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Abstract

Recently,	the	area	of	study	of	spatial	game	continuously	has	extended,	and	researchers	have	especially	presented	a	lot	of	works	of
coevolutionary	mechanism.	We	have	recognized	coevolutionary	mechanism	as	one	of	the	factors	for	the	promotion	of	cooperation
like	five	rules	by	Nowak.	However,	those	studies	still	deal	with	the	optimal	response	(best	decision).	The	best	decision	is	persuasive
in	most	cases,	but	does	not	apply	to	all	situations	in	the	real	world.	Contemplating	that	question,	researchers	have	presented	some
works	discussing	not	only	the	best	decision	but	also	the	second-best	decision.	Those	studies	compare	the	results	between	the	best
and	the	second-best,	and	also	state	the	applicability	of	the	second-best	decision.	This	study,	considering	that	trend,	has	extended	the
match	between	two	groups	to	spatial	game	with	the	second-best	decision.	This	extended	model	expresses	relationships	of	groups
as	a	spatial	network,	and	every	group	matches	other	groups	of	relationships.	Then,	we	examine	how	mutual	cooperation	changes	in
each	case	where	either	we	add	probabilistic	perturbation	to	relationships	or	ties	form	various	types	of	the	structure.	As	a	result,
unlike	most	results	utilizing	the	best	decision,	probabilistic	perturbation	does	not	induce	any	change.	On	the	other	hand,	when	ties
are	the	scale-free	structure,	mutual	cooperation	is	enhanced	like	the	case	of	the	best	decision.	When	we	probe	the	evolution	of
strategies	in	that	case,	groups	with	many	ties	play	a	role	for	leading	the	direction	of	decision	as	a	whole.	This	role	appears	without
explicit	assignment.	In	the	discussion,	we	also	state	that	the	presented	model	has	an	analogy	to	the	real	situation,	collusive
tendering.
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	Introduction

1.1 The	topic	of	research	how	cooperation	emerges	under	the	situation	of	conflicts	of	interest	has	been	a	quite	challenging	theme.	Many
researchers	have	managed	to	approach	this	question.	Until	now,	we	have	regarded	that	five	rules	by	Nowak	(direct	/	indirect	/	network
reciprocity	and	kin	/	multilevel	selection)	(Nowak	2006)	are	effective	for	the	emergence	of	cooperation	in	pairwise	interactions	like	the
prisoner's	dilemma	game	(abbreviated	as	PDG).	On	the	other	hand,	in	group	interactions	(i.e.	public	goods	game),	punishment	has
been	thought	to	have	its	effect	on	maintenance	of	cooperation	(Fehr	2002;	Fowler	2005;	Herrmann	2008;	O'Gorman	2009;	Rankin
2009).	The	effect	of	punishment	on	the	promotion	of	cooperation	is	still	disputable	(Fowler	2005;	Dreber	2008;	O'Gorman	2009;	Rankin
2009).

1.2 In	above	factors	facilitating	cooperation,	especially	regarding	network	reciprocity,	there	are	some	cases	for	the	development	of
cooperation	when	relationships	of	players	are	the	small	world	structure	(Watts	1999;	Masuda	2003).	Also,	some	papers	have
presented	that	ties	of	the	scale-free	effectively	facilitate	cooperation	(Santos	2005;	Santos	2006;	Perc	2008;	Santos	2008).	Recently,
coevolutionary	mechanism	where	both	strategies	and	relationships	of	players	evolve	has	proved	to	be	a	promotive	factor	for
cooperation	(Ebel	2002;	Zimmermann	2004;	Pacheco	2006;Poncela	2009;	Szolnoki	2009;	Van	Segbroeck	2009;	Perc	2010).	In	the
coevolutionary	mechanism,	the	difference	of	rates	of	evolution	between	strategy	and	structure	is	crucial	for	the	development	of
cooperation.

1.3 The	practical	problem	for	those	many	studies	is	that	they	all	deal	with	the	optimal	response	(best	decision).	Those	researchers	at	first
think	about	the	theory	of	the	survival	of	the	fittest	by	Darwin	that	individuals	manage	to	maximize	their	fitness.	Then,	researchers	are
inclined	to	discuss	why	cooperation	emerges	and	develops	in	that	circumstance.	On	the	other	hand,	considering	practical	situations,
there	are	many	cases	like	negotiation	that	everyone	intends	to	reach	an	agreement	with	compromise.	If	he/she	mutually	employed	the
best	decision,	he/she	would	not	achieve	it.	Naturally,	researchers	have	already	recognized	that	problem.	Therefore,	they	have	studied
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and	discussed	not	only	the	best	decision	but	also	the	second-best	decision	(Rietveld	2007;	Boergers	2009;	Ohdaira	2009).	Those
studies	based	on	the	second-best	decision	describe	the	comparison	between	the	best	and	the	second-best	and	also	its	applicability	to
real	problems.

1.4 Considering	that	trend,	we	extend	the	model	of	the	match	between	two	groups	with	the	second-best	decision	proposed	by	Ohdaira	et
al.	(Ohdaira	2009)	to	spatial	game.	In	that	case,	groups	play	matches	between	the	groups	of	relationships.	Then,	while	interactions
are	ordinarily	pairwise	in	the	PDG,	we	introduce	the	mechanism	of	two	stages	that	matches	are	pairwise	but	decision	is	the	group
level.	It	is	similar	to	the	system	of	multilevel	selection,	where	matches	are	pairwise	but	selection	is	the	group	level	(Traulsen	2006).
The	reason	why	we	employ	that	mechanism	is	because	we	aim	at	making	stages	of	evolution	multiple	and	inducing	its	diversity.

1.5 Employing	this	constructed	model,	we	examine	how	changes	in	the	structure	of	network	(topology)	expressing	relationships	of	groups
affect	mutual	cooperation.	As	a	result,	we	cannot	find	any	difference	between	the	cases	of	network	with	probabilistic	perturbation.	On
the	contrary,	when	the	network	has	the	scale-free	structure,	mutual	cooperation	can	be	enhanced	as	well	as	the	results	of	the	best
decision	(Santos	2005;	Santos	2006;	Perc	2008;	Santos	2008).	Investigating	the	case	of	the	scale-free	structure	in	more	detailed,	the
increase	in	the	number	of	groups	and	the	variation	in	the	density	of	relationships	do	not	produce	any	changes.	On	the	other	hand,
when	the	length	of	strategy	of	each	group	gets	large,	mutual	cooperation	cannot	be	easily	settled	in	comparison	with	the	results	of
other	parameters.	This	trend	is	similar	to	the	one	of	the	two	groups	model	(Ohdaira	2009).	In	addition,	when	we	examine	how	every
group	evolves	his/her	strategy,	it	is	proved	that	groups	with	quite	many	relationships	(hub	groups)	determine	the	direction	of	decision
as	a	whole	and	also	promote	the	decision	of	groups	after	the	settlement	of	the	direction.	This	role	emerges	without	explicit
assignment.

1.6 We	will	note	descriptions	in	the	following	order.	First,	we	briefly	explain	the	PDG	with	sequential	strategy	of	the	Ohdaira's	model.	Next,
the	detail	of	the	constructed	model	and	the	obtained	results	are	exhibited.	Then,	we	discuss	both	the	results	and	the	applicability	of	the
presented	model.	We	explain	how	the	presented	model	is	analogous	to	the	real	situation	by	illustrating	the	problem	of	collusive
tendering.	Finally,	we	will	state	concluding	remarks.

	The	Model

Brief	description	of	the	PDG	with	sequential	strategy

2.1 The	studies	of	the	PDG	generally	adopt	the	framework	that	strategies	do	not	transform	themselves,	i.e.,	each	player	mutually	refers	to
some	pre-prepared	strategies,	and	selects	one	strategy	that	is	considered	to	be	the	most	successful.	Especially,	the	studies	of	the
iterated	PDG	designate	strategy	as	response	to	past	actions	of	others.	Therefore,	many	researches	focus	the	point,	what	strategy
within	those	prepared	is	the	most	increased	and	utilized	by	players,	i.e.,	what	the	most	successful	strategy	is.

2.2 In	this	research,	contrarily	we	adopt	policy	of	not	introducing	the	framework	with	explicit	reference	to	other	information.	Each	player
can	only	recognize	strategies	of	opponents	as	the	form	of	resulting	average	payoff,	i.e.,	he/she	cannot	obtain	the	perfect	information
of	other	strategies.	Furthermore,	we	adopt	the	PDG	with	sequential	strategy	of	Ohdaira	et	al.	(Ohdaira	2006;	Ohdaira	2007;	Ohdaira
2009;	Ohdaira	2011)	where	strategy	describes	multiple	choices	(ex.	CCDDD,	also	see	equation	(1))	rather	than	the	typical	PDG.	Note
that	Ohdaira's	studies	except	(Ohdaira	2009)	utilize	other	types	of	decision,	however	the	framework	of	the	game	is	all	the	same.	We
refer	to	“strategy”	as	not	the	patterns	of	reaction	(ex.	TFT,	AllD,	AllC)	but	the	sequential	array	itself	for	the	PDG	with	sequential
strategy	as	noted	below.

2.3 We	describe	the	basic	feature	of	the	PDG	with	sequential	strategy	of	two	groups	(Ohdaira	2007;	Ohdaira	2009;	Ohdaira	2011)	as
follows	(also	see	Figure	1).	There	are	two	different	groups	which	have	n	strategies	respectively.	Strategies	of	each	group	have	an	ID
u	(from	1	to	n).	The	strategy	regulates	behavior	of	group	in	each	bout	of	PDG.	All	strategies	are	initialized	as	random	sequences.	We
can	express	every	strategy	of	the	group	i,	i.e.,	Si	(u)as	a	sequential	array	whose	length	is	L	as	the	equation	(1).	Each	character
represents	strategy	of	one	bout	(	D:	Defection,	C:	Cooperation).	Where	D	or	C	means	the	component	vector,	we	express	it	as	(0,	1)	or
(1,	0).

(1)

2.4 Each	group	plays	the	match	of	n	rounds	with	the	other	group	utilizing	his/her	strategy.	At	this	time,	he/she	mutually	presents	his/her
holding	strategy	in	turn.	This	order	shall	be	loyal	to	each	number	of	strategies	(	u)	as	Figure	1.	However,	strategies	with	the	same	ID
are	not	similar	because	they	independently	change	according	to	the	decision	of	every	group.	After	each	round,	every	group	first
recognizes	payoff	of	his/her	presented	strategy.
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Figure	1.	Outline	of	the	PDG	with	sequential	strategy

2.5 We	can	numerically	express	each	payoff	of	strategy	of	the	group	i	at	the	generation	g	with	the	equation	(2).	The	u	-th	strategy	of	the
group	i	has	its	payoff	pij	(u)against	the	group	j.	In	that	equation,	A	designates	the	payoff	matrix	of	the	standard	iterated	PDG	(Axelrod

1984),	and	where	αik(u)	and	αjk(u)	each	show	the	element	of	strategy	of	the	equation	(1).	The	reason	why	we	employ	this	payoff
matrix	is	because	the	PDG	with	sequential	strategy	makes	u	times	of	rounds	in	a	match,	and	is	similar	to	the	mechanism	of	the
iterated	PDG	as	well.	He/She	can	determine	the	trend	of	proposed	strategies	of	others	from	each	resulting	payoff.	This	information	is
reflected	in	the	match	of	next	generation.

(2)

2.6 After	the	match	composed	of	n	rounds,	each	group	makes	his/her	decision.	In	the	decision-making	process,	he/she	decides	his/her
one	representative	strategy	at	first.	He/She	partially	transfers	the	selected	representative	strategy	to	other	strategies	in	turn,	and
produces	strategies	of	next	generation.	The	representative	strategy	itself	does	not	change	except	the	mutation,	where	every	character
of	strategies	is	reversed	with	uniform	probability	(1/1000).	This	process	is	referred	to	as	the	evolutionary	process	(also	illustrated	in
Figure	2).	Through	the	decision-making	and	the	evolutionary	process,	each	group	newly	generates	n	strategies,	and	goes	into	the
match	of	n	rounds	for	next	generation.	We	repeat	above	procedure	from	the	match	to	the	evolutionary	process	over	several
generations.	The	basic	PDG	with	sequential	strategy	particularly	discusses	the	frequency	of	mutual	cooperation	at	the	last	generation.
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Figure	2.	Illustration	of	the	evolutionary	process

2.7 The	reason	for	the	modification	of	mutation	probability	from	the	Ohdaira's	model	is	as	follows.	Previous	study	(Ohdaira	2009)	shows
that	the	frequency	of	mutual	cooperation	decreases	when	the	number	of	strategies	(	n)	or	the	length	of	strategy	(	L)	increases.	This
phenomenon	is	derived	from	the	fact	that	the	evolutionary	process	becomes	less	effective	in	such	situations.	Those	values	(	n	and	L)
are	basically	not	so	large	in	this	study,	while	the	number	of	opponent	groups	increases	a	lot	(2	to	8	groups).	It	is	a	common	notion	that
mutual	cooperation	is	not	easily	settled	when	the	number	of	opponents	enlarging	(Duran	2005,	Chen	2007).	Therefore,	we	determine
that	it	is	necessary	for	more	effective	evolution	of	cooperation	to	raise	the	value	of	mutation	probability.

The	second-best	decision

2.8 Next,	we	describe	the	detail	of	the	second-best	decision.	We	think	that	the	second-best	decision	is	most	appropriate	for	reproducing
the	decision	with	compromise.	In	this	section,	first	we	show	that	previous	studies	have	proposed	some	approaches	to	avoid
undesirable	situation	(Nash	equilibrium)	in	the	PDG	with	the	best	decision.	Second,	we	denote	that	there	are	some	cases	where
former	researches	with	the	best	decision	cannot	explain	well.	Finally,	we	propose	the	second-best	decision	as	more	practical	one	for
the	expression	of	compromise.

2.9 As	noted	in	the	introduction,	while	there	are	some	differences	of	whether	rationality	is	perfect	or	bounded,	the	study	of	economics	or
optimization	problems	generally	assumes	reactions	of	humans	as	the	best	decision.	This	is	because	most	researchers	intend	to
examine	why	cooperation	emerges	and	develops	under	the	best	decision.	Naturally,	when	all	players	make	their	best	decision,	they
reach	the	state	where	all	players	defect	one	another	in	the	PDG.	This	situation	is	referred	to	as	“Nash	equilibrium”,	and	is	undesirable
because	they	have	a	chance	to	get	higher	payoff.	Therefore,	with	the	best	decision,	mutual	cooperation	would	not	develop	without
additional	factor	which	controls	either	the	range	of	interaction	or	the	decision	of	player.

2.10 The	factors	to	escape	from	Nash	equilibrium	are	tag	method	(Riolo	1997;	Hales	2000;	Riolo	2001),	network	reciprocity	(spatial
structure)	(Nowak	1992;	Cao	1999;	Abramson	2001;	Ahmed	2002;	Kim	2002;	Holme	2003;	Duran	2005;	Vukov	2005;	Cassar	2007),
indirect	reciprocity	(Nowak	1998a;	Nowak	1998b;	Panchanathan	2003;	Panchanathan	2004;	Nowak	2005;	Ohtsuki	2009)	for	pairwise
interactions	and	costly	punishment	(Fehr	2002;	Fowler	2005;	Herrmann	2008;	O'Gorman	2009;	Rankin	2009)	for	group	interactions.
Tag	method	means	that	every	player	can	distinguish	each	other	by	utilizing	his/her	identifier.	A	player	can	refer	to	the	tag	of	another
player	and	know	whether	he/she	is	cooperative	or	not.	Network	reciprocity	defines	neighborhood	connection	around	players.	In	that
configuration,	players	interact	only	with	those	who	are	directly	connected.	The	idea	of	indirect	reciprocity	presupposes	that	every
player	wants	to	raise	his/her	reputation.	Free	riders	(players	who	receive	social	property	without	any	costs)	cannot	prevail	because
they	have	no	chance	to	raise	their	status.	The	costly	punishment	means	that	players	pay	certain	cost	to	punish	free	riders,	which
enables	players	to	build	mutual	trust.	This	is	suitable	to	describe	advanced	modern	society	with	the	establishment	of	law	government.

2.11 Among	those	factors,	indirect	reciprocity	seems	to	be	successful	at	the	present	moment.	However,	even	the	system	of	indirect
reciprocity	cannot	achieve	cooperation	without	the	following	conditions.	First,	when	every	player	is	randomly	paired,	players	to
contribute	to	society	(altruist)	increase	only	when	their	initial	frequency	is	above	the	threshold.	Second,	altruists	should	be	designed	to
interact	with	cooperators	rather	than	defectors.	Therefore,	altruists	are	necessary	to	identify	whether	others	are	altruistic	or	not	by
evaluating	opponent	reputation.	Thus,	as	indirect	reciprocity	really	requires	various	conditions	for	establishing	cooperation,	it	is	not
appropriate	for	all	practical	situations.

2.12 For	example,	humans	occasionally	throw	away	the	best	choice,	and	adopt	the	second-best	one	to	keep	good	relationships.	In	actual
negotiations,	settlement	in	purely	rational	solution	is	rare.	Agreement	is	more	likely	to	involve	compromise.	In	addition,	it	is	obvious
that	not	reasonable	decision	of	tendering	companies	causes	the	collusive	tendering.	This	is	because	if	they	are	fully	rational,	the	ideal
situation	of	mutually	presenting	higher	values	should	appear	and	then	the	collusive	tendering	will	not	occur.	Thus,	the	necessity	for	the
research	of	non-optimal	response	has	been	gradually	recognized.	Here,	we	should	note	that	the	model	with	above	each	factor	is	not
appropriate	for	the	expression	of	decision	with	compromise.	Considering	those	backgrounds,	the	recent	theoretical	researches	are
likely	to	adopt	except	the	best	decision,	i.e.,	the	altruistic	decision	(Ohdaira	2006;	Ohdaira	2007)	or	the	second-best	decision	(Rietveld
2007;	Boergers	2009;	Ohdaira	2009).	They	compare	those	non-optimal	responses	with	the	optimal	one	and	also	investigate	each
property.	It	has	emerged	as	a	new	trend	for	the	study	regarding	social	conflicts.

2.13 In	our	research,	considering	that	trend,	we	introduce	the	second-best	decision	(Ohdaira	2009)	(see	Figure	3).	The	actual	procedure	of
the	second-best	decision	is	as	follows.	If	one	group	adopts	the	second-best	decision,	it	always	selects	the	strategy	of	the	second
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grade	as	its	representative	strategy	for	the	evolutionary	process.	If	all	strategies	have	the	same	grade,	one	strategy	is	arbitrarily
chosen	as	the	representative.	Note	that	the	altruistic	decision	(Ohdaira	2006;	Ohdaira	2007)	is	also	the	decision	with	compromise,	and
has	the	concept	that	every	group	makes	his/her	decision	without	bias	excluding	the	highest	payoff	strategy.	That	is,	he/she	arbitrarily
selects	his/her	representative	strategy	from	the	second	to	the	bottom	grade	(see	Figure	4).	This	is	suitable	for	the	expression	of	very
strong	collusion,	but	is	not	the	decision	to	attempt	to	make	some	profit.	On	the	other	hand,	the	second-best	decision	is	aimed	at
earning	profits	with	certain	amount	of	compromise.	Therefore,	we	can	denote	that	the	second-best	decision	is	more	practical	than	the
altruistic	decision	in	the	point	of	the	extent	of	compromise.

Figure	3.	Comparison	between	the	best	(optimal)	decision	and	the	second-best	decision
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Figure	4.	Comparison	between	the	altruistic	decision	and	the	second-best	decision

Detail	of	the	model

2.14 Above	description	is	mainly	the	explanation	for	the	PDG	with	sequential	strategy	between	two	groups.	We	extend	the	match	of	two
groups	to	spatial	game	in	this	research.	Each	group	located	in	every	node	of	network	plays	matches	against	opponent	groups	in	turn.
Because	every	group	does	not	play	against	all	other	groups,	he/she	cannot	recognize	how	the	decision	is	collectively	made.	However,
through	matches	with	directly	related	opponents,	it	is	possible	to	grasp	the	population	trends	indirectly	with	time	difference.

2.15 In	the	first	place,	we	detail	the	spatial	extension	of	the	PDG	with	sequential	strategy	as	follows	(also	see	Figure	5).	First,	we	build	two-
dimensional	network	with	N	nodes	that	is	referred	to	as	β	graph	or	locally	connected	ring	(Watts	1998;	Watts	1999),	and	assign	one
group	to	each	node.	The	number	of	strategies	of	each	group	equals	n,	and	the	length	of	strategy	is	L	corresponding	to	the	number	of
bouts.	We	denote	the	average	connectivity	as	C_avg,	which	is	usually	referred	to	as	the	average	degree	in	the	research	of	spatial
network.	The	structure	of	the	group	is	the	same	as	the	two-group	model.

2.16 We	describe	the	framework	of	the	spatial	PDG	with	sequential	strategy	in	the	following.	Taking	Figure	5	as	the	example,	at	first	the
group	1	plays	the	PDG	with	sequential	strategy	against	the	group	2,	3,	9	and	10.	In	all	matches,	they	mutually	utilize	each	no.1	(	u	=1)
strategy.	Then,	the	group	2	plays	the	game	against	the	group	3,	4,	10	and	1	utilizing	each	strategy	of	u	=1.	Other	groups	play	the
game	as	well.	In	the	following	rounds,	every	group	utilizes	the	no.2,	3,	…	,n	strategy	in	turn.
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Figure	5.	Demonstration	of	the	spatial	PDG	with	sequential	strategy	for	regular,	N=10,	Average	Connectivity	(	C_avg)	is	4

2.17 The	types	of	topology	of	network	showing	relationships	of	groups	are	as	follows;	the	regular,	the	random	and	the	scale-free.	The	idea
regarding	the	randomness	of	network	is	based	on	the	Watts'	study	(Watts	1998;	Watts	1999).	That	is,	the	randomness	is	given	by	the
probability	P.	If	P	equals	0,	we	can	classify	the	network	as	the	regular.	As	P	increases,	the	disorder	of	network	gets	larger.	When	P
reaches	to	1.0,	the	structure	of	network	becomes	completely	random	(the	random	network).	Therefore,	the	probability	P	means	how
the	network	rewires	every	edge	in	comparison	with	the	regular,	i.e.,	all	groups	change	their	connections	to	others	with	the	probability	P
from	the	state	of	order	(see	Figure	6	above,	P=1.0,	N=50,	C_avg=8).

2.18 The	construction	of	the	scale-free	network	follows	to	the	procedure	of	the	BA	model	(Barabasi	1999).	We	can	generate	a	theoretical
model	of	the	scale-free	network	employing	following	two	processes,	i.e.,	growth	and	preferential	attachment.	For	the	growth,	initially
we	prepare	m0number	of	nodes,	and	then	continuously	add	one	node	with	m	(≤	m0)	number	of	edges	to	the	network.	Note	that	this
process	of	new	connections	does	not	duplicate	existing	edges.	The	preferential	attachment	means	that	this	new	connection	is	based
on	the	probability	corresponding	to	each	connectivity	of	existing	nodes.	We	can	express	this	probability	Π(ki)	that	newly	added	node
connects	to	the	node	i	with	connectivity	ki	as	the	following	equation	(3).	Thus,	this	method	aims	at	modelling	continuously	growing
network.	However,	in	our	study,	for	the	comparison	with	the	regular	and	the	random,	the	growth	halts	when	the	number	of	all	nodes
reaches	N	(in	the	case	of	N	=50	and	C_avg=8,	m0=9	and	m=4,	also	see	Figure	6	below).

(3)
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Figure	6.	Demonstration	of	constructed	networks	of	N=50,	C_avg=8.	The	above	figure	shows	the	case	of	the	random,	and	the	below
exhibits	the	scale-free	structure.	We	also	designate	each	property	of	networks	in	the	right	graph,	i.e.,	degree	distribution,	average

degree	(	C_avg),	SD	of	degree,	characteristic	path	length	(	CPL)	and	clustering	coefficient	(	CC)

2.19 As	noted	before,	groups	who	have	direct	connections	with	edges	mutually	play	games.	When	specifically	expressed,	in	the	u	-th
round	all	groups	face	others	with	relationships	utilizing	their	u	-th	strategies.	The	rounds	are	the	first,	second,	third...	and	then	the	n	-th
is	the	last	round.	Every	group	plays	against	all	neighborhoods	and	at	the	end	actualizes	utilizing	all	resulting	values	of	payoff.	We	can
numerically	express	the	averaged	payoff	of	each	strategy	of	the	group	i,	i.e.,	Pij	(u)	at	the	generation	g	with	the	equation	(4)	utilizing
the	equations	(1)	and	(2).	The	number	of	edges	of	the	group	i	is	Ei	and	the	collection	of	his/her	opponent	groups	is	Oi.	This	averaged
payoff	of	the	strategy	is	first	brought	to	the	group	in	the	end	of	round	against	all	neighborhoods.	Until	then,	each	group	cannot	know
the	payoff	of	his/her	strategy.	Note	that	the	Pij	(u)	is	rounded	off	to	the	first	decimal	place	and	then	saved	as	an	integer	value	in	the
program	code.

(4)

2.20 After	whole	groups	finish	their	all	matches	of	the	PDG	with	sequential	strategy,	they	separately	make	the	decision,	i.e.,	select	their
representative	strategies.	As	described	before,	in	the	PDG	with	sequential	strategy,	different	from	the	iterated	PDG,	every	group	does
not	explicitly	refer	to	past	strategies	of	others.	However,	each	group	can	recognize	the	direction	of	others	as	the	informed	payoff,	and
it	is	certainly	reflected	in	the	decision.	All	groups	somewhat	restrain	their	desire	to	get	higher	payoff	and	decide	their	representative
strategies	with	the	second-best	decision.	Then,	each	group	generates	new	n	strategies	of	next	generation.	We	refer	to	both	the
decision	and	the	evolution	of	strategy	as	the	evolutionary	process	again.	Through	the	evolutionary	process,	all	groups	update	their
strategies	and	are	ready	for	matches	of	next	generation.	We	define	a	set	of	procedures	followed	by	the	match,	the	decision	and	the
evolutionary	process	as	one	generation.	Then,	to	grasp	general	characteristics	of	system,	one	simulation	lasts	until	the	number	of
generations	reaches	to	1,000.	All	results	exhibited	later	are	the	average	from	30	runs	of	simulation.
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	Results

3.1 We	first	determine	whether	the	second-best	decision	actually	establishes	cooperation	between	groups.	In	addition,	it	is	examined	how
changes	in	the	structure	of	network	(topology)	affect	every	average	frequency	of	mutual	defection	and	cooperation	between	groups.
As	noted	in	the	detail	of	the	model,	our	study	adopts	three	different	types	of	topology,	which	are	the	regular,	the	random	and	the	scale-
free.	For	the	following	descriptions,	firstly	we	define	the	original	parameters	as	(	C_avg=8,	n=8,	L=10,	N=50),	and	will	compare	results
of	other	parameters	with	this	original	case.	Every	average	frequency	of	all	figures	shows	the	average	times	of	mutual	defection	or
cooperation	regarding	all	groups.	We	can	also	find	each	average	rate	of	mutual	defection	or	cooperation	by	dividing	those	frequencies
with	the	length	of	the	strategy	L.

3.2 Figure	7	shows	the	results	of	simulation	up	to	1,000	generations	with	original	parameters.	We	can	see	from	the	results	that	the
average	frequency	of	mutual	defection	is	roughly	low	(a)	and	every	system	reaches	to	highly	cooperative	state	at	the	last	generation	in
all	types	of	topology	(b).	Contemplating	the	results,	there	seems	no	apparent	difference	among	the	regular,	the	random	and	the	scale-
free.	However,	in	the	scale-free,	the	average	frequency	of	mutual	cooperation	in	intermediate	generations	is	a	little	larger	than	other
cases.	For	example,	investigating	each	average	frequency	of	mutual	cooperation	from	300	to	400	generations,	that	value	for	the
regular	is	6.68±0.098	and	that	for	the	random	is	6.69±0.094,	while	that	of	the	scale-free	exhibits	6.78±0.085.	Therefore,	we	cannot
state	that	there	is	a	significant	difference	in	each	value;	however,	certainly	the	value	of	the	scale-free	is	slightly	higher	than	others.
Interestingly,	in	all	cases,	the	average	frequency	of	mutual	defection	becomes	beyond	the	average	frequency	of	mutual	cooperation	at
initial	(until	50)	generations.	However,	the	average	frequency	of	mutual	cooperation	increases	shortly	and	then	exceeds	the	average
frequency	of	mutual	defection.
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Figure	7.	This	figure	shows	the	dependence	of	the	average	frequency	of	mutual	defection	(a)	and	cooperation	(b)	on	three	types	of
topology

3.3 Why	that	phenomenon	happens	can	be	explained	as	follows.	First,	in	initial	generations,	strategies	of	each	group	are	not	so	uniform.
And	because	the	second-best	decision	includes	the	pursuit	of	some	profit,	the	average	frequency	of	mutual	defection	temporarily
increases.	As	the	generation	proceeds,	similarity	between	strategies	of	groups	progresses	through	the	evolutionary	process.	By	this
mechanism,	the	second-best	decision	gradually	works	well,	and	the	average	frequency	of	mutual	cooperation	starts	to	increase
because	all	groups	do	not	pursue	their	immediate	interests.

3.4 To	indicate	that	this	explanation	is	correct,	we	proceed	to	further	examination.	We	employ	both	the	regular	and	the	scale-free	for	this
theme.	We	perform	the	experiment	introducing	following	five	types	of	parameters:

1.	 The	original	parameters	shown	above	(	C_avg=8,	n=8,	L=10,	N=50),
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2.	 only	the	average	connectivity	is	half	(	C_avg=4),
3.	 only	the	number	of	strategy	is	half	(	n=4),
4.	 only	the	length	of	strategy	is	enlarged	three	times	(	L=30)	and
5.	 only	the	number	of	groups	is	enlarged	four	times	(	N=200).

Then,	we	obtain	Figure	8	as	the	result	of	this	experiment.	Contemplating	the	result,	there	is	very	little	change	regarding	the	case	of
N=200	for	each	types	of	topology.	We	observe	not	significant	but	a	little	change	(slightly	higher	than	the	original	case)	when	the
average	connectivity	is	half	(	C_avg=4).	This	characteristic	follows	a	common	knowledge	that	cooperation	is	easy	to	be	settled	when
the	number	of	opponents	decreases	as	noted	in	the	description	regarding	the	modification	of	mutation	probability.	From	those	results,
we	can	state	that	the	scale	of	network	does	not	affect	the	construction	of	cooperation,	and	that	the	second-best	decision	universally
facilitates	cooperation.	Note	again	that	the	average	rate	of	mutual	defection	and	cooperation	can	be	found	by	dividing	each	average
frequency	with	L.
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Figure	8.	Every	average	frequency	of	mutual	cooperation	regarding	five	different	parameters	in	the	regular	(a)	and	the	scale-free	(b)

3.5 On	the	other	hand,	in	the	case	of	L=30,	the	evolution	of	cooperation	is	slower	than	all	cases	(Original,	C_avg=4,	n=4	and	N=200)	in
both	the	regular	and	the	scale-free.	This	trend	is	the	same	as	the	former	study	(Ohdaira	2009),	which	shows	that	the	decline	of	mutual
cooperation	occurs	when	the	strategy	lengthens.	Here,	we	should	note	that	the	average	rate	of	mutual	cooperation	regarding	the	scale-
free	is	higher	than	that	of	the	regular	in	intermediate	generations.	The	difference	is	significant	with	the	level	of	0.05	as	shown	in	Figure
8.	Therefore,	we	can	state	that	the	facilitative	effect	of	the	scale-free	structure	on	mutual	cooperation	works	better	in	long	length	of
strategy.

3.6 In	addition,	when	halving	the	number	of	strategies	(	n=4),	we	seldom	see	both	the	decline	of	mutual	cooperation	and	the	increase	of
mutual	defection	in	early	generations	for	each	topology.	Because	the	fewer	number	of	strategies	reduces	variations	of	strategies	and
increases	similarity,	suppressive	effect	of	the	second-best	decision	for	near	future	profit	works	well	from	initial	generations.	That	is,	the
increase	in	similarity	between	strategies	effectively	facilitates	cooperation.	This	result	shows	the	validity	of	the	former	explanation.

3.7 However,	looking	carefully	at	Figure	8	again,	we	can	see	that	the	average	frequency	of	mutual	cooperation	of	the	case	of	n=4	in	the
last	generation	is	lower	in	comparison	with	the	original	value.	Moreover,	that	difference	is	significant.	This	is	because	similarity
between	strategies	works	in	reverse.	When	the	system	reaches	around	the	last	generation,	strategies	of	each	group	are	nearly
identical.	The	evolutionary	process	effectively	rewrites	strategies	at	this	stage	when	groups	have	many	strategies	since	they	are	not
completely	the	same.	While	in	case	with	small	number	of	strategies,	similarity	between	strategies	of	groups	increases	and	also
strategies	change	little	through	the	evolutionary	process.	Then,	in	the	case	of	small	n,	the	evolution	of	strategies	around	the	last
generation	generally	depends	on	the	mutation	of	very	low	probability.	Therefore,	the	system	having	small	n	leads	to	the	slow	evolution
of	cooperation.	Note	that	even	in	above	two	cases	(	L=30	and	n=4)	whole	groups	eventually	converge	into	the	state	of	almost
complete	cooperation	when	the	number	of	generations	is	tripled	(i.e.	from	1,000	to	3,000).

	Discussion

Time	series	fluctuation	of	each	frequency	(with	the	original	structure	of	scale-free)

4.1 From	above	results,	we	have	thought	that	it	is	necessary	to	determine	how	each	group	varies	every	average	frequency	of	mutual
defection	and	cooperation	in	time	series	especially	in	the	case	of	the	scale-free.	By	investigating	this,	we	can	find	whether	all	groups
accordantly	vary	every	frequency	or	there	are	some	groups	which	behave	differently	from	the	whole.	This	investigation	employs	the
following	parameters	(	C_avg=8,	n=8,	L=30,	N=50),	which	the	difference	between	the	regular	and	the	scale-free	in	facilitation	of
cooperation	emerges	as	shown	in	Figure	8.	In	the	actual	experiment,	we	first	extract	some	groups	according	to	their	connectivity,	and
construct	two	parties.	Then,	we	probe	each	average	frequency	of	mutual	defection	(D)	and	cooperation	(C)	between	every	party.	The
classification	of	parties	is	as	follows;	1:	groups	with	the	smallest	number	of	edges	(D_Min,	C_Min),	2:	groups	with	the	largest	number
of	edges	(D_Max,	C_Max).	Certainly,	in	addition	to	those,	we	also	exhibit	the	behavior	of	every	average	frequency	of	all	groups	(D_All,
C_All).

4.2 We	show	the	result	of	this	investigation	in	Figure	9.	This	figure	is	extracted	four	simulation	runs	of	all	30	times	within	initial	(up	to	100)
generations.	The	reason	why	not	finding	the	average	of	all	simulation	runs	is	because	it	causes	the	difficulty	in	determining	the
difference	of	every	frequency	between	parties.	That	is	derived	from	the	fact	that	the	evolution	of	strategy	is	quite	different	between
each	simulation	run	because	strategies	of	the	first	generation	are	always	randomly	initialized.	Contemplating	the	result,	as	the	overall
trend,	groups	with	the	minimum	connectivity	gradually	reduce	the	average	frequency	of	mutual	defection.	On	the	other	hand,	those
groups	steadily	increase	the	average	frequency	of	mutual	cooperation.	Also,	D_Min	and	C_Min	are	nearly	equal	to	D_All	and	C_All
respectively	due	to	the	property	of	the	scale-free	structure	(i.e.	the	number	of	groups	with	the	minimum	connectivity	is	quite	large).	As
the	evolutionary	process	increases	similarity	between	strategies	of	groups,	D_Min	and	D_All	decrease	after	initial	generations,	while
C_Min	and	C_All	increase	as	noted	in	the	description	of	Figure	8.
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Figure	9a	-	d.	Each	average	frequency	regarding	3	categorized	parties	of	groups	in	the	scale-free	network	with	following	parameters
(	C_avg=8,	n=8,	L=30,	N=50)

4.3 However,	interestingly,	groups	with	the	maximum	connectivity	indicate	the	different	behaviour	from	all	other	groups.	Those	groups	of
maximum	connectivity	basically	do	not	move	in	conjunction	with	all	population,	and	show	no	change	until	they	experience	some
generations,	which	is	especially	observed	in	the	simulation	no.9	(9d).	As	remarkably	seen	in	no.1	(9a)	and	8	(9c)	simulations,	groups
with	the	maximum	connectivity	rapidly	increase	C_Max	and	contrarily	reduce	D_Max	when	the	difference	between	values	of	C_All	and
D_All	becomes	near	2.	Looking	at	those	trends,	groups	with	the	maximum	connectivity	are	likely	to	play	a	role	figuring	out	which
direction	the	entire	population	evolves	to	(either	defection	or	cooperation).	Groups	of	the	maximum	connectivity	do	not	change	their
frequency	any	more	until	the	system	decides	the	direction	of	evolution.	However,	considering	that	they	rapidly	change	their	frequency
once	the	system	determines	the	direction,	we	can	state	that	they	supervise	the	settlement	of	decision	among	most	groups.

Discussion	on	the	analogy	between	the	presented	model	and	the	actual	tendering

4.4 In	this	section,	we	discuss	the	issue	that	the	presented	model	is	analogous	to	what	phenomenon	in	the	real	world.	Our	research
proposes	that	humans	actually	do	not	make	the	best	decision	in	all	cases	and	there	are	some	situations	of	employing	the	second-best
decision.	Then,	we	utilize	the	PDG	with	sequential	strategy	rather	than	the	iterated	PDG	and	extend	it	from	the	match	limited	in	two
groups	to	multiple	matches	with	many	groups.	In	the	following	descriptions,	we	state	that	this	extended	spatial	PDG	with	sequential
strategy	is	analogous	to	the	tendering	recently	dispensed	in	Japan.	We	explain	our	notice	regarding	that	issue.

4.5 We	think	that	the	bid-rigging	problem	is	derived	from	the	situation	that	tendering	companies	try	to	secure	their	profit,	rather	than
radically	compete	with	each	other.	The	decision	of	tendering	companies	generally	has	some	compromise	than	the	best	decision.
Therefore,	we	can	interpret	collusive	tendering	as	mutual	cooperation	with	those	companies	with	the	second-best	decision.	As	you
may	know,	researchers	have	already	attempted	theoretically	to	approach	the	mechanism	resulting	in	collusive	tendering	utilizing
auction	theory	(Graham	1987;	McAfee	1992),	game	theory	(Tanimoto	2003)	and	experimental	economics	(Saijo	1996).	However,
there	have	been	no	former	studies	taking	the	sentiment	of	tendering	companies	with	compromise	into	account.

4.6 Here,	firstly	we	create	the	abstracted	tendering	game	based	on	the	actual	tendering	in	Japan	when	the	government	dispenses	the
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tendering	to	sell	its	asset.	In	the	basic	configuration	of	that	tendering,	bidders	individually	present	their	propositions	for	multiple
tendering	properties	in	single	bid.	Considering	the	estimated	market	price	for	each	subject	(Price	of	assumption:	a),	bidders	can
present	similar	amount	which	seems	to	be	profitable	and	their	opponents	probably	submit	as	well	(Price	of	safety:	s).	They	can	also
strategically	present	higher	amount	(Price	of	challenge:	c)	than	others.	When	we	regard	to	present	higher	amount	as	“strategically
outwitting	opponent	(Defection)”	and	also	to	present	expected	similar	amount	to	others	as	“proposing	the	same	amount	as	opponent
(Cooperation)”,	we	can	simplify	the	tendering	strategies	and	treat	the	tendering	as	a	game	for	the	2×2	payoff	matrix	(see	Figure	10
and	Table	1).

Figure	10.	Illustration	regarding	the	practice	of	the	tendering	game

4.7 Payoff	of	this	game	is	given	in	the	following	way	(also	see	Table	1).	When	a	bidder	can	outwit	his/her	opponent	unilaterally,	he/she
gains	the	highest	payoff	because	of	the	expected	acquisition	of	the	property.	In	this	case,	he/she	has	additional	points	ε	for	the
successful	challenge,	and	then	his/her	payoff	will	be	a-c+	ε.	In	the	case	of	the	same	choice	of	each	other,	either	he/she	or	the	other
has	the	property	with	equal	probability.	In	this	situation,	by	presenting	strategic	price,	ε	is	imposed	as	a	penalty	when	it	failed.	Thus,
presenting	similar	amount	of	the	other	is	preferable	because	of	low	loss.	When	he/she	is	completely	outwitted,	his/her	payoff	is	zero
and	he/she	cannot	get	anything.	As	there	are	several	properties	for	tendering,	his/her	actual	payoff	is	finally	for	the	sum	of	the
individual	payoff	of	each	property.	Taking	Figure	10	as	the	example,	the	payoff	of	the	proposition	(=strategy)	for	the	opponent	can	be
found	as	follows:(a-c+ε)+0+{(a-c)/2-ε}=(a-c)/2.	When	we	set	those	parameters(a,	c,	s,	ε)=(10,	6,	4,	1),	the	payoff	matrix	is	completely
the	same	as	A	in	the	equation	(2)	and	we	can	employ	the	knowledge	of	this	study	for	the	analogy	to	the	real	tendering.	Note	that	it	is
essential	for	reproducing	this	specific	situation	that	bidders	set	values	to	various	properties	of	tendering	at	once.	Therefore,	it	is
impossible	to	employ	the	framework	of	general	iterated	PDG	because	it	cannot	treat	multiple	times	of	decisions	at	one	match.
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Table	1.	Payoff	matrix	of	the	tendering	game

4.8 Secondly,	utilizing	the	presented	model,	we	represent	groups	as	bidders	(business	companies)	on	each	node	of	two-dimensional
network	of	relationships.	Bidders	play	matches	between	bidders	who	are	directly	related	only.	Each	bidder	presents	different
strategies	for	n	rounds	(corresponding	to	the	number	of	strategies	n),	and	knows	every	average	payoff	in	the	end	of	round	against	all
neighborhoods.	Matches	between	groups	of	relationships	can	be	recognized	as	channeling	intent	of	groups	because	they	can	acquire
some	information	from	matches	as	resulting	averaged	payoff	of	each	strategy.	We	can	assume	the	above	scenario	as	the	framework
that	bidders	can	repeatedly	submit	their	tendering	propositions	in	fixed	terms	like	the	internet	auctions.	His/Her	strategy	contains
values	for	each	property	(the	L	number	of	tendering	properties,	corresponding	to	multiple	choices	of	D	or	C	regarding	each	bout).	They
make	the	second-best	decision	after	finishing	all	matches.	In	this	framework	of	tendering,	as	the	government	conducting	the	tendering
intends	to	sell	its	asset	with	making	much	more	profit,	it	wishes	for	the	situation	where	bidders	mutually	propose	higher	amounts	for	all
L	number	of	tendering	properties	(which	corresponds	to	the	situation	of	mutual	defection	in	L	times	for	the	PDG	with	sequential
strategy).

4.9 However,	in	the	reverse	of	what	the	government	expects,	bidders	eventually	reach	the	state	of	collusion,	i.e.,	high	level	mutual
cooperation	as	shown	in	the	previous	result	(see	Figure	7).	Construction	of	this	state	is	hardly	affected	by	the	topology	of	network.	On
the	other	hand,	relationships	of	the	scale-free	structure	effectively	enhance	collusion	when	the	number	of	tendering	properties	(=	the
length	of	strategy,	L)	is	large.	The	increase	of	similarity	between	strategies	(decrease	in	the	number	of	strategies	n)	also	has	an	effect
on	the	promotion	of	collusion	in	early	generations	(see	Figure	8).	However,	it	induces	slow	evolution	of	collusion	because	of	that
similarity	as	well.

Comparison	to	existing	studies	of	spatial	game	and	collusion

4.10 In	this	section,	we	describe	the	position	of	our	work	in	comparison	with	previous	studies	based	on	physics	and	theoretical	works	of
collusion.	We	first	compare	the	findings	obtained	in	past	researches	on	spatial	game	with	the	results	of	our	study.	Generally	in	the
case	of	multiple	opponent	groups,	relationships	of	groups	are	usually	defined	by	two-dimensional	network	(Nowak	1992;	Cao	1999;
Abramson	2001;	Ahmed	2002;	Kim	2002;	Holme	2003;	Duran	2005;	Santos	2005;	Vukov	2005;	Santos	2006;	Ohdaira	2006;	Cassar
2007;	Perc	2008;	Santos	2008)	like	our	study.	It	has	been	previously	revealed	that	the	difference	in	the	density	and	topology	regarding
the	network	affects	the	existence	ratio	of	non-cooperative	player	(Abramson	2001),	and	the	small-world	relationships	of	groups
achieve	cooperation	most	rapid	(Masuda	2003).	However,	in	those	researches,	types	of	strategy	are	quite	limited	(simply	two
strategies,	All-C	and	All-D)	in	order	to	focus	only	on	the	structure	of	network.	Moreover,	the	decision	is	basically	the	optimal	response
(best	decision).	Then,	it	has	recently	become	common	notion	that	the	heterogeneity	of	network,	especially	the	scale-free	structure,

http://jasss.soc.surrey.ac.uk/14/3/3.html 16 08/10/2015



facilitates	cooperation	(Santos	2005;	Santos	2006;	Perc	2008;	Santos	2008)	as	noted	in	the	introduction.	Those	studies	also	have
some	simplification	as	seen	in	the	payoff	matrix,	where	temptation	to	defect	takes	the	value	between	1	and	2	(1≤T≤2),	R=1	and
P=S=0.	They	introduce	the	optimal	response	as	well.	Of	course,	as	noted	in	the	introduction,	coevolution	between	strategy	and
structure	has	also	proved	to	be	effective	for	the	promotion	of	cooperation	(Ebel	2002;	Zimmermann	2004;	Pacheco	2006;	Poncela
2009;	Szolnoki	2009;	Van	Segbroeck	2009;	Perc	2010).

4.11 Unlike	those	studies,	our	research	has	more	complex	form	of	strategy.	However,	as	previous	studies,	we	also	obtain	the	result	that	the
relationships	of	the	scale-free	structure	effectively	promote	mutual	cooperation	in	the	case	of	large	L.	This	effect	is	almost	unaffected
by	changes	in	the	density	of	relationships	or	the	number	of	total	groups.	On	the	other	hand,	the	extent	of	facilitation	of	cooperation	is
smaller	than	previous	studies	with	optimal	response,	and	also	little	changes	occur	by	the	stochastic	perturbation	to	relationships.	We
can	assume	that	this	is	because	there	is	no	direct	reference	to	other	representative	strategies	between	groups.	The	effect	of	inter-
group	reference	is	our	future	work.

4.12 Second,	regarding	the	research	which	deals	with	the	corruption	in	the	tendering,	there	have	already	been	some	theoretical	studies	as
we	described	in	the	previous	section.	However,	we	can	find	no	former	studies	introducing	the	second-best	decision	for	the	expression
of	the	sentiment	of	collusive	bidders.	When	talking	on	the	structure	of	typical	business	relationships,	it	has	proved	to	be	the	small
world	(Kogut	2001;Davis	2003).	However,	because	our	study	shows	that	the	small	world	has	little	effect	for	mutual	cooperation
(collusion),	we	consider	that	the	actual	relationships	between	bid-rigging	companies	are	rather	close	to	the	scale-free.	In	other	words,
we	can	assume	that	the	relationships	between	collusive	firms	have	few	groups	conducting	collusion	like	hub	nodes.	Actually,	previous
studies	(Saijo	1996;	Tanimoto	2003)	indicate	that	the	existence	of	some	companies	organizing	collusive	tendering	is	necessary	for
efficient	construction	of	collusion.	We	also	observe	the	process	that	the	hub	groups	ascertain	the	trend	of	population	and	then	those
groups	lead	the	all	after	the	whole	direction	of	decision	determines.	It	is	quite	interesting	that	it	becomes	clear	that	those	hubs	play
that	function	while	we	do	not	give	them	an	explicit	role	of	the	leader	of	collusion.

Comparing	knowledge	of	social	science	studies	with	that	of	physics	based	researches

4.13 As	our	study	is	basically	founded	on	the	physical	point	of	view,	we	have	not	addressed	the	knowledge	of	social	science	studies.	Then,
in	the	following	we	exhibit	some	formal	modelling	papers	in	the	literature	that	draw	heavily	on	social	science	theory	and	empirical
examples	from	specific	application	areas.	We	also	describe	the	correlation	of	obtained	knowledge	between	those	studies	and
researches	of	physics.

4.14 Raub	and	Weesie	(Raub	and	Weesie	1990)	compare	the	systems	between	“atomized	interactions”	(without	receiving	information	on
their	partners'	behaviour)	and	“perfectly	embedded”	(immediately	receiving	information)	excluding	effects	of	reputation.	It	shows	that
efficiency	is	more	easily	attained	as	a	result	of	individually	rational	behaviour	in	perfectly	embedded	systems.	We	think	this	discussion
is	similar	to	the	system	with	costly	punishment	in	group	interactions	(Fehr	2002;	Fowler	2005;	Herrmann	2008;	O'Gorman	2009;
Rankin	2009)	because	in	such	system	whether	punishing	others	or	not	is	based	on	information	of	their	past	acts.	Our	model	can	be
classified	as	the	atomized	interactions	at	present	because	of	no	inter-group	reference	to	other	representative	strategies.	The	study
(Macy	1993)	is	also	the	same	discussion	as	costly	punishment,	and	experiments	the	ability	of	various	sanctioning	regimes	to	generate
cooperation	as	well	as	resist	stampedes	that	risk	over	cooperation	and	needless	sacrifice.	It	shows	that	external	moral	sanctions
produce	too	little	cooperation,	while	internalized	sanctions	produce	too	much.

4.15 The	research	(Oliver	and	Marwell	1988)	shows	that	the	positive	effects	of	group	size	increase	with	group	heterogeneity	and	non-
random	social	ties.	Buskens'	study	(Buskens	1998)	derives	hypotheses	on	the	effects	of	density,	outdegree	centrality,	and
centralization	on	the	level	of	trust.	It	concludes	that	higher	density	and	outdegree	induce	more	trust,	and	that	centralization	increases
trust	if	it	is	“well	organized”,	i.e.,	actors	who	can	place	more	trust	are	central	in	the	network.	Chwe's	study	(Chwe	1999)	employs	the
scenario	that	each	person	in	a	group	is	completely	rational	and	wants	to	participate	only	if	the	total	number	of	participants	is	at	least
his/her	threshold.	It	shows	that	position	of	network	is	much	more	crucial	in	affecting	the	revolt	of	people	with	low	thresholds	than	those
with	high	ones.	Gould's	research	(Gould	1993)	constructs	a	mathematical	model	describing	the	relationship	between	individual
contributions	to	a	collective	good	and	the	network	of	social	relations	making	these	contributions	interdependent.	It	shows	that	network
density	and	size	differently	influence	collective	action	outcomes,	depending	on	the	structural	position	of	those	who	make	unconditional
contributions.

4.16 We	can	state	from	the	aspect	of	physics	study	that	the	research	(Oliver	and	Marwell	1988)	and	Buskens'	research	(Buskens	1998)
correspond	to	the	fact	that	hub	nodes	in	the	scale-free	relationships	facilitate	cooperation	(Santos	2005;	Santos	2006;	Perc	2008;
Santos	2008)	because	those	are	also	centralized	and	that	structure	is	“well	organized”.	As	our	study	has	no	direct	reference	to
strategies	of	others,	facilitative	effect	of	the	scale-free	is	relatively	smaller	than	those	previous	researches	as	shown	in	the	results.	The
research	(Gould	1993)	and	Chwe's	study	(Chwe	1999)	are	similar	to	the	knowledge	of	Kim	et	al.	(Kim	2002)	that	introduces	an
influential	node	(defector)	for	dynamic	instability.

4.17 Macy	(Macy	1991a)	introduces	a	learning-theoretic	specification	for	a	structural	analysis,	and	shows	that	threshold	effects	may	be	the
key	to	solving	the	coordination	problem.	When	individual	choices	are	contingent	on	participation	by	others,	this	interdependence
facilitates	the	coordination	of	contributions	needed	to	shift	the	bistable	system	from	a	noncooperative	equilibrium	to	a	cooperative	one.
These	chain	reactions	require	bridges	that	link	socially	distant	actors	in	networks	with	low-density.	We	can	assume	that	this	study
offers	the	same	knowledge	as	the	facilitative	effect	of	the	small	world	(Watts	1999;	Masuda	2003)	because	we	can	address	“bridges”
as	short-cuts	by	rewiring	for	the	small	world	network.	Also,	Macy's	research	(Macy	1991b)	reformulates	the	Prisoner's	Dilemma	as	a
stochastic	learning	model	in	which	the	behaviour	of	interdependent	actors	is	continually	shaped	by	sanctions	and	cues	generated	by
their	interaction.	It	shows	that	how	the	effects	of	network	size,	density,	mobility,	and	anonymity	derive	from	a	fundamental	principle	of
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collective	action,	that	is,	the	need	to	reduce	the	number	of	choices	that	must	be	fortuitously	coordinated	in	order	to	escape
noncooperative	equilibrium.	We	have	demonstrated	in	the	results	that	the	small	length	of	strategy	(	L=10,	i.e.	a	few	choices)	enhances
cooperation	than	the	case	of	large	L	(	L=30,	i.e.	many	choices).	This	outcome	is	similar	to	above	description	of	the	necessity	for
cooperation	that	the	number	of	choices	accidentally	coordinated	to	escape	defection	should	be	reduced.

	Conclusion

5.1 In	this	research,	utilizing	the	model	of	spatial	agent	based	simulation,	we	have	studied	the	property	of	cooperation	based	on	the
second-best	decision	(i.e.	some	compromise).	This	model	is	also	the	motif	of	the	actual	bid	recently	dispensed	in	Japan	and
represents	the	sentiment	of	bidders	when	collusion	occurs.	Our	model	utilizes	the	spatial	PDG	with	sequential	strategy,	and	its
features	are	summarized	as	follows.	First,	groups	corresponding	to	bidders	have	partial	relationships	which	are	denoted	as	two-
dimensional	network.	Second,	all	groups	play	the	spatial	PDG	with	sequential	strategy	to	each	opponent	group	of	relationships.

5.2 The	main	characteristic	of	the	spatial	PDG	with	sequential	strategy	is	that	the	strategy	has	no	restriction	in	its	variety,	and	evolves	as
the	generation	proceeds.	Each	group	can	know	opponents'	direction	of	decision	implicitly	by	payoff	informed	at	the	end	of	every	round.
We	express	relationships	of	groups	as	various	types	of	network	(with	the	same	average	connectivity).	When	every	group	with	some
strategies	plays	the	spatial	PDG	with	sequential	strategy	and	makes	his/her	second-best	decision	over	some	generations,	we	observe
mutual	cooperation	(i.e.	collusive	tendering).

5.3 It	turns	out	by	further	inspection	that	in	the	scale-free	network	the	average	frequency	of	mutual	cooperation	increases	faster	than	the
regular	case	when	the	length	of	strategy	L	is	large.	The	trend	that	the	evolution	of	mutual	cooperation	becomes	slower	when	strategy
lengthens	is	the	same	as	the	one	observed	in	the	model	of	two	groups	(Ohdaira	2009).	It	is	also	implied	that	the	scale-free	structure
universally	has	an	effect	on	the	promotion	of	cooperation,	because	changes	in	the	density	of	relationships	and	the	total	number	of
groups	almost	do	not	affect	that	facilitative	effect.	This	result	corresponds	with	the	obtained	knowledge	of	some	researches	utilizing
simpler	game	mechanism	(Santos	2005;	Santos	2006;	Perc	2008;	Santos	2008).	On	the	other	hand,	similarity	between	strategies
increases	when	we	reduce	the	number	of	strategies	of	groups.	In	this	case,	the	settlement	of	the	collective	direction	becomes
premature,	while	the	rate	of	evolution	of	mutual	cooperation	gets	slower.

5.4 In	addition,	the	major	difference	is	as	follows	when	addressing	our	work	from	the	point	of	view	of	studies	dealing	with	collusion.	While
the	applied	research	of	game	theory	(Tanimoto	2003)	has	added	the	profit	obtained	by	collusion	to	the	payoff	matrix,	we	think	the
cause	of	collusion	comes	from	the	decision	of	bidders.	As	stated	in	the	discussion,	we	believe	that	collusion	occurs	because	bidders
do	not	gain	excessive	profit	and	they	focus	on	relationships	with	other	companies.	Benefits	of	maintaining	relationships	with	someone
are	more	natural	to	express	as	decision	in	our	study	rather	than	prescribed	payoff	matrix.	With	regard	to	the	prevention	of	collusion,
we	think	it	to	be	effective	that	the	government	agency	supervises	companies	of	tendering	not	to	construct	the	hub	(leader	of	collusion),
or	makes	bidders	present	their	propositions	over	and	over	again.	The	latter	corresponds	to	the	increase	in	the	number	of	strategies	(
n),	and	we	can	expect	that	this	generates	the	reverse	effect	from	the	case	of	decreasing	n	(see	Figure	8).	From	the	results	of	previous
research	(Ohdaira	2009),	we	think	that	the	effective	value	of	n	for	suppressing	cooperation	(collusion)	is	32	or	larger.	In	the	future,	we
especially	proceed	to	further	examination	regarding	the	issue	of	whether	stochastic	perturbation	produces	differences	in	results	when
the	mechanism	of	inter-group	reference	to	other	representative	strategies	is	available.
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	Note

	Further	information	and	model	code	are	available	from	the	first	author	and	Windows®	executable	version	can	be	downloaded.

	Appendix:	pseudo	code	regarding	main	routine

Function Main:
Start:
  // Starting simulation.
  for number_of_generations (<= 1,000):
    // Executing all matches.
    for rounds (<= number_of_strategies, n):
      for group_id (<= number_of_groups, N):
        Play_Match (rounds, group_id):
      end for:
    end for:
    // Executing evolutionary process.
    for group_id (<= number_of_groups, N):
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      Update_Strategy (group_id):
    end for:
  end for:
End:

Function Play_Match (Rounds, Group_ID):
Start:
  // Every group plays the PDG with sequential strategy against his/her opponent groups
  // mutually utilizing each strategy of the same id.
  // The number of total game is equal to the number of opponent groups.
  // The number of opponent groups is all the same (regular) or
  // varies following the structure of relationships (random, scale free).
  // Initializing the number of opponent groups
  number_of_opponent_groups = 0;
  // This group matches the group(s) of direct relationship(s).
  for group_id (<= number_of_groups, N)
    if (the group of group_id has direct relationship with this group) then:
      number_of_opponent_group = number_of_opponent_group + 1;
      opponent_group_id = group_id;
      // Starting the match of the PDG with sequential strategy
      for bouts (<= length_of_strategy, L):
        if Strategy[Group_ID][Rounds][bouts] == D and
         Strategy[opponent_group_id][Rounds][bouts] == C then:
          Score[Group_ID][Rounds]
           = Score[Group_ID][Rounds] + 5:
        end if:
        else if Strategy[Group_ID][Rounds][bouts] == C and
         Strategy[opponent_group_id][Rounds][bouts] == C then:
          Score[Group_ID][Rounds]
           = Score[Group_ID][Rounds] + 3:
        end else if:
        else if Strategy[Group_ID][Rounds][bouts] == D and
         Strategy[opponent_group_id][Rounds][bouts] == D then:
          Score[Group_ID][Rounds]
           = Score[Group_ID][Rounds] + 1:
        end else if:
        else:
          Score[Group_ID][Rounds]
           = Score[Group_ID][Rounds] + 0:
        end else:
      end for:
    end if:
  end for:
  // Final score regarding the strategy of this group is the average of all matches.
  // Note that each score is rounded off to the first decimal place and then
  // saved as an integer value.
  Score[Group_ID][Rounds]
   = Score[Group_ID][Rounds] / number_of_opponent_groups:
End:

Function Update_Strategy (Group_ID):
Start:
  // This group grades all strategies by their score.
  Grade_Strategy:
  // He/She selects the strategy of the second grade as the representative strategy,
  // and also decides the representative strategy ID.
  representative_strategy_id = strategy_id (of the second grade strategy):
  // Note that both values of the length_of_fraction_1 (Lf1) and
  // the length_of_fraction_2 (Lf2) are randomly changes in every step.
  // The Lf1 and the Lf2 are less than L. The Lf1 is also smaller than the Lf2.
  // This group partly duplicates the representative strategy to every strategy.
  for number of strategies (<= n, except the representative strategy ID):
    for bouts_1 (<= Lf1):
      Strategy[Group_ID][number of strategies][bouts_1]
       = Strategy[Group_ID][representative_strategy_id][bouts_1]:
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    end for:
    for bouts_2 (Lf2 <= bouts_2 <= L):
      Strategy[Group_ID][number_of_strategies][bouts_2]
       = Strategy[Group_ID][representative_strategy_id][bouts_2]:
    end for:
  end for:
  // This group executes the process of mutation for every strategy.
  for number_of_strategies (<= n):
    for bouts (<= L):
      if (a value randomly generated is over the threshold) then:
        if Strategy[Group_ID][number_of_strategies][bouts] == C then:
          Strategy[Group_ID][number_of_strategies][bouts] = D:
        end if:
        else:
          Strategy[Group_ID][number_of_strategies][bouts] = C:
        end else:
      end if:
    end for:
  end for:
End:

	References

	ABRAMSON,	G	and	Kuperman,	M	(2001)	Social	games	in	a	social	network.	Phys.	Rev.	E,	63,	030901.
[doi:10.1103/PhysRevE.63.030901]

AHMED,	E,	Hegazi,	A	S	and	Elgazzar,	A	S	(2002)	On	spatial	asymmetric	games.	Advances	in	Complex	Systems,	5,	pp.	433-443.
[doi:10.1142/S0219525902000614]

AXELROD,	R	(1984)	The	Evolution	of	Cooperation.	Basic	Books,	New	York.

BARABASI,	A	L	and	Albert,	R	(1999)	Emergence	of	scaling	in	random	networks.	Science,	286,	pp.	509-512.
[doi:10.1126/science.286.5439.509]

BOERGERS,	T	and	Postl,	P	(2009)	Efficient	compromising.	Journal	of	Economic	Theory,	144,	pp.	2057-2076.
[doi:10.1016/j.jet.2009.01.011]

BUSKENS,	V	(1998)	The	social	structure	of	trust.	Social	Networks,	20,	pp.	265-289.	[doi:10.1016/S0378-8733(98)00005-7]

CAO,	Z	and	Hwa,	R	C	(1999)	Phase	transition	in	evolutionary	games.	Int.	Jour.	Mod.	Phys.	A,	14,	pp.	1551-1560.
[doi:10.1142/S0217751X99000786]

CASSAR,	A	(2007)	Coordination	and	cooperation	in	local,	random	and	small	world	networks:	Experimental	evidence.	Games	and
Economic	Behavior,	58,	pp.	209-230.	[doi:10.1016/j.geb.2006.03.008]

CHEN,	X,	Fu,	F	and	Wang,	L	(2007)	Prisoner's	dilemma	on	community	networks.	Physica	A,	378,	pp.	512-518.
[doi:10.1016/j.physa.2006.12.024]

CHWE,	M	S-Y	(1999)	Structure	and	strategy	in	collective	action.	American	Journal	of	Sociology,	105,	pp.	128-156.
[doi:10.1086/210269]

DAVIS,	G	F,	Yoo,	M	and	Baker,	W	E	(2003)	The	small	world	of	the	American	corporate	elite,	1982-2001.	Strategic	Organization,	1,	pp.
301-326.	[doi:10.1177/14761270030013002]

DREBER,	A,	Rand,	D	G,	Fudenberg,	D	and	Nowak,	M	A	(2008)	Winners	don't	punish.	Nature,	452,	pp.	348-351.
[doi:10.1038/nature06723]

DURAN,	O	and	Mulet,	R	(2005)	Evolutionary	prisoner's	dilemma	in	random	graphs.	Physica	D,	208,	pp.	257-265.
[doi:10.1016/j.physd.2005.07.005]

EBEL,	H	and	Bornholdt,	S	(2002)	Coevolutionary	games	on	networks.	Phys.	Rev.	E,	66,	056118.	[doi:10.1103/PhysRevE.66.056118]

FEHR,	E	and	Gaechter,	S	(2002)	Altruistic	punishment	in	humans.	Nature,	415,	pp.	137-140.	[doi:10.1038/415137a]

FOWLER,	J	H	(2005)	Altruistic	punishment	and	the	origin	of	cooperation.	Proc.	Natl.	Acad.	Sci.	U.S.A.,	102,	pp.	7047-7049.
[doi:10.1073/pnas.0500938102]

GOULD,	R	V	(1993)	Collective	action	and	network	structure.	American	Journal	of	Sociology,	58,	pp.	182-196.	[doi:10.2307/2095965]

GRAHAM,	D	and	Marshall,	R	(1987)	Collusive	bidder	behavior	at	single-object	second-price	and	English	auctions.	Journal	of	Political

http://jasss.soc.surrey.ac.uk/14/3/3.html 20 08/10/2015

http://dx.doi.org/10.1103/PhysRevE.63.030901
http://dx.doi.org/10.1142/S0219525902000614
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/j.jet.2009.01.011
http://dx.doi.org/10.1016/S0378-8733(98)00005-7
http://dx.doi.org/10.1142/S0217751X99000786
http://dx.doi.org/10.1016/j.geb.2006.03.008
http://dx.doi.org/10.1016/j.physa.2006.12.024
http://dx.doi.org/10.1086/210269
http://dx.doi.org/10.1177/14761270030013002
http://dx.doi.org/10.1038/nature06723
http://dx.doi.org/10.1016/j.physd.2005.07.005
http://dx.doi.org/10.1103/PhysRevE.66.056118
http://dx.doi.org/10.1038/415137a
http://dx.doi.org/10.1073/pnas.0500938102
http://dx.doi.org/10.2307/2095965


Economy,	95,	pp.	1217-1239.	[doi:10.1086/261512]

HALES,	D	(2000)	Cooperation	without	space	or	memory:	tags,	groups	and	the	prisoner's	dilemma.	In	Multi-Agent-Based	Simulation,
Lecture	Notes	in	Artificial	Intelligence,	1979,	Berlin,	Springer-Verlag,	pp.	157-166.	[doi:10.1007/3-540-44561-7_12]

HERRMANN,	B,	Thoeni,	C	and	Gaechter,	S	(2008)	Antisocial	punishment	across	societies.	Science,	319,	pp.	1362-1367.
[doi:10.1126/science.1153808]

HOLME,	P,	Trusina,	A,	Kim,	B	J	and	Minnhagen,	P	(2003)	Prisoners'	dilemma	in	real-world	acquaintance	networks:	Spikes	and
quasiequilibria	induced	by	the	interplay	between	structure	and	dynamics.	Phys.	Rev.	E,	68,	030901(R).
[doi:10.1103/PhysRevE.68.030901]

KIM,	B	J,	Trusina,	A,	Holme,	P,	Minnhagen,	P,	Chung,	J	S	and	Choi,	M	Y	(2002)	Dynamic	instabilities	induced	by	asymmetric
influence:	prisoner's	dilemma	game	on	small-world	networks.	Phys.	Rev.	E,	66,	021907.	[doi:10.1103/physreve.66.021907]

KOGUT,	B	and	Walker,	G	(2001)	The	small	world	of	Germany	and	the	durability	of	national	networks.	American	Sociological	Review,
66,	pp.	317-335.	[doi:10.2307/3088882]

MACY,	M	W	(1991a)	Chains	of	cooperation:	threshold	effects	in	collective	action.	American	Sociological	Review,	56,	pp.	730-747.
[doi:10.2307/2096252]

MACY,	M	W	(1991b)	Learning	to	cooperate:	stochastic	and	tacit	collusion	in	social	exchange.	American	Journal	of	Sociology,	97,	pp.
808-843.	[doi:10.1086/229821]

MACY,	M	W	(1993)	Backward-looking	social	control.	American	Sociological	Review,	58,	pp.	819-836.	[doi:10.2307/2095953]

MASUDA,	N	and	Aihara,	K	(2003)	Spatial	prisoner's	dilemma	optimally	played	in	small-world	networks.	Phys.	Ltrs.	A,	313,	pp.	55-61.
[doi:10.1016/s0375-9601(03)00693-5]

MCAFEE,	P	and	McMillan,	J	(1992)	Bidding	rings.	American	Economic	Review,	82,	pp.	579-599.

NOWAK,	M	A	and	May,	R	M	(1992)	Evolutionary	games	and	spatial	chaos.	Nature,	359,	pp.	826-829.	[doi:10.1038/359826a0]

NOWAK,	M	A	and	Sigmund,	K	(1998)	The	dynamics	of	indirect	reciprocity.	J.	Theor.	Biol.,	194,	pp.	561-574.
[doi:10.1006/jtbi.1998.0775]

NOWAK,	M	A	and	Sigmund,	K	(1998)	Evolution	of	indirect	reciprocity	by	image	scoring.	Nature,	393,	pp.	573-577.	[doi:10.1038/31225]

NOWAK,	M	A	and	Sigmund,	K	(2005)	Evolution	of	indirect	reciprocity.	Nature,	437,	pp.	1291-1298.	[doi:10.1038/nature04131]

NOWAK,	M	A	(2006)	Five	rules	for	the	evolution	of	cooperation.	Science,	314,	pp.	1560-1563.	[doi:10.1126/science.1133755]

O'GORMAN,	R,	Henrich,	J	and	Van	Vugt,	M	(2009)	Constraining	free	riding	in	public	goods	games:	designated	solitary	punishers	can
sustain	human	cooperation.	Proc.	R.	Soc.	B,	276,	pp.	323-329.	[doi:10.1098/rspb.2008.1082]

OHDAIRA,	T,	Ohashi,	H,	Chen,	Y	and	Hashimoto,	Y	(2006)	Partiality	causes	unhappiness:	randomness	of	network	induces	difficulty
in	establishing	cooperative	relationship.	Proc.	The	First	World	Congress	on	Social	Simulation	(WCSS06),	Kyoto,	Japan.

OHDAIRA,	T	and	Ohashi,	H	(2007)	The	effect	of	occasional	rational	decision	on	the	cooperative	relationship	between	groups.	Proc.
The	Twelfth	International	Symposium	on	Artificial	Life	and	Robotics	(AROB	12th	'07),	Beppu,	Oita,	Japan.

OHDAIRA,	T	and	Terano,	T	(2009)	Cooperation	in	the	prisoner's	dilemma	game	based	on	the	second-best	decision.	Journal	of
Artificial	Societies	and	Social	Simulation,	12	(7).

OHDAIRA,	T	and	Terano,	T	(2011)	The	diversity	in	the	decision	facilitates	cooperation	in	the	sequential	prisoner's	dilemma	game.
Advances	in	Complex	Systems,	14	(to	be	published).	[doi:10.1142/S0219525911002962]

OHTSUKI,	H,	Iwasa,	Y	and	Nowak,	M	A	(2009)	Indirect	reciprocity	provides	only	a	narrow	margin	of	efficiency	for	costly	punishment.
Nature,	457,	pp.	79-82.	[doi:10.1038/nature07601]

OLIVER,	P	E	and	Marwell,	G	(1988)	The	paradox	of	group	size	in	collective	action.	A	theory	of	the	critical	mass.	III.	American
Sociological	Review,	53,	pp.	1-8.	[doi:10.2307/2095728]

PACHECO,	J	M,	Traulsen,	A	and	Nowak,	M	A	(2006)	Coevolution	of	strategy	and	structure	in	complex	networks	with	dynamical
linking.	Phys.	Rev.	Lett.,	97,	258103.	[doi:10.1103/PhysRevLett.97.258103]

PANCHANATHAN,	K	and	Boyd,	R	(2003)	A	tale	of	two	defectors:	the	importance	of	standing	for	the	evolution	of	reciprocity.	J.	Theor.
Biol.,	224,	pp.	115-126.	[doi:10.1016/S0022-5193(03)00154-1]

PANCHANATHAN,	K	and	Boyd,	R	(2004)	Indirect	reciprocity	can	stabilize	cooperation	without	the	second-order	free	rider	problem.
Nature,	432,	pp.	499-502.	[doi:10.1038/nature02978]

PERC,	M	and	Szolnoki,	A	(2008)	Social	diversity	and	promotion	of	cooperation	in	the	spatial	prisoner's	dilemma	game.	Phys.	Rev.	E,
77,	011904.	[doi:10.1103/PhysRevE.77.011904]

http://jasss.soc.surrey.ac.uk/14/3/3.html 21 08/10/2015

http://dx.doi.org/10.1086/261512
http://dx.doi.org/10.1007/3-540-44561-7_12
http://dx.doi.org/10.1126/science.1153808
http://dx.doi.org/10.1103/PhysRevE.68.030901
http://dx.doi.org/10.1103/physreve.66.021907
http://dx.doi.org/10.2307/3088882
http://dx.doi.org/10.2307/2096252
http://dx.doi.org/10.1086/229821
http://dx.doi.org/10.2307/2095953
http://dx.doi.org/10.1016/s0375-9601(03)00693-5
http://dx.doi.org/10.1038/359826a0
http://dx.doi.org/10.1006/jtbi.1998.0775
http://dx.doi.org/10.1038/31225
http://dx.doi.org/10.1038/nature04131
http://dx.doi.org/10.1126/science.1133755
http://dx.doi.org/10.1098/rspb.2008.1082
http://dx.doi.org/10.1142/S0219525911002962
http://dx.doi.org/10.1038/nature07601
http://dx.doi.org/10.2307/2095728
http://dx.doi.org/10.1103/PhysRevLett.97.258103
http://dx.doi.org/10.1016/S0022-5193(03)00154-1
http://dx.doi.org/10.1038/nature02978
http://dx.doi.org/10.1103/PhysRevE.77.011904


PERC,	M	and	Szolnoki,	A	(2010)	Coevolutionary	games-A	mini	review.	Biosystems,	99,	pp.	109-125.
[doi:10.1016/j.biosystems.2009.10.003]

PONCELA,	J,	Gómez-Gardeñes,	J,	Traulsen,	A	and	Moreno,	Y	(2009)	Evolutionary	game	dynamics	in	a	growing	structured
population.	New	J.	Phys.,	11,	083031.	[doi:10.1088/1367-2630/11/8/083031]

RANKIN,	D	J,	Santos	M	D	and	Wedekind,	C	(2009)	The	evolutionary	significance	of	costly	punishment	is	still	to	be	demonstrated.
Proc.	Natl.	Acad.	Sci.	U.S.A.,	106,	E135.	[doi:10.1073/pnas.0911990107]

RAUB,	W	and	Weesie,	J	(1990)	Reputation	and	efficiency	in	social	interactions:	an	example	of	network	effects.	American	Journal	of
Sociology,	96,	pp.	626-654.	[doi:10.1086/229574]

RIETVELD,	P	and	van	Woudenberg,	S	(2007)	Second-best	decision	making	of	railway	operators:	How	to	fix	fares,	frequency	and
vehicle	size.	Journal	of	Transport	Economics	and	Policy,	41,	pp.	363-385	(23).

RIOLO,	R	L	(1997)	The	effects	and	evolution	of	tag-mediated	selection	of	partners	in	populations	playing	the	iterated	prisoner's
dilemma.	Proc.	the	7th	Int.	Conf.	Genetic	Algorithms	(ICGA97),	San	Francisco,	Morgan	Kaufmann,	pp.	378-385.

RIOLO,	R	L,	Cohen,	M	D	and	Axelrod,	R	(2001)	Evolution	of	cooperation	without	reciprocity.	Nature,	414,	pp.	441-443.
[doi:10.1038/35106555]

SAIJO,	T,	Une,	M	and	Yamaguchi,	T	(1996)	Dango	experiments.	Journal	of	Japanese	and	International	Economics,	10,	pp.	1-11.
[doi:10.1006/jjie.1996.0001]

SANTOS,	F	C	and	Pacheco,	J	M	(2005)	Scale-free	networks	provide	a	unifying	framework	for	the	emergence	of	cooperation.	Phys.
Rev.	Lett.,	95,	098104.	[doi:10.1103/PhysRevLett.95.098104]

SANTOS,	F	C	and	Pacheco,	J	M	(2006)	A	new	route	to	the	evolution	of	cooperation.	J.	Evol.	Biol.,	19,	pp.	726-733.
[doi:10.1111/j.1420-9101.2005.01063.x]

SANTOS,	F	C,	Santos,	M	D	and	Pacheco,	J	M	(2008)	Social	diversity	promotes	the	emergence	of	cooperation	in	public	goods	games.
Nature,	454,	pp.	213-216.	[doi:10.1038/nature06940]

SZOLNOKI,	A	and	Perc,	M	(2009)	Emergence	of	multilevel	selection	in	the	prisoner's	dilemma	game	on	coevolving	random	networks.
New	J.	Phys.,	11,	093033.	[doi:10.1088/1367-2630/11/9/093033]

TANIMOTO,	J	and	Fujii,	H	(2003)	A	study	on	the	collusive	tendering	from	the	viewpoint	of	game	theory.	IPSJ	SIG	Technical	Report,
2002-ICS-131,	pp.	59-61	(in	Japanese).

TRAULSEN,	A	and	Nowak,	M	A	(2006)	Evolution	of	cooperation	by	multilevel	selection.	Proc.	Natl.	Acad.	Sci.	U.S.A.,	103,	pp.	10952-
10955.	[doi:10.1073/pnas.0602530103]

VAN	SEGBROECK,	S,	Santos,	F	C,	Lenaerts,	T	and	Pacheco,	J	M	(2009)	Reacting	differently	to	adverse	ties	promotes	cooperation
in	social	networks.	Phys.	Rev.	Lett.,	102,	058105.	[doi:10.1103/PhysRevLett.102.058105]

VUKOV,	J	and	Szabó,	G	(2005)	Evolutionary	prisoner's	dilemma	game	on	hierarchical	lattices.	Phys.	Rev.	E,	71,	036133.
[doi:10.1103/PhysRevE.71.036133]

WATTS,	D	J	and	Strogatz,	S	H	(1998)	Collective	dynamics	of	'small-world'	networks.	Nature,	393,	pp.	440-442.	[doi:10.1038/30918]

WATTS,	D	J	(1999)	Small	Worlds.	Princeton	University	Press,	Princeton,	New	Jersey.

ZIMMERMANN,	M	G,	Eguíluz,	V	M	and	Miguel,	M	S	(2004)	Coevolution	of	dynamical	states	and	interactions	in	dynamic	networks.
Phys.	Rev.	E,	69,	065102(R).	[doi:10.1103/PhysRevE.69.065102]

http://jasss.soc.surrey.ac.uk/14/3/3.html 22 08/10/2015

http://dx.doi.org/10.1016/j.biosystems.2009.10.003
http://dx.doi.org/10.1088/1367-2630/11/8/083031
http://dx.doi.org/10.1073/pnas.0911990107
http://dx.doi.org/10.1086/229574
http://dx.doi.org/10.1038/35106555
http://dx.doi.org/10.1006/jjie.1996.0001
http://dx.doi.org/10.1103/PhysRevLett.95.098104
http://dx.doi.org/10.1111/j.1420-9101.2005.01063.x
http://dx.doi.org/10.1038/nature06940
http://dx.doi.org/10.1088/1367-2630/11/9/093033
http://dx.doi.org/10.1073/pnas.0602530103
http://dx.doi.org/10.1103/PhysRevLett.102.058105
http://dx.doi.org/10.1103/PhysRevE.71.036133
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1103/PhysRevE.69.065102

	Abstract
	Introduction
	The Model
	Brief description of the PDG with sequential strategy
	The second-best decision
	Detail of the model

	Results
	Discussion
	Time series fluctuation of each frequency (with the original structure of scale-free)
	Discussion on the analogy between the presented model and the actual tendering
	Comparison to existing studies of spatial game and collusion
	Comparing knowledge of social science studies with that of physics based researches

	Conclusion
	Acknowledgement
	Note
	Appendix: pseudo code regarding main routine
	References

