TUTORIAL
Systems of fuzzy IF-THEN rules in NetLogo
using the fuzzy logic extension

1 Background and overall description of the model

This tutorial demonstrates how to create a system of fuzzy IF-THEN rules in NetLogo using the
Fuzzy Logic extension. Systems of fuzzy IF-THEN rules are explained in section 2.6 of the paper.
Here we use an example inspired by two of the researchers’ visit to Segovia (Spain) during July
2014. The researchers engaged in a guided walking tour, visiting the most iconic places of the city
and, at the end of the tour, participants received a satisfaction survey. In this example, for simplicity
of presentation, we use only two factors that can contribute to a holiday experience: the weather
conditions, expressed by ambient temperature, and the cost of the tour'. The following text provides

an overview of the model.

The model runs in discrete time-steps. Figure 1 provides an informal sketch that illustrates the
sequence of events within each time-step. Note that the sequence starts with the occurrence of a

tour; in every time-step one (and only one) tour takes place.

]

Maximum
group size

1. THE TOUR

TEMPERATURE PRICE

00 N EEE

00 T OO0
A

3. RECOMMENDATIONS

{maximum 1 per person at a time)

2. EVALUATION OF THE TOUR

Y

POTENTIAL

W,

(Attendants

1
1
1
RECOMMENDERS i Visitors at time ¢ @@@ @K

tothe lastn | V|S|tors at time ¢ — 1 @.@ @u

tours) = b T LT

Fig. 1. Sketch of the sequence of events in the model

' Other versions of the model include the knowledge and enthusiasm of the tour guide, word-of-mouth
recommendations and different types of tourists (i.e. optimistic and pessimistic). For simplicity of presentation, we have
reduced the number of membership functions and IF-THEN fuzzy rules here. Upon request, the authors can provide

additional information and the models.

1

A time-step comprises the following sequence of events (we use red Arial font for the parameters in
the model):

1. The tour. A group of agents goes on the sightseeing tour. These agents are called the visitors of
this time-step. The price of the tour is a parameter of the model named price, and the temperature is
generated randomly (using a uniform distribution with range [-10, 50]) every time a tour takes place
(i.e. every time-step). In the very first time-step, the number of visitors is determined by the user by
setting the value of a parameter called initial-num-of-visitors. In the following time-steps, the
number of visitors is calculated endogenously as explained below. Agents can only attend the tour
once and the maximum number of visitors at any given tour is a parameter of the model named
group-size.

2. Evaluation of the tour. Having experienced the tour, each individual visitor computes its own
probability of recommending it. This probability is computed using the following two rules:

R1: IF (price is inexpensive AND temperature is nice),
THEN it is likely that I will recommend.

R2: IF (price is expensive OR temperature is extreme),
THEN it is unlikely that I will recommend.

In this model the rules are the same for every visitor, but the perception of what constitutes nice
versus extreme temperature, inexpensive versus expensive ticket, and likely versus unlikely are
particular to each agent. Specifically, as shown in the family of membership functions drawn in Fig.
2, each individual agent has its own concept (i.e. fuzzy set) of nice temperature (blue on left plot),
extreme temperature (red on left plot), inexpensive price (blue on middle plot), expensive price (red
on middle plot), likely (blue on right plot) and unlikely (red on right plot).

Concepts of nice and extreme temperature Concepts of expensive and inexpensive Concepts of likely and unlikely

0] . probability - 1

Fig. 2. Representation of various fuzzy sets held by different agents

The individual fuzzy sets are created following a template and adding some noise whose magnitude
is controlled with the parameter variability. Further details on the creation of the individual fuzzy
sets and on the computation of the probability are provided in the following sections of this
appendix.

At the end of this second stage, every visitor has computed its own probability of recommending
the tour, which will remain unchanged throughout the life of the visitor.

3. Recommendations. Every agent who has attended the tour recently is given one opportunity to
recommend the tour to another (newly created) agent. The opportunity will materialise in an actual
recommendation according to the agent’s probability of recommending. The number of
opportunities that each agent is given to recommend the tour is a parameter of the model named

2

recommend-opportunities. Since agents are given one opportunity to recommend in each time-step,
and they are given recommend-opportunities opportunities, the set of agents who can recommend at
any time-step is composed of all the agents who have attended one of the latest recommend-
opportunities tours (see Fig. 1).

4. Identification of the visitors to the tour in the following time-step. At this point we have a set
of new agents who have been recommended the tour. If this set contains fewer than group-size
agents, all of them will attend the tour in the following time-step. Otherwise, a subset of group-size
agents is selected randomly from the set of recommended agents to attend the tour in the following
time-step. The non-selected recommended agents are disregarded.

In the following time period a new tour starts (with different temperature conditions), which will be
assessed by the new set of visitors. These new attendees will compute their own probability to
recommend the tour to their own social contacts. In this way, the iterative process can go on
indefinitely.

2 Using the model

This tutorial assumes some familiarity with Netlogo. First, make sure that the file fuzzy-logic-
extension-model.nlogo (i.e. the model) and the folder named “fuzzy” containing the file
“Fuzzy.jar” (i.e. the extension) lie in the same directory®. Subsequently, open the model fuzzy-
logic-model.nlogo with NetLogo®. Then, inspect the interface. The graphic user interface (GUI)
includes several objects you may already recognise, such as buttons, sliders and plots (Fig. 3).

] Fuzzy sets Template for concepts of temperature Template for concepts of price Template for concepts of likelihood
setup [
1 1 1

go once ‘ go

ticks
31

0 0 0 AN

e e e 20 -10 temperature 50 0 price 10 0 likelihood 1
mu-nice snice ok initial i final-i i initial-likely final-unlikely

BLCE Y Izo 10 ILo 2 8 IO.J. |0.9

group-size 30 Concepts of nice and extreme temperature

Concepts of likely and unlikely

e |

recommend-opportunities 2

accumulated-#-of-visitors
700

no-more-tours-at

4]
plot-concepts 0

-10 temperature (°C)] 50

0 } probability 1

— Temperature Likelihood of recommending
variability 3.0 B, A = q B max
type-of-aggregation [V Ay Ny) o Ia_vg
sum v el . _/—\’\q,_\ Bl min
.
type-of-defuzzification ag [|
-6,) ! 0 0
958 y 0 .3 o 363 || o0 36.3

Fig. 3. GUI for the fuzzy-logic-extension-model.nlogo model

* The extension can also be placed in the extension’s folder where NetLogo was installed. See

http://ccl.northwestern.edu/netlogo/docs/extensions.html for details.
’ We encourage the reader to use the documentation of the Fuzzy Logic extension in conjunction with the model and
this tutorial.

3

http://ccl.northwestern.edu/netlogo/docs/extensions.html

Five sliders enable the user to interact with the model by setting the value of the parameters initial-
num-of-visitors, price, group-size, recommend-opportunities and variability of the individual fuzzy
sets. For demonstration purposes, we set the sliders arbitrarily with default values; for example, in
the GUI presented in Fig. 3, the sliders for the initial-num-of-visitors and group-size have the value
30, the maximum number of recommendations recommend-opportunities is 2, the ticket price is 5
and the variability is 3. The value of all parameters can be changed at run time with immediate
effect on the model.*

We use input boxes to set the parameters for the templates used to create the fuzzy sets: nice
temperature (mu-nice and s-nice), extreme temperature (s-extreme), expensive price (initial-
expensive), inexpensive price (final-inexpensive), likely probability (initial-likely) and unlikely
probability (final-unlikely). The precise way in which these templates are created is detailed below:

e Template for nice temperature: Gaussian (bell-shaped) fuzzy set with mean mu-nice.
Parameter s-nice plays a role similar to the standard deviation in the sense that it controls
how much the function spreads out (see details in the documentation of the library).

e Template for extreme temperature: It is the maximum of two Gaussian (bell-shaped) fuzzy
sets with means -10 and 50 respectively. Parameter s-extreme controls how much both of
them spread out from their mean.

e Template for expensive price: Fuzzy set with piecewise linear membership function that
joins the points [0 0], [initial-expensive 0] and [10 1].

e Template for inexpensive price: Fuzzy set with piecewise linear membership function that
joins the points [0 1], [final-inexpensive 0] and [10 0].

e Template for likely probability: Fuzzy set with piecewise linear membership function that
joins the points [0 0], [initial-likely 0] and [1 1].

e Template for unlikely probability: Fuzzy set with piecewise linear membership function that
joins the points [0 1], [final-unlikely 0] and [1 0].

Individual fuzzy sets for the agents are created following the corresponding template and adding
some random noise whose magnitude is controlled with the parameter variability. For details on this,
see section 3 of this appendix.

At the bottom left of the GUI there are two chooser objects, which are used to select the type-of-
aggregation and the type-of-defuzzification for the system of fuzzy IF-THEN rules. The default
values are set to sum and centre of gravity (COG) respectively. For details on this, see section 3 of
this appendix.

We use blue Arial font for the buttons in the model. The setup button creates the group of initial
visitors, sets everything up and plots the templates used to create all individual fuzzy sets. Every
agent has six individual fuzzy sets: two with temperature as base variable (nice and extreme), two
with price as base variable (expensive and inexpensive) and two with probability as base variable
(likely and unlikely). The templates used to create each of these fuzzy sets are shown on the three
plots at the top of the interface. The plot-concepts button displays the individual membership

* Except for parameter initial-num-of-visitors, naturally. Changing the value of this parameter will not have an effect
once the setup button is pressed.

4

functions of the fuzzy sets of the agents who will attend the tour in the following time-step (at the
moment the button is pressed) in the three plots in the middle. The go once button carries out one
time-step of the model and the go button makes the model run indefinitely.

The GUI also includes three plots at the bottom that display the time series of temperature, number
of visitors and (minimum, maximum and average) probabilities of recommendation of the visitors
to the tour.

Press the setup button. Then press the plot-concepts button and observe the different fuzzy sets of
the newly created agents. Then try the go button for a few seconds. You will obtain something
similar to the interface shown in Fig. 4, where all the plots are populated. If you wait for long
enough, chances are that a window saying that “There are no visitors” pops up.

Next, change the inputs to another set of values, change the aggregation and defuzzification rules
(e.g., from sum to max and from COG to first of maxima FOM) and press the go button again. Try
running the model several times, with different input values, and note the changes in the output.

Fuzzy sets Template for concepts of temperature Template for concepts of price Template for concepts of likelihood
setup
1 1 1

go once

ll

ticks

0 [} 0
-10 temperature 50 0 price 10 0 likelihood 1

inexpensive Concepts of likely and unlikely

ser M
Concepts of nice and extreme @ Tt

no visitors

accumulated-#-of -visitors
1343

no-more-tours-at

plot-concepts

/ S y Ny
"] price 10 0 probability 1

Temperature Visits Likelihood of recommending

W max
I |'I . 30 1 -
|y I il avg
AU M I o O
AN ¥ '\l I||l‘w'\|' "I | I'I ll“-||‘| [M wn ! ||||\'I min
W L vy |
v ||| | ||| |/ ||| II "| rlrl, LERAY. ||||I \
\f
.6 ! 0 V]
0 92.5 0 925 0 92.5

Fig. 4. GUI with results

3 Implementation of systems of fuzzy IF-THEN rules

In this section we explain how to implement the interpolation method for systems of fuzzy IF-
THEN rules. In our particular case, the system of fuzzy IF-THEN rules contains the following two
rules:

R1: IF (price is inexpensive AND temperature is nice),
THEN it is likely that I will recommend.

R2: IF (price is expensive OR temperature is extreme),
THEN it is unlikely that I will recommend.

It is clear that the first thing we must do is to create the fuzzy sets involved in the rules. In our
model, each individual agent creates its own fuzzy sets by running the procedure “create-my-fuzzy-
sets”. As an example, let us see how to create the fuzzy set that represents an agent’s concept of
expensive (see Fig. 7). We want the membership function of that fuzzy set to be the piecewise
linear function that joins the points [0 0], [x 0] and [10 1], where x is equal to the parameter initial-
expensive plus a random number in between —variability and +variability.

MEMBERSHIP FUNCTION OF
A FUZZY SET “EXPENSIVE”

[101]
L

=

Degree of
membership

[x 0] |

>

price 10

Fig. 5. Membership function of fuzzy set “expensive”.

Introducing some stochasticity in the value of x ensures that all agents will have different concepts
of expensive. The following code shows the excerpt of the procedure “create-my-fuzzy-sets” where
the agent creates the described fuzzy set and stores it in its turtle variable called my-concept-of-
expensive.

;; In the following line of code we just compute a value for x,
;; making sure that it is always in the range [0 10].
;; clip and noise are reporters defined in the next section of code.
let x (clip [0 10] (initial-expensive + noise wvariability))
;7 In the following line we create the fuzzy set.
set my-concept-of-expensive fuzzy:piecewise-linear-set
(list [0 0] (1ist x 0) [10 1])

Note that fuzzy:piecewise-linear-set is a procedure defined in the Fuzzy Logic library which takes a
list of points [[X; yi] [X2 y2] ... [Xn Ya]] as input and reports a new fuzzy set whose membership
function is the piecewise linear function that joins the input points; initial-expensive and variability
are parameters; and clip and noise are reporters defined elsewhere in the code, as follows:

to-report clip [i V] ;; reports the value v clipped within the interval i
let £ first i
let 1 last i
if v < £ [set v f]
if v > 1 [set v 1]
report v
end

to-report noise [v] ;; reports a random number in the interval [-v V]
report (v - random-float (2 * v))
end

Once you have understood the code above, we recommend you read the whole code within the
procedure ‘“‘create-my-fuzzy-sets”. Let us now turn to the implementation of the interpolation
method for systems of fuzzy IF-THEN rules.

As explained in section 2.6 of the paper, the interpolation method generally comprises five steps
which together define a specific function that maps crisp input values into a crisp output value. In
our particular case, the function will take numerical inputs price and temperature, and will produce
a numerical probability as its output, i.e. probability = f(price, temperature). The actual name of the
procedure that implements this function in our model is “compute-probability”, a procedure to be
run by each individual agent and which does not take any inputs because agents can directly access
the value of price and temperature (since they are both global variables). The procedure does not
actually report anything, but it does set the value of my-prob-of-recommending, which is a variable
owned by the agent. Here we explain how to implement such a function in NetLogo.

1. Fuzzification of inputs (optional)

In our model we have not fuzzified the inputs price and temperature.

2. Computation of reshaped consequents for each rule.?

The first rule reads:

R1:1IF (price is inexpensive AND
temperature is nice), THEN it is likely that I will recommend.

In the model we use the function min for the logical operator AND and the function truncate as
reshaping method. Thus, we select the procedure fuzzy:min-truncate-rule to implement our first rule
R1. (Since this is the most common selection of operators for AND rules, the function fuzzy:min-
truncate-rule is also called fuzzy:and-rule.)

let Rl fuzzy:and-rule (list
(list price my-concept-of-inexpensive)

(list temperature my-concept-of-nice)) my-concept-of-likely

Note that R1 is now the reshaped consequent.

> Note that this step corresponds to stages 2 (Computation of degrees of consistency between inputs and antecedents)
and 3 (Reshaping of consequents) in the paper.

7

The second rule reads:

R2:IF (price is expensive OR
temperature is extreme), THEN it is unlikely that I will recommend.

In the model we use the function max for the logical operator OR and the function truncate as
reshaping method. Thus, we select the procedure fuzzy:max-truncate-rule to implement our second
rule R2. (Since this is the most common selection of operators for OR rules, the function fuzzy:max-
truncate-rule is also called fuzzy:or-rule.)

let R2 fuzzy:or-rule (list

(list price my-concept-of-expensive)
(list temperature my-concept-of-extreme)) my-concept-of-unlikely

Note that R2 is now the reshaped consequent.

3. Aggregation of all the reshaped consequents

In this step all the reshaped consequents are combined together to form a single fuzzy set for the
output variable. In the example below we use the function max as aggregation operator. Thus, we
select the procedure fuzzy:max to aggregate all the reshaped consequents.

let my-prob-of-recommending-fuzzy-set fuzzy:max (list R1 R2)

Note that my-prob-of-recommending-fuzzy-set is now the aggregated fuzzy set. The actual code for
the aggregation in the model is more general and allows the user to change the type of aggregation
at runtime by modifying the value of the parameter type-of-aggregation (which can be set to “max”,
“prob-or” or “sum”).

let my-prob-of-recommending-fuzzy-set
(runresult (word "fuzzy:" type-of-aggregation " (list R1 R2)"))

4. Defuzzification of the aggregated fuzzy set (optional)

In the example below we use the function Centre of Gravity (COG) as defuzzification operator.
Thus, we select the procedure fuzzy:COG to defuzzify the aggregated set.

set my-prob-of-recommending fuzzy:COG-of my-prob-of-recommending-fuzzy-set

Note that my-prob-of-recommending is now a number in between 0 and 1. The actual code for the
defuzzification in the model is more general and allows the user to change the type of
defuzzification at runtime by modifying the value of the parameter type-of-defuzzification (which
can be set to “COG”, “FOM”, “LOM”, “MOM” or “MeOM”).

set my-prob-of-recommending (runresult (word

"fuzzy:" type-of-defuzzification "-of my-prob-of-recommending-fuzzy-set"))

So the final code for the implementation of the interpolation method is the following:

to compute-probability

;; COMPUTATION OF RESHAPED CONSEQUENTS FOR EACH RULE
let R1 fuzzy:and-rule (list
(list price my-concept-of-inexpensive)

(list temperature my-concept-of-nice)) my-concept-of-likely
let R2 fuzzy:or-rule (list

(list price my-concept-of-expensive)
(list temperature my-concept-of-extreme)) my-concept-of-unlikely

;7 AGGREGATION OF ALL THE RESHAPED CONSEQUENTS
let my-prob-of-recommending-fuzzy-set
(runresult (word "fuzzy:" type-of-aggregation " (list R1 R2)"))

;; DEFUZZIFICATION OF THE AGGREGATED FUZZY SET
set my-prob-of-recommending (runresult (word
"fuzzy:" type-of-defuzzification "-of my-prob-of-recommending-fuzzy-set"))

end

4 Final comments

We present a simplified model with the objective of highlighting the benefits of fuzzy logic in an
environment in which different agents interact with one another. As illustrated, the NetLogo
environment allows for each agent to have its own linguistic terms (i.e. fuzzy sets) and/or rules of
decision. Here, we present a case in which all the agents share the same fuzzy rules (adopting the
view that these rules represent the “general wisdom™) but they interpret them in different ways, i.e.
the meaning of the linguistic terms (defined by their membership functions nice, extreme,
inexpensive, expensive, likely, unlikely) is internal to each agent and reflects the individual
heterogeneity of interpretations. Therefore, the fuzziness of the system resides in the way people
feel, understand or treat those words in any particular situation: whereas 28 Celsius may be quite
hot for someone living in a cold climate, it may be perceived as cold for a tropical island resident;
the same price may be considered cheap or expensive depending on the person’s socioeconomic
status.

This treatment does not need to be the case. For example, the researcher may want to test the
reverse case, with universal membership functions and distinct, “personalised” rules for the agents,
including hedges and various combinations of unions and intersections of conditions. The Fuzzy
Logic library allows for this flexibility. Also, note that this model uses only two rules for the sake of
clarity in the exposition. However, adding more rules is straightforward following the steps in
section 3 of this appendix.

A final word of caution: as explained in section 2.7 of the paper, the interpolation method is not
logical deductive inference. Thus, caution is required in interpreting the output of a system of fuzzy
IF-THEN rules.

	TUTORIAL Systems of fuzzy IF-THEN rules in NetLogo using the fuzzy logic extension
	1 Background and overall description of the model
	2 Using the model
	3 Implementation of systems of fuzzy IF-THEN rules
	4 Final comments

