ≤ exp( −a2

2
∑l=t

l=1(tl)
2 ).
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Applying the Azuma inequality to (Ñ2(t))t≥0 and (Ñ0(t))t≥0, we can take tk = 1 for all k, sinceN2(t) andN0(t)
change by at most one element in a period.
We have by the Azuma inequality:

P (EC2 ) =: P (Ñ2(0)−Nε < Ñ2(t) < Ñ2(0) +Nε) ≤ 2exp(
−(Nε)2

2t
) (7)

P (EC0 ) =: P (Ñ0(0)−Nε < Ñ0(t) < Ñ0(0) +Nε) ≤ 2exp(
−(Nε)2

2t
). (8)

Our dynamics enter a steady state when there are no longer any agents in level 1. This is the event N1(t) =
∅ ⇐⇒ N2(t) + N0(t) ≥ N . We will be interested in the date at which this occurs. If the process behaved
exactly according to expectation, the date would be T defined as

T =: inf{t > 0|N(n2)(1 +
E(A)

N
)t) +N(n0)(1− E(B)

N
)t) = N}. (9)

We note that for su�iciently largeN , T ≤ ln(1/n2)
ln(1+E(A)/N) ≤ −2ln(n2)N/E(A) =: βN.

If the process behaves ε-typically, the earliest date at whichN1(t) = ∅ can occur is

Tm =: min{t > 0|N(n2 + ε)(1 +
E(A)

N
)t) +N(n0 + ε)(1− E(B)

N
)t) = N} (10)

and the greatest is

TM =: min{t > 0|N(n2 − ε)(1 +
E(A)

N
)t) +N(n0 − ε)(1−

E(B)

N
)t) = N}. (11)

DefineK =: min{t|N1(t) = ∅}. If the process is ε-typical until TM , we will haveK ∈ [Tm, TM ]. By continuity,
for any δ > 0, we can find an ε > 0 such that [Tm, TM ] ⊂ [T − Nδ, T + Nδ]. Consequently, we will have
K ∈ [T −Nδ, T +Nδ] if the process is typical until TM . It is in fact su�icient to show that the process is typical
between T̂ = min{n0N,n2N} and TM . Indeed, we cannot haveN1(t) = 0 before T̂ , moreover, if the process
is typical for all t = T̂ , .., TM , we cannot haveN2(t) = 0 before TM . Moreover, TM ≤ T + δN ≤ (β + 1)N .
Let ε > 0 defined as above be fixed. We bound the probability that the process is typical for t = T̂ , ..., (β+1)N .

P (

t=TM⋂
t=T̂

(E2(t), E0(t))) = 1− P (

t=TM⋃
t=T̂

(E2(t), E0(t))C) ≥ 1−
t=TM∑
t=T̂

P ((E2(t), E0(t))C) (12)

≥ (TM − T̂ )N2exp(
−(T̂ ε)2

2TM
). (13)

Where we use the fact that P ((E2(t), E0(t))C) ≤ 2exp(−T̂ ε)
2

2TM
) for all t ≥ TM . Since T̂ = min{n1N,n2N} ≤

TM ≤ Nβ, We can then findN0 such that forN > N0, we have (TM − T̂ )N2exp(−(n1Nε)
2

2n1N
) < δ. We obtain:

Proposition 4. Let

T =: inf{t > 0|N(n2)(1 +
E(A)

N
)t) +N(n0)(1− E(B)

N
)t) = N} (14)

LetK =: min{t|N1(t) = ∅}. For any δ > 0, there existsN0 such that ifN > N0, the two following properties
hold with probability at least 1− δ:

• K ∈ [T −Nδ, T +Nδ].

• N0(∞) = N0(K) ≥ (n0 − ε)(1− E(B)
N )T+δ ≥ (1− E(B)

N )βN+Nδ > 0

Remark 1. The above proposition implies that for large population sizes, with high probability the asymptotic
proportion of agents in level 0 is positive. Indeed under the stated conditions, T ≤ βN , with β = −ln(n2)/E(A)
and thus
N0(∞) = (1− E(B)

N )T+Nδ ≥ (1− E(B)
N )βN+Nδ > 0.
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Comparative statics

Proposition 1 establishes the fact that the presence of communication barriers leads to a qualitative di�erence
in the steady state: the fraction of level 0 agents is positive. However, the fraction can be very small. In practice,
whether or not learning is successful depends on the model parameters. In this section, we will analyze how
each of the parameters n0, n1, n2 and E(A), E(B) impacts the steady state fraction of level 0 agents. We can
choose δ so that the steady state fractionN0(∞) is arbitrarily close ton0(1+ E(B)

N )T . Therefore, wewill analyze
the impactof theparameterson thequantityn0(1−E(B)

N )T . Moreover, sincewehaveT = O(N)andN is large,
we can use the approximations (1− E(B)

N )tN = exp(−E(B)t) and (1 + E(A)
N )tN = exp(E(A)t). The quantity

T (n0, n2, E(A), E(B)) is thendefined throughasan implicit functionbyg((T, n0, n2, E(A), E(B)) = 0, where
g((T, n0, n2, E(A), E(B)) =: n2exp(E(A)t) + n0exp(−E(B)t)− 1. We have δT

δq = −δg/δq
δg/δT . Now consider as

a function of t, g(t) = n2exp(E(A)t) + n0exp(−E(B)t). We have δg
δt =: g

′
(t) = n2E(A)exp(E(A)t)) −

n0E(B)exp(−E(B)t)). Let us show that g
′
(t) ≥ 0when g(t) = 1. It is readily verified that g

′′
(t) > 0. Suppose

that g
′
(0) < 0, which is possible for some parameter values. Then there exists v > 0 such that g

′
(t) ≤ 0 i�

t ≤ v. Now, g(0) = n2 + n0 − 1 < 0. Since g(t) is decreasing on [0, v], g(t) < g(0) < 0 for all t ≤ v. Thus
g(t̄) = 0 implies t̄ > v which implies g

′
(t̄) > 0. By the implicit function theorem, the di�erential of T with

respect to q is δTδq = −δg/δq
δg/δT , where we have established the positivity of δg/δT .

The asymptotic fraction of agents in level 0 isH(n0, E(B), T ) = n0exp(−E(B)T )We study how this function
depends on the di�erent parameters.

δN1

δn0
= H

′

n0

δT

δn0
= exp(−E(B)t) +

n0E(B)(exp(−E(B)t))2

δg/δT
> 0 (15)

δN1

δn2
= H

′

n2

δT

δn2
=
n0E(B)exp(E(A)t)exp(−E(B)t)

δg/δT
> 0 (16)

δN1

δE(A)
= H

′

E(A)

δT

δE(A)
=
n0E(B)exp(−E(B))n2texp(E(A)t)

δg/δT
> 0 (17)

δN1

δE(B)
= H

′

E(B)

δT

δE(B)
=
−n0E(B)exp(−E(B))n0texp(−E(B)t)

δg/δT
< 0 (18)

From this analysis, we obtain the comparative statics results given in Proposition 2.

In the proposition, we assume that we are holding n2 constant and increase n0 by decreasing n1. and similarly
when we change n2. We also note that the quantitiesE(A) andE(B) are related due to the fact thatE(A) =
p2 − p1 and E(B) = p1 − p0. If E(A) >> E(B), we must have p2 − p1 >> p1 − p0 which corresponds to
a learning probability that is convex with respect to knowledge. Conversely if E(B) >> E(A), the learning
probability is concave with respect to knowledge. Thus in the dynamics we consider, social learning is more
successful with a concave success probability.
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