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Abstract

Several	strategies	are	used	to	explain	emergent	interaction	patterns	in	agent-based	simulations.	A	distinction
can	be	made	between	simulations	in	which	the	agents	just	behave	in	a	reactive	way,	and	simulations	involving
agents	with	also	pro-active	(goal-directed)	behavior.	Pro-active	behavior	is	more	variable	and	harder	to	predict
than	reactive	behavior,	and	therefore	it	might	be	harder	to	explain.	However,	the	approach	presented	in	this
paper	tries	to	make	advantage	of	the	agents'	pro-activeness	by	using	it	to	explain	their	behavior.	The
aggregation	of	the	agents'	explanations	form	a	basis	for	explaining	the	simulation	as	a	whole.	In	this	paper,	an
agent	model	that	is	able	to	generate	(pro-active)	behavior	and	explanations	about	that	behavior	is	introduced,
and	the	implementation	of	the	model	is	discussed.	Examples	show	how	the	link	between	behavior	generation
and	explanation	in	the	model	can	contribute	to	the	explanation	of	a	simulation.

Explanation,	Agents,	Goal-Based	Behavior,	Virtual	Training

	Introduction

Emergent	interaction	patterns	in	agent-based	simulations	provide	insight	into	the	processes	that	are	being
simulated.	In	some	simulations,	the	rules	according	to	which	agents	behave	are	completely	reactive	and	rather
simple.	For	instance,	the	famous	Boids	program	(Reynolds	1987)	simulating	the	flocking	behavior	of	birds	only
consists	of	three	simple	rules:	separation	(steer	to	avoid	crowding	local	flockmates),	alignment	(steer	towards
the	average	heading	of	local	flockmates),	and	cohesion	(steer	to	move	toward	the	average	position	of	local
flockmates).	Although	the	single	agents	are	not	complex,	interesting	interaction	patterns	arise.	To	explain	these
macro	properties,	e.g.	the	shape	or	direction	of	a	flock	of	birds,	all	reactions	of	the	agents	in	the	simulations
have	to	be	monitored.	Besides	the	rules	according	to	which	the	entities	behave,	their	starting	positions,	number
and	the	environment	play	a	crucial	role	in	the	outcome	of	the	simulation	(see	e.g.	the	experiments	in	artificial
life).	Therefore,	the	reactive	rules	of	the	agents	by	themselves	are	not	sufficient	as	a	basis	for	explaining	the
system.	Using	the	particular	configuration	of	agents	and	environment	also	does	not	lead	to	deeper
understanding	per	se.	Explaining	the	behavior	of	the	whole	simulation	might	even	become	more	difficult	when
the	agents	themselves	do	not	only	have	reactive	behavior,	but	also	pro-active	behavior	that	is	not	directly
explainable	from	their	interaction	with	the	environment.	In	contrast	to	simulations	with	simple	agents,	the	single
agents'	behavior	is	more	variable,	and	harder	to	predict	and	understand.	However,	we	do	believe	that	using
exactly	this	pro-active	behavior	in	the	form	of	the	goals	underlying	the	agents'	actions	will	lead	to	a	natural
explanation	of	the	agent	behavior	and	thus	might	form	a	good	basis	for	explaining	the	simulation	as	a	whole.

If	pro-active	agents	would	be	able	to	explain	their	actions,	e.g.	because	of	a	particular	plan	or	to	achieve	a
certain	goal,	the	understanding	of	the	emergent	processes	arising	from	their	interactions	would	be	facilitated.
The	similarities	or	contradictions	in	the	explanations	of	several	self-explaining	agents	would	help	to	construct	an
explanation	of	the	overall	processes.	For	instance,	the	explanations	of	agents	which	are	part	of	a	fleeing	group
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would	help	to	understand	the	reasons	of	the	flight	behavior	of	the	group	as	a	whole.	Agent	explanations	like	I'm
trying	to	get	away	from	the	fire	result	in	a	different	overall	explanation	than	agent	explanations	such	as	I	just
followed	the	others.	The	example	shows	that	an	aggregation	of	(abstract)	micro	level	explanations	could	add
insight	in	the	macro	behavior	over	and	beyond	a	definition	of	the	rules	that	created	it.

Although	this	idea	is	appealing,	it	needs	pro-active	agents	that	can	explain	themselves	at	the	micro	level.
Although	there	are	some	first	attempts	at	building	this	type	of	self	explaining	agents	(see	section	2	for	related
work),	no	satisfactory	solution	has	been	given	yet.	In	this	paper,	we	therefore	concentrate	on	the	way	in	which
pro-active	agents	can	explain	themselves	first.	We	used	a	simulation-based	training	system	for	firefighting	as	an
application	involving	intelligent	agents	with	self-explaining	capabilities.	The	trainees	have	to	fulfill	a	task	or
mission	while	they	are	surrounded	by	and	interact	with	virtual	characters	which	can	be	their	team-members,
opponents,	and	neutral	participants.	In	order	to	create	realistic	training	scenarios,	these	characters	have	to
perform	believable	behavior	which	can	be	complex.	In	order	for	the	trainee	to	understand	the	reaction	of	the
simulation	to	his	own	behavior,	it	is	important	that	those	characters	can	explain	themselves.	This	problem	is
exacerbated	when	the	agents	in	the	simulation	interact	(as	a	team	or	with	neutral	bystanders).	Without	knowing
the	motivation	of	a	character's	actions,	it	is	harder	for	a	trainee	to	understand	the	situation	and	learn	from	the
training	session.	This	application	therefore	seems	a	good	stepping	stone	for	developing	self	explaining
simulations	in	general.

The	outline	of	this	paper	is	as	follows.	In	section	2	we	discuss	the	requirements	of	explanations	in	general,	and
more	specifically	in	simulation-based	training	systems.	Some	current	approaches	of	self-explaining	agents	in
simulation-based	training	systems	are	discussed.	In	section	3,	we	introduce	an	agent	model	for	the	generation	of
behavior	and	explanations.	Then,	in	section	4	we	discuss	issues	and	considerations	arising	from	the
implementation	of	such	a	model.	Finally,	we	give	a	conclusion	and	directions	for	future	research	in	section	5.

	Explanation	in	simulation-based	training

A	single	event	can	be	explained	in	many	ways.	For	example,	the	fact	that	a	firefighter	dropped	one	of	his	tools
on	the	floor	can	be	explained	by	the	fact	that	he	stumbled,	he	hit	something	on	the	floor ,	or	it	was	dark	and	he
could	not	see	anything.	A	whole	other	type	of	explanation	about	the	falling	tool	is	that	it	fell 	because	of	the
gravitation	force.	All	of	the	examples	are	explanations	of	the	same	event	and	one	explanation	is	not	by	definition
better	than	another.	Each	explanation	uses	part	of	the	elements	that	may	be	said	to	have	'caused'	the	action.
The	desired	explanation	to	be	used	depends	on	the	context	in	which	it	is	given	and	on	the	person	to	whom	it	is
given.

For	making	simulation	entities	capable	of	explaining	their	actions,	we	should	consider	what	types	of	explanation
are	most	useful.	An	agent	giving	explanations	like	I	went	to	the	fire	truck	because	I	was	designed	in	such	a	way
by	the	programmer,	will	not	improve	understanding	of	the	single	entity,	leave	alone	the	complete	simulation.
The	explanation	I	went	to	the	fire	truck	to	take	an	explosion	meter	would	probably	be	more	in	the	right	direction.
Besides	the	type	of	explanation,	the	extensiveness	has	to	be	determined.	Additional	information	to	the	last
example	could	be	I	want	to	measure	explosion	danger ,	I	believe	there	is	an	explosion	meter	inside	the	fire	truck ,
and	explosion	meters	measure	explosion	danger .	Probably	not	all	information	is	necessary,	thus	a	proper
selection	should	be	made.

The	examples	in	the	last	paragraph	revealed	the	agent's	goals	to	go	to	the	fire	truck	(to	measure	explosion
danger	and	to	get	a	meter),	and	beliefs	related	to	these	goals	(there	is	an	explosion	meter	and	such	a	device
measures	explosion	danger).	It	has	been	demonstrated	that	BDI	agents,	agents	based	on	the	Belief	Desire
Intention	model	(Rao	and	Georgeff	1991 ),	do	provide	characters	in	computer	games	with	believable	behavior
(Norling	2003).	Although	it	only	matters	whether	agents	behave	 as	if	they	had 	beliefs	and	desires	to	understand
the	behavior	of	agents,	for	the	generation	of	understandable	explanations,	it	is	important	that	the	agents	have
actual	beliefs	and	desires	and	reason	with	them.	This	thesis	is	supported	by	research	on	explaining	expert
systems,	which	found	that	users	of	expert	system	often	not	only	want	to	know	how,	but	also	why	a	conclusion
has	been	reached	(Ye	and	Johnson	1995 ).	An	important	difference	between	expert	systems	and	BDI	agents	is
that	the	BDI	agents	are	proactive,	i.e.	they	have	goals.	Therefore,	the	creation	of	why-explanations	is	much
more	natural	than	in	expert	systems;	the	trace	of	steps	behind	one	action	already	answers	why-questions.	We
will	therefore	concentrate	on	the	use	of	BDI	agents	for	explanation	in	simulations	in	the	rest	of	this	paper.

Related	work
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Only	few	simulation-based	training	systems	involve	intelligent	agents	that	are	able	to	explain	their	own	behavior.
The	first	account	of	self-explaining	agents	is	called	Debrief	(Johnson	1994).	Debrief	has	been	implemented	as
part	of	a	fighter	pilot	simulation	and	allows	trainees	to	ask	an	explanation	about	any	of	the	artificial	fighter	pilot's
actions.	To	generate	an	answer,	Debrief	modifies	the	recalled	situation	repeatedly	and	systematically,	and
observes	the	effects	on	the	agent's	decisions.	With	the	observations,	Debrief	determines	what	factors	were
responsible	for	('causing')	the	decisions.	A	possible	shortcoming	of	Debrief	is	that	it	derives	what	must	have
been	the	agent's	underlying	beliefs.	This	might	result	into	proper	explanations,	but	sometimes	different	reasons
can	be	responsible	for	the	same	action.	For	instance,	a	firefighter	might	search	for	a	victim	in	a	house's
basement	on	his	own	initiative	or	because	his	commander	told	him	to	do	so.	The	different	motives	are	not
observable	from	the	firefighter's	behavior,	but	might	improve	understanding	of	the	complete	situation.	If	the
firefighter	came	up	with	the	idea	to	go	the	basement	himself,	the	commander	might	not	know	about	it	and	give
commands	that	would	bring	the	man	into	danger.	By	making	beliefs	and	goals	in	the	reasoning	process	explicit
instead	of	deriving	them	from	observable	behavior,	the	actual	reasons	for	executing	an	action	can	be	given.

A	more	recently	developed	account	of	self-explaining	agents	is	the	XAI	explanation	component	( Van	Lent	et	al
2004).	The	XAI	system	has	been	incorporated	into	a	simulation-based	training	for	commanding	a	light	infantry
company.	After	a	training	session,	trainees	can	select	a	time	and	an	entity,	and	ask	questions	about	the	entity's
state.	However,	the	questions	involve	the	entity's	physical	state,	e.g.	its	location	or	health,	but	not	its	mental
state.	Thus	no	explanations	about	the	reasons	for	its	actions	are	given.	A	second	version	of	the	XAI	system
(Gomboc	et	al	2005;Core	et	al	2006)	was	developed	to	overcome	the	shortcomings	of	the	first;	it	claims	to
support	domain	independency,	modularity,	and	the	ability	to	explain	the	motivations	behind	entities'	actions.	This
second	XAI	system	is	applicable	to	different	simulation-based	training	systems,	and	for	the	generation	of
explanations	it	depends	on	information	that	is	made	available	by	the	simulation.	It	was	found	that	most
simulations	do	not	represent	agents'	goals,	and	preconditions	and	effects	of	actions,	so	still	no	explanations	of
agents'	reasons	could	be	given.

Although	a	well	functioning	modular	explanation	tool	would	be	desirable,	we	think	that	the	generation	and
explanation	of	behavior	are	closely	connected.	The	reasoning	steps	taken	to	generate	an	action	should	be
reproducible	in	an	explanation	about	it.	This	reproducibility	should	be	taken	into	account	while	designing	the
generation	of	behavior.	In	the	next	section	we	present	an	agent	model	in	which	such	a	connection	between
action	generation	and	explanation	is	made.

	A	model	for	the	generation	and	explanation	of	behavior

As	argued	in	the	previous	section,	we	aim	to	develop	self-explaining	agents	based	on	a	BDI	model,	and	closely
connect	the	generation	and	explanation	of	behavior	in	this	model.	We	use	the	BDI	model	to	obtain	agents	with
explicit	goals,	and	actions	generated	based	on	these	goals.	The	goals	also	serve	to	explain	the	actions.	To	go
from	goals	to	actions,	the	agents	use	beliefs	and	the	ability	to	make	plans.	For	the	creation	of	plans,	we	have
looked	at	planning	methods	based	on	hierarchical	task	networks	(HTNs)	(Russell	and	Norvig	2003 ).	In	HTN
planning,	an	initial	plan	describing	the	problem	is	a	high-level	description	of	what	is	to	be	done.	Plans	are	refined
by	action	decompositions,	which	reduces	a	high-level	action	to	a	set	of	lower-level	actions.	Actions	are
decomposed	until	only	primitive	actions	remain	in	the	plan.	BDI	concepts	fit	well	in	these	structures,	e.g.	an
initial	plan	corresponds	to	a	desire	or	goal,	and	a	plan	corresponds	to	an	intention.	Moreover,	as	action
decompositions	are	explicated,	primitive	actions	can	be	explained	by	the	high-level	actions	they	originated	from.

We	have	inspired	our	agent	model	on	the	GPGP/TEAMS	approach	(Lesser	et	al	2004),	which	is	currently	one	of
the	most	extensive	accounts	of	general	(HTN)	planning.	GPGP	(generalized	partial	global	planning)	is	a
framework	for	the	coordination	of	small	teams	of	agents,	and	therefore	it	makes	use	of	local	(from	the
perspective	of	one	agent)	and	non-local	task	structures.	TAEMS	(task	analysis,	environment	modeling	and
simulation)	is	the	language	used	to	represent	these	task	structures.	In	the	GPGP	approach,	coordination	and
scheduling	are	distinguished,	where	coordination	refers	to	planning	among	agents	and	scheduling	to	the
planning	within	an	agent.	The	underlying	model	of	the	GPGP	approach	can	be	represented	conceptually	as	an
extended	AND/OR	goal	tree	where	the	leaves	of	a	tree	are	primitive	(non-decomposable)	actions.	Between	the
nodes	of	the	tree	there	exist	coordination	relationships:	task-subtask	relations	and	non-local	effects.	Non-local
effects	are	relations	between	two	goals	or	tasks	at	any	place	in	the	goal	tree	and	involve	things	like	one	goal
facilitating	the	achievement	of	another	goal.

As	in	the	GPGP	approach,	our	model	also	consists	of	a	tree	with	goal	and	plan	decompositions.	In	this	section
we	first	describe	how	beliefs,	goals,	plans	and	actions	relate	to	each	other	in	our	approach.	Next,	we
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demonstrate	how	our	model	is	used	to	generate	behavior.	Last,	we	discuss	how	it	generates	the	corresponding
explanations.

The	BDI-based	agent	model

Figure	1	shows	an	abstract	plan	tree	based	on	the	BDI-model	of	a	firefighting	agent.	Later	the	example	is
discussed	more	extensively,	and	here	it	only	serves	to	facilitate	reading.	In	general,	the	top	of	the	tree	is	a	goal
describing	the	main	objective	of	an	agent,	which	is	possibly	divided	into	sub-goals.	Goals	are	abstract
descriptions	of	(parts	of)	desired	world	states,	i.e.	they	describe	what	an	agent	wants	to	achieve.	Lower	in	the
tree,	goals	are	divided	into	plans,	which	are	composed	of	(abstract)	actions	and	describe	how	a	goal	can	be
reached.	Plans	are	divided	into	sub-plans,	sub-sub-plans	and	eventually	actions.	Actions	are	no	further
decomposed.	All	of	the	agent's	possible	goals	and	plans	are	part	of	its	BDI-model	and	depending	on	the	current
world	state,	one	or	more	of	them	become	active.	An	agent's	knowledge	about	the	current	world	state	is
represented	in	its	beliefs.	Beliefs	relate	to	the	connections	between	the	agent's	goals,	plans	and	actions,	and
determine	which	goals	and	plans	become	active.	For	example,	a	fire-fighter	would	only	adopt	the	goal	to
extinguish	a	fire,	if	he	believed	that	there	(possibly)	was	one.	Goals	and	plans	relate	to	their	descendants	in
several	ways;	either	all	sub-goals/plans	must	be	achieved	or	at	least	one	or	at	most	one,	and	the	order	of
execution	does	or	does	not	matter	for	the	achievement	of	the	main	goal	or	plan.

The	agents'	beliefs	can	be	classified	into	general	and	observation	beliefs.	The	truth	of	general	beliefs	does	not
depend	on	a	particular	situation.	An	example	in	the	firefighter	domain	would	be	the	belief	that	combustion
requires	oxygen.	Observation	beliefs	are	context-specific	and	their	truth	depends	on	an	agent's	current	situation,
for	example,	the	belief	that	there	is	somebody	in	the	burning	house.	Observation	beliefs	can	be	interpretations
of	observations.	For	example,	the	belief	that	a	house	is	burning	is	an	interpretation	of	observations	such	as
smoke,	heat,	sounds	of	fire,	etc.	Such	interpretation	relations	are	also	represented	in	our	model.

Figure	1.	BDI-model	of	a	firefighter	agent

Generation	of	behavior

A	character	in	a	simulation-based	training	system	has	a	main	goal	or	mission.	To	achieve	this	goal,	it	has	to
adopt	proper	sub-goals	and	plans,	and	finally	execute	the	corresponding	actions.	In	Figure	1,	the	firefighting
agent's	main	goal	is	to	handle	the	incident	successfully,	and	it	is	divided	into	the	two	sub-goals	 extinguish	the
fire	and	save	the	victim.	The	agent	checks	its	beliefs	to	determine	which	of	the	sub-goals	currently	apply	and
only	these	become	active.	Our	agent	hears	sounds	of	fire	and	sees	smoke,	and	derives	that	there	must	be	a	fire.
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To	achieve	the	goal	extinguish	the	fire	it	has	to	choose	between	two	plans:	extinguish	the	fire	by 	using	foam	or
using	water.	Because	the	agent	has	the	belief	that	 water	is	available	it	uses	water,	and	it	has	to	go	to	the	house
and	put	water	on	the	fire	sequentially.	However,	while	extinguishing	the	fire,	our	agent	suddenly	sees	a	victim
and	the	goal	save	the	victim	becomes	active.	Ideally,	extinguishing	the	fire	and	saving	the	victim	are	aspired
simultaneously,	but	this	is	not	always	possible	due	to	limited	resources	(e.g.	there	are	insufficient	firefighters
available).	The	agent's	model	contains	preferences	for	sub-goals	in	order	to	make	choices	between	sub-goals.
In	our	example,	the	agent	believes	that	saving	the	victim	is	more	urgent	than	saving	the	building.	It	thus
interrupts	extinguishing	the	fire,	and	starts	carrying	away	the	victim.

Generation	of	explanations

In	a	(training)	simulation,	only	an	agent's	actions	are	observable,	but	nothing	of	the	reasoning	steps	behind
them.	Whereas	the	agent's	model	is	used	from	main	goal	to	plans	to	actions	for	the	generation	of	behavior,	it
will	start	with	the	actions	for	explanation	generation.	The	beliefs,	plans	and	goals	that	initiated	an	action	all
partly	explain	that	action,	however	providing	the	complete	list	would	result	into	quite	extensive	explanations,
especially	in	bigger	models.	Out	of	the	many	plans,	goals	and	beliefs,	the	information	that	is	most	useful	or	has
most	explanatory	power	needs	to	be	selected.

The	algorithm	used	to	select	information	for	explanations	traverses	the	tree	bottom	up	and	gives	relevant
information	about	the	decisions	along	the	way.	The	basics	are	simple;	to	explain	the	action	Use	foam,	we	get
the	following	reasons:

 
I use foam, because
   I want to Handle incidents and I believe there is Fire
   therefore I want to Extinguish fire and
      because there is no Water available I use foam

In	general,	giving	all	reasons	for	all	decisions	along	the	path	through	the	tree	to	the	action	might	result	into	of	an
overload	of	information.	We	therefore	apply	a	kind	of	filter	such	that	presumed	known	information	is	left	out,	e.g.
in	the	example	it	is	no	use	to	state	that	you	want	to	handle	incidents.	This	goal	is	known	to	all	involved.	If	it	is
clearly	perceivable	that	there	is	a	fire,	that	part	is	also	left	out.	This	would	lead	to	an	explanation	that	I	use	foam,
because	there	is	no	water	available.

Another	heuristic	that	is	used	to	filter	information	out	of	the	explanations	is	to	find	possible	places	where
ambiguity	on	the	agent's	goal	arises.	This	can	be	nicely	illustrated	with	a	possible	explanation	for	the	action	go
to	the	house	of	our	firefighting	agent.	In	Figure	1	it	can	be	seen	that	this	action	is	part	of	two	plans,	it	can	be
executed	to	extinguish	a	fire	or	to	save	a	victim.	Possible	confusion	about	which	plan	the	action	aims	to	execute
can	be	solved	by	going	up	in	the	tree,	starting	with	the	action	till	both	lines	meet.	In	this	case,	they	meet	at	the
top	goal,	where	it	has	to	be	decided	whether	to	first	extinguish	the	fire	or	save	the	victim.	The	beliefs	that
determined	the	outcome	of	this	decision	are	there	is	a	victim	and	saving	victims	has	priority	over	extinguishing
fires.	The	explanation	of	the	action	 go	to	the	house	is	thus:

 
I Go to house because I believe
   there is a Victim and Safe victim > Extinguish fire

Note	that	explanations	generated	by	this	algorithm	are	useful	when	plans	are	not	interrupted.	However,
problems	in	explanation	generation	arise	when	plans	are	interrupted,	e.g.	in	the	above	example	where	the
firefighter	switches	from	extinguishing	the	fire	to	saving	the	victim.	Suppose	he	started	executing	the	plan	for
extinguishing	the	fire	and	went	to	the	house	to	achieve	that	goal.	At	that	moment	he	sees	the	victim	and	starts
saving	the	victim.	If	the	firefighter	is	asked	why	he	went	to	the	house,	he	would	respond	that	it	was	to	extinguish
the	fire.	That	explanation	might	give	the	wrong	impression	that	he	did	not	see	the	victim	(yet).	The	complicated
explanation	should	be	that	going	to	the	house	was	done	to	extinguish	the	fire,	but	the	goal	was	switched	and	the
action	was	also	useful	for	saving	the	victim.

	Implementation	of	the	agent

After	defining	an	agent	model	in	which	the	agent's	reasoning	concepts	are	explicitly	represented,	we	discuss
some	of	the	issues	that	arise	when	implementing	the	model.	In	this	case	the	implementation	is	relevant	for	the
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theory	as	it	can	quite	easily	interfere	with	the	intuition	that	generation	and	explanation	of	actions	can	be	nicely
linked	in	BDI	agents.	First,	we	discuss	requirements	on	the	implementation	of	explanation	capabilities	in	section.
For	instance,	the	agent	needs	to	have	access	to	its	own	beliefs,	goals	and	plans,	i.e.	it	requires	the	ability	of
introspection.	Then,	a	proper	(agent)	programming	language	has	to	be	chosen.	Finally,	the	BDI-model	must	be
translated	to	constructs	in	the	chosen	programming	language.

Implementation	of	explanation	facilities

The	implementation	of	self-explaining	agents	should	fulfill	four	requirements.	First,	the	BDI	concepts	should	be
explicitly	represented,	such	that	one	can	easily	refer	to	the	goals	and	beliefs	that	explain	an	action.	Second,	the
operationalization	of	these	concepts	(i.e.	how	actions	are	generated	from	the	goals,	beliefs	and	plans)	should	be
available	for	reproduction	in	explanations	to	indicate	why	actions	are	performed	in	a	certain	order	and	plans	and
goals	have	priorities.	Third,	a	self-explaining	agent	should	be	able	to	introspect.	An	agent	needs	to	have
knowledge	about	its	own	states	and	processes	in	order	to	explain	them.	The	fourth	and	last	requirement	is	that	a
self-explaining	agent	needs	to	have	memory.	To	explain	its	actions,	an	agent	needs	to	know	about	its	states	and
processes	not	only	at	the	time	they	occur,	but	also	at	later	points	in	time.

The	third	requirement	is	that	agents	need	to	introspect	in	order	to	explain	the	reasons	for	which	they	executed
their	actions.	However,	in	the	current	agent	programming	languages	the	information	required	for	explanations	is
either	implicit	in	the	program	or	is	present	in	the	interpreter,	but	not	available	for	introspection.	(The	only
possible	exception	is	DESIRE	(Brazier	et	al	1997),	although	this	platform	does	not	explicitly	provide
introspection	on	the	decision	mechanism,	which	is	exactly	what	is	needed	for	the	explanations).	Fortunately,	the
lack	of	total	introspection	is	not	a	major	drawback	as	we	do	not	need	its	full	power.	We	do	not	use	the
introspection	as	input	for	the	agent's	deliberation	process,	but	only	as	input	for	an	explanation	facility	that	can
be	explicitly	invoked.	The	introspection	needed	for	explanation	therefore	can	be	either	created	artificially	within
the	program,	or	as	a	separate	module	or	program	for	handling	the	explanations.

The	first	solution	yields	logging	an	agent's	reasoning	steps	within	its	own	program,	e.g.	by	adding	update
actions	to	it	in	which	the	agent	stores	its	own	processes	as	beliefs.	However,	this	method	has	as	a	consequence
that	the	bookkeeping	necessary	for	the	explanation	can	interfere	with	the	generation	of	'real'	plans	and	actions.
If	the	agent	needs	to	be	able	to	react	to	new	circumstances,	this	might	cause	problems.	We	illustrate	the
possible	problems	with	the	fire-fighting	agent	of	section	3	that	sees	a	victim	while	it	is	extinguishing	a	fire.	If
logging	is	part	of	the	agent	program,	update	actions	can	be	executed	just	before	or	after	executing	an	action.	If
updating	is	done	after	execution,	it	could	happen	that	the	agent	finishes	the	action	of	putting	water	on	the	fire,
but	then	starts	saving	the	victim	without	making	the	update	that	it	extinguished	the	fire.	After	it	saved	the	victim,
the	agent	wants	to	continue	extinguishing	the	fire	although	it	is	not	necessary	anymore.	Its	other	actions,	e.g.
informing	the	head	quarter	might	fail.	On	the	other	hand,	if	updating	is	done	before	execution	of	an	action	and
there	is	an	interruption,	the	agent	unjustly	believes	it	executed	a	particular	action	and	will	encounter	problems	if
it	tries	to	execute	the	next	action	of	the	plan.

The	second	solution,	building	a	separate	explanation	module,	also	has	a	disadvantage.	Although	the	logging
and	explanation	generation	will	not	interfere	with	the	actual	program	of	the	agent,	action	generation	and
explanation	are	no	longer	intrinsically	connected.	In	agent	implementations	in	which	the	interpreter	provides	the
operationalization	of	the	BDI	model,	the	connection	can	be	kept	by	changing	the	interpreter	such	that	it	provides
the	logging	of	the	decisions	during	the	action	generation.	The	downside	of	this	approach	is	that	one	would	have
to	modify	existing	agent	platforms	for	this	purpose.	In	agent	implementations	in	which	the	operationalization	is
explicitly	programmed,	the	logging	can	be	added	in	the	agent	program	itself.	A	danger	however	is	that	the
programmer	alters	some	decision	making	module	without	changing	the	explanation	parts	belonging	to	it,	which
is	inefficient	and	undesirable.

As	long	as	there	are	no	programming	languages	offering	explanation	facilities,	a	balance	between	both	options
has	to	be	found.	Explanation	generation	should	not	hinder	the	planning	of	the	agent,	but	generation	and
explanation	should	also	not	be	completely	separated	from	each	other.	In	such	a	solution	the	agent	will	not	have
general	introspection,	but	only	the	introspection	necessary	to	generate	explanations.	At	the	end	of	this	section	a
possible	solution	implemented	in	2APL	(Dastani	2008)	is	discussed.

Agent	programming	languages

Agent	programming	languages	can	be	divided	into	languages	that	do	and	do	not	explicitly	represent	BDI
concepts.	Languages	such	as	2APL	(Dastani	2008)	and	ConGolog	(Giacomo	et	al	2000)	have	explicit
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representations	of	the	agent's	beliefs	and	goals.	Agent	programming	languages	in	which	the	concepts	are	not
explicitly	represented	are	for	example	Soar	(Rosenbloom	et	al	1993)	and	Jade	(Bellifemine	2007).

Furthermore,	agent	programming	languages	can	be	classified	according	to	whether	the	agent's	flow-of-control	is
explicit	in	the	program	or	implicit	in	the	interpreter	(or	deliberation	cycle).	Languages	with	an	implicit	flow-of-
control	represent	the	elements	with	which	the	agent	reasons,	e.g.	beliefs,	goals	and	plans.	The
operationalization	of	these	concepts	is	done	through	the	design	of	the	agent	and	its	deliberation	process.	An
example	of	such	an	agent	programming	language	is	Jason/AgentSpeak	(Bordini	et	al	2007).	Languages	with	an
explicit	flow-of-control	in	contrast	explicitly	represent	the	relations	between	the	agent's	reasoning	elements,
usually	by	if-then-else	rules.	In	such	languages	the	identity	of	the	elements	is	not	explicit,	and	can	only	be
known	if	they	are	implemented	in	separate	files	called	belief	or	goal	bases.	Jade	is	the	prime	example	of	an
agent	programming	language	with	a	more	explicit	flow-of-control.

The	consequences	for	explanation	generation	of	explicit	and	implicit	representations	of	BDI-concepts	and	flow-
of-control	can	be	illustrated	by	a	firefighter	agent's	choice	between	extinguishing	a	fire	and	saving	a	victim.	The
rule	the	agent	follows	is	that	normally	saving	a	victim	has	priority	over	extinguishing	a	fire,	except	if	there	is
explosion	danger.	In	that	case	the	agent	extinguishes	the	fire	before	it	saves	the	victim	(otherwise	the	fire	might
initiate	an	explosion	which	results	into	many	more	victims).	Reasoning	elements	in	this	example	are	the	goal
handle	incident,	the	sub-goals	extinguish	fire	and	save	victim,	and	the	beliefs	 fire,	victim	and	explosion	danger.
The	relations	between	the	elements	are	the	priority	rules:	without	explosion	danger	saving	a	victim	is	more
urgent	than	extinguishing	a	fire,	with	explosion	danger	vice	versa.	The	reasoning	elements	and	the	relations
between	them	both	partly	explain	the	agent's	choice,	thus	both	should	be	available	for	introspection.

Representations	with	an	implicit	flow-of-control	usually	consist	of	rules	like	Goal	←	Belief	|	Plan.	If	the	agent	has
the	specified	goal	and	belief	in	the	rule	in	its	goal	and	belief	base,	respectively,	the	plan	in	the	rule	is	added	to
its	plan	base.	The	interpreter	of	the	program	tries	rules	till	it	finds	one	of	which	the	conditions	are	fulfilled	and
then	applies	that	rule.	The	rules	are	considered	in	the	order	at	which	they	are	represented.	An	implicit	flow-of-
control	representation	of	the	above	example	would	be	as	follows.

 
handle incident ← explosion danger | extinguish fire
handle incident ← victim | save victim
handle incident ← fire | extinguish fire

The	goals,	beliefs	and	plans	are	explicitly	represented	and	available	to	explain	the	agent's	actions.	For	instance,
if	the	agent	has	the	beliefs	victim	and	explosion	danger,	the	first	rule	would	be	applied,	and	the	goal	 handle
incident	and	the	belief	explosion	danger	can	be	used	to	explain	the	agent's	action	of	extinguishing	the	fire.
However,	information	about	priorities	is	only	implicitly	present	in	the	representation.	The	following	piece	of	code
consists	of	the	same	three	rules,	but	put	in	a	different	order.

handle incident ← fire | extinguish fire
handle incident ← victim | save victim
handle incident ← explosion danger | extinguish fire

If	again	the	agent	has	the	beliefs	 victim	and	explosion	danger,	the	second	rule	would	apply	and	the	agent	would
(wrongly)	start	saving	the	victim.	Thus,	the	order	in	which	the	rules	are	represented	matters	because	it	contains
information	about	priorities.	A	programmer	includes	priority	information	into	the	program	by	properly	ordering	the
rules,	but	priorities	are	nowhere	explicitly	represented.	Just	because	the	interpreter	considers	rules	in	a	specific
order,	the	desired	behavior	is	generated.	However,	information	about	priorities	might	be	needed	in	explanations,
so	it	has	to	be	made	available	elsewhere.

The	same	example	could	be	represented	with	if-then-else	rule,	to	make	the	flow-of-control	explicit,	for	example
as	follows.

 
if (not explosion danger) then
  if (victim) then
     save victim
  end
  if (fire) then
    extinguish fire
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  end
else if (explosion danger) then
  extinguish fire
  if (victim) then
    save victim
  end
end

Here,	the	priority	rules	are	defined.	If	there	is	no	explosion	danger,	saving	a	victim	is	executed	before
extinguishing	the	fire,	and	if	there	is,	the	fire	is	extinguished	before	saving	the	victim.	The	rule	condition	that
applies	to	the	current	situation	corresponds	exactly	to	the	priority	rule	used	by	the	agent,	which	it	thus	has
available	for	explanation.	However,	information	about	the	agent's	goals	and	beliefs	can	not	directly	be	deduced
from	the	behavior	generation	process,	and	needs	to	be	documented	elsewhere.

As	said	before,	for	the	generation	of	agent	behavior	it	is	not	necessary	to	explicitly	represent	both	the	agent's
reasoning	concepts	(declarative)	and	their	operationalization	(imperative).	However,	explanations	need
information	about	both	aspects.	So	to	equip	an	agent	programming	language	with	explanation	capabilities,	the
explicit	part	can	easily	be	logged	for	explanation,	but	the	implicit	part	has	to	be	made	explicit	as	well.

An	agent	programming	language	that	tries	to	bridge	the	two	paradigms	is	2APL.	It	has	declarative	elements	on
the	belief	and	goal	level	and	imperative	elements	on	the	plan	level.	Therefore	it	seems	a	good	candidate	to
implement	the	agent	model.	However,	the	example	given	above	on	rule	priorities	between	plan	generation	rules
is	also	applicable	to	2APL	and	thus	also	in	2APL	we	have	to	model	the	agent	carefully	and	make	some	decisions
that	are	implicit	in	the	deliberation	cycle	explicit.

Goals,	plans	and	explanations	in	2APL

In	the	abstract	BDI	model	agents	have	both	goals	and	plans.	A	goal	describes	a	desired	world	state	and	a	plan
is	a	sequence	of	actions	(or	sub-plans).	An	agent	needs	to	have	at	least	one	goal	in	order	to	generate	actions,
i.e.	to	make	it	proactive.	In	the	example	of	section	3,	the	agent's	main	purpose	is	to	handle	the	incident	it	is
confronted	with,	so	the	node	handle	incident	driving	its	behavior	should	be	represented	as	a	goal.	The	two
descendant	nodes	of	this	main	goal,	extinguish	fire	and	save	victim,	can	be	viewed	as	goals	or	plans,	and	their
descendants	as	sub-goals	and	sub-plans,	etc.	In	simple	scenarios	in	which	all	of	the	agent's	actions	succeed
and	no	unexpected	events	occur	the	difference	between	(abstract)	plans	and	goals	does	not	really	matter,
because	their	operationalization	is	similar	in	those	situations.	But	in	more	challenging	scenarios	in	which	actions
fail	or	plans	are	interrupted	it	does.	In	general,	a	goal	is	only	dropped	when	it	is	achieved.	In	exceptional	cases	it
can	be	explicitly	dropped	by	the	agent	(as	part	of	a	plan).	Plans,	however,	can	be	changed	whenever
circumstances	require.	If	extinguish	fire	is	represented	as	a	goal,	the	goal	should	thus	be	explicitly	dropped
when	the	agent	starts	saving	a	victim	because	an	agent	can	not	simultaneously	pursue	the	goals	to	extinguish	a
fire	and	save	a	victim.	If	it	is	represented	as	a	plan,	the	(remaining)	steps	of	the	plan	can	remain	in	the	plan
base,	but	the	execution	will	be	postponed.

For	instance	in	2APL,	which	we	used	for	our	implementation,	the	differences	between	plans	and	goals	become
clear	from	the	deliberation	cycle.	Goals	are	used	in	PG-rules,	which	have	the	form	Goal	←	Belief	|	Plan.	In	figure
2	it	can	be	seen	that	they	are	tried	in	each	deliberation	cycle	of	the	agent.	Plans	or	actions	that	are	part	of	a	plan
are	only	executed	when	they	are	in	the	plan-base	of	an	agent.	For	plans,	the	interpreter	knows	which	plan
should	currently	be	executed	and	manages	the	order	in	which	plans	are	executed.	But	because	all	goals	are
tried	to	be	achieved	at	every	deliberation	step	in	the	program,	for	goals	it	has	to	be	explicated	in	the	program
which	ones	the	agent	adopts	and	drops.

Thus	if	we	implement	most	part	of	the	model	using	goals,	it	should	be	carefully	considered	which	goals	the
agent	adopts	and	drops.	The	relation	between	goals	has	to	be	administered	well	as	they	tend	to	persist	and
interfere	unexpectedly.	However,	because	the	goals	are	kept	explicitly	in	the	goal	base	they	are	very	amenable
to	be	used	for	explanations.	In	contrast,	if	we	implement	most	part	of	the	model	as	plans,	we	might	easily	loose
track	for	which	plan	an	action	is	performed.	This	is	especially	true	when	plans	are	interrupted.	The	difficulty	of
dealing	with	interrupted	plans	can	be	illustrated	by	the	following	example.
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Figure	2.	The	deliberation	cycle	of	a	2APL	agent

In	2APL	the	interruption	of	a	plan	can	be	modeled	by	plan	revision	rules	(PR-rules).	A	PR-rule	that	postpones
the	execution	of	a	plan	has	the	form	Plan1 ← Belief | Plan2; Plan1 .	The	given	example
could	be	modeled	as	follows:

 
OriginalPlan ← victim |
   saveVictim ;
   OriginalPlan

The	rule	states	that	whatever	is	the	current	plan	of	a	firefighter,	if	it	believes	that	there	is	a	victim,	he	will	first
save	the	victim	and	then	continue	with	its	original	plan.	Notice	that	the	plan	saveVictim	should	also	make	sure
that	the	belief	that	there	is	a	victim	is	made	false,	otherwise	the	same	rule	is	applied	over	and	over	again.	In
order	to	overcome	the	problems	with	updating,	atomic	plans	can	be	used.	The	example	would	become:

OriginalPlan ← victim |
   <saveVictim; UpdateBelief(not victim)> ;
   OriginalPlan

The	plan	between	square	brackets	is	interpreted	as	an	atomic	plan,	which	should	be	executed	at	once	ensuring
that	the	execution	of	this	plan	is	not	interleaved	with	the	execution	of	the	actions	of	other	plans	of	the	same
agent.	Through	this	expression	the	actual	and	the	updating	action	can	be	connected	to	each	other	such	that
even	an	interruption	can	not	separate	them.

Given	the	above	considerations,	the	2APL	rules	can	be	used	quite	straightforward	to	both	generate	the	desired
behavior	of	the	firefighter	and	keep	track	of	its	decisions	through	logging	actions	for	the	explanations.

	Conclusions

In	the	present	paper	we	have	introduced	an	agent	model	able	to	generate	behavior	and	explanations.	We	have
shown	that	the	generation	of	both	behavior	and	explanations	can	be	realized	by	implementing	the	model	as	a
BDI	agent	in	2APL.	The	generated	explanations	aim	to	improve	understanding	of	the	agent's	behavior,	but	also
serve	as	the	basis	for	explaining	the	interaction	emerging	in	a	group	of	agents.

The	implementation	of	a	self-explaining	agent	yielded	some	difficulties.	To	provide	explanations	introspection	is
required,	but	the	current	agent	programming	languages	do	not	provide	such	possibilities.	It	is	possible	to
artificially	create	introspection,	but	that	results	in	only	ad-hoc	solutions.	For	a	grounded	solution,	explanation
facilities	should	be	part	of	the	platform	design.	In	the	platform,	both	concepts	and	their	operationalization	should
be	explicit.	Moreover,	the	platform	should	ensure	that	explanation	generation	does	not	interfere	with	the	actual
program.	Nevertheless,	the	paper	shows	that	self-explaining	agents	based	on	a	BDI	theory	can	be	developed
using	2APL.

http://jasss.soc.surrey.ac.uk/13/1/4.html 9 07/10/2015



5.3

5.4

In	order	to	use	single	agent	explanations	for	explaining	the	complete	simulation,	a	way	to	examine	the	set	of
explanations	of	individual	agents	is	needed.	Such	an	approach	could	distinguish	different	categories	of
explanation	sets.	For	example,	sets	of	individual	behavior	explanations	can	contain	similar,	different	or
contradictive	explanations.	One	could	then	speak	of	agreement	or	cooperation,	not	understanding,	and
disagreement	or	hostility,	respectively.	Based	on	the	categorization	of	a	set	of	explanations,	an	explanation	of
the	whole	simulation	can	be	constructed.	Such	simulation	explanations	distinguish	between	situations	in	which
equal	overall	behavior	is	based	on	different	individual	motivations.

In	the	future,	we	will	work	on	such	an	approach.	We	will	also	develop	an	explanation	module	in	2APL	where	an
agent	can	update	its	executed	actions	with	the	corresponding	explanatory	elements.	This	enables	the	2APL
agent	to	reason	about	its	goals	and	beliefs	without	interference	with	the	execution	of	its	actual	action	generating
program.	Furthermore,	we	want	to	make	a	complete	implementation	of	a	firefighting	agent	based	on	the	input	of
experts.	Several	instantiations	of	this	BDI-agent	can	then	be	connected	to	a	simulation-based	training	system.
Such	a	system	can	serve	as	a	test-bed	for	approaches	that	explain	simulations	through	self-explaining	agents.
Experiments	could	give	insight	into	the	usefulness	of	explanations	for	trainees,	both	of	single	agents	and	of
teams	of	agents.

	Appendix

The	following	(pseudo-)code	is	an	implementation	of	the	firefighter	agent	in	Figure	1:

 
fire :- smoke, sounds.

handle incident ← victim | save victim

handle incident ← fire | extinguish fire

extinguish fire ← (water and fire) | use water

extinguish fire ← (no water and fire) | 
  <use foam; UpdateBelief(no fire)>

use water ← (water and fire) | 
  <go to house; UpdateBelief(at house)> ;
  <water on fire; UpdateBelief(no fire)>

save victim ← true | 
  <go to house; UpdateBelief(at house)> ;
  <carry away; UpdateBelief(no victim)>

OriginalPlan ← victim |
  <saveVictim; UpdateBelief(not victim)> ;
OriginalPlan
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